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So, we will start. Now, model diagnostics of multiple linear regressions, so under model 

diagnostics what are the issues we will be covering. 
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Leverage points, influential points and multicolinearity. 
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Now, you see this figure, so it is a scatter plot between y and x and if you see the 

majority of the data points they are scattered around this ellipse, and if we consider the 

major majority of this point or the mass of the points. Then you see that this is the 

variability of y, this is a range where y varies and this side is the variability of x with 

respect to the mass of the data points. Now, you consider this point, suppose your 

observations, one of the observations is observations is like this, this one lies that much 

distance away from this centre of this mass of the points.  

But, it lies in the, in the direction of y you see the variability of y is this one and it is 

basically much away from that that y portion. But, if you see this portion for the x it is 

within this variability, so outlier is a point which is necessarily related to the variable y. 

So, outlier is an observation which lies much away from the general mass related to y. 

Now, you come to the other two points this point bishop is this point if you see this point 

which is if I say the variability of y it, basically belongs to this variability that range 

within this range along y.  

But, along x if we see this is away from the general range of the x and similarly the other 

one also, this one also, now leverage point is a point which lies beyond the that general 

mass of x. So, that means outlier is necessarily related to the y related observations and x 

leverage points related to x variability that range point of view. Now, all these 



observations can have influence on the regression estimates, if any observations which 

influence the regression estimate is known as influential observations generally what will 

happen. You will found out that outlier will not affect the regression estimate much, but 

the leverage point will affect which for example there is good leverage point.  

This good leverage point is one which is not which is basically almost lining on the 

straight line you see if I draw a straight line. Here, the regression line it is very close to 

the regression line although it is out of the, I mean far away from the general mass of the 

data points. But, from the regression point of view what is happening it is basically lying 

almost on the regression line. So, it may be representing something different which is 

which will help in understanding behaviour of the system that is why it is good it is not 

distorting the regression line regression line. But, the bad leverage point is this one what 

will because of this your regression line will shift, so by regression diagnostic in case of 

multiple regression.  

We try to find out all those influential observations including outliers leverage points, 

good leverage as well as bad leverage points. Many time what will happen suppose one 

point is, here somewhere, here apparently it looks that there is no problem with this data 

with this particular observation. But, if you carefully observe the errors you will find out 

that this has influence also in the regression line. So, today’s discussion we want to find 

out the leverages, we want to find out other influential observations and another issue 

which is also very important that our one of the assumption is that independent variables.  

All the explanatory variables are independent in nature, so if they are there is some 

amount of dependency between or amongst the independent variables what will happen, 

it leads to again distortion in the estimates and that is termed as multicolinearity. So, we 

will find out how to identify these observations what are the remedies to high leverages 

or high influential points, and what is multicolinearity? And how to detect and remedy 

multicolinearity. 
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This is our example and these are the fitted values and regression lines parameter tests. 
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Now, see the outliers or leverages based on scatter plot it is visible that is there any 

outliers difficult I think it is even. This first figure it is, it is not clear that outlier is there 

or not or residual what I can say influence our observations, second one you see that 

sales volume versus bishop is machine breakdown in hours. Here, what happen it is 

almost random no relationship and third one M ratio which we have not taken into 

consideration in this regression equation. 
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This regression equation we have not considered this M ratio we have consider X 1 is the 

absenteeism X 2 is the breakdown hours. 
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If you see the regression coefficients, now that absenteeism has affect because P value is 

0.022, but absenteeism case it is 0.53, so it is that has no effect and which is also rebuilt 

in this picture there is no effect. So, if we include M ratio what will happen, ultimately 

your regression fit will be better r square will go to the higher side because here is 



perfect almost perfect correlation in this particular case. So, by seeing scatter plot it is 

not always possible to find out that whether there are outliers or leverages. 
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So, in order to identify leverage points you have to understand the hat matrix. 
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So, I think we have described hat last class not last, but one, this is the hat matrix see 

ultimately this one all related to x space, so when you are talking about leverages it is 

related to the space created by the x matrix. This one you have already seen that this is 

basically h 1 1 to h 1 1, 1 2, 2 1 n, h 2 1, 2 2, 2 n like this I think h n 1, h n 2 to h n n and 



there will be somewhere h i i. So, leverage values are the diagonal elements, so in the 

head matrix for we have i of i equal to 1 to n observations and you find out the h i i 

values these are known as leverage values.  

So, h 1 1, h 2 2 like h n n they are all leverage values, now what will be the value of h i i 

that h i i value what will be the cut off value for h i i that means when we say that the 

observation is influential or it is basically leverage points. So, there must be a cut off 

value, now if you see this distribution of the h i i you will find out that h i i minus 1 by p 

divided by p and 1 minus h i i by n minus p minus 1 this quantity follows f distribution 

with p n minus p minus 1 degrees of freedom. 

Now, if your p is greater than 10 and n minus p minus 1 greater than 50 means what we 

are saying if you take large observations as well as your p is little more and for alpha 

equal to 0.05. This F value is always less than equal to 2 this is we are talking about that 

when we talk about the multiple regression large number of variables large number 

observation this is the practical case. So, if this is the case then all values will be 

irrespective of the p and n minus p minus 1 when this condition satisfies, so it will be 

less than equal to 2.  
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So that what we mean by this when say that whether it is influential or not, that mean 

you are considering chi square distribution and you will be considering this region that is 

0.05. So, you are saying it is within this side then it is not influential when it goes to this 



side this is influential observation, so that mean we want to find out h i i value for this 

point. It is it is given that that h i i minus 1 by n divided by degree of freedom and 1 

minus h i i divided by this is, this is suppose this is F this one you are finding out here. 

So, we want to know this and there are there are several cut offs given, but the most 

widely used is that cut off for leverage point that will be greater than 2 into p plus 1 by n 

2 into p plus 1 by n p plus 1 is the number of parameter to be estimated. Number of 

parameter estimated n is the number of that is the sample size and these two is coming 

because we have seen that it will be less than 2 for most of the situations. So, when this 

condition satisfy we say this the point is a leverage point in the sense it has influence on 

the regression estimates, and what h i i measures it measures the leverage values and the 

sum total of h i i this will be equal to the number of parameters. 

So, then if all our all points are equally influencing then what will happen h i value be 

equal for all the points and that value will be p plus 1 by n. So, that mean what we mean 

to say if they are equally h i i equal to p plus 1 by n when each of the observations 

contributes equally which we want also, but it is not possible. So, as a result this 

distribution and this from this distribution what we are seeing that this one for f p greater 

than 10 n minus p minus 1 greater than 50. If we take alpha equal to this point this will 

always less than 2 irrespective of any other p when this condition satisfy. 

So, that is why they are saying that if you multiply this by 2, so what will happen h i i 

this greater than you are multiplying by 2 into p plus 1 by n, this is the average value this 

one. So, from average how much you are going this side depending on this value that is 

why 2 is multiplied here, so if your value h i value, any h i value which is more than 2 

into p plus 1 by n that is leverage value.  



(Refer Slide Time: 15:56) 

. 

Now, see this for our case, our case you see that h i i values are observation 1 to 

observation 12 and h i i values are given these are all the diagonal values of the head 

matrix. Now, what will be the cut off value, cut off value will be we have 2, how many 

parameters we are estimating 3, what is your sample size n. So, p is 2 plus 1 into 2 by n 

this is 0.50 is there any value which is greater than 0.50, you see we have not got any 

value, here which is greater than 0.50, so we can conclude that, here is no leverage points 

for the problem we have undertaken. 
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Now, this leverage point is definitely very good it will give you the, you identify that if 

any observation is influential or not. But, Cook has given something different also that 

means you can go by h i i values and the formulation what we have discussed so far that 

you can use cook distance also. 
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Cook’s distance, what is the procedure in Cook’s distance the procedure is like this, so i 

equal to 1 2 i dot n, so n observation are there y values are there and x values are there 

fine. You have used the regression equation like this x beta plus epsilon and using all that 

observations you have computed y cap equal to x beta cap. Now, what is our interest, our 

interest is we want to know is the i-th observation is influencing the regression estimate 

or not, now if i is might belong the general mass then what will happen as n is quite 

large. If you eliminate one observation there will not be almost no difference in the beta 

estimate because if I take n equal to 100 or 100 minus 1 that is 99.  

Then this estimate should not be distorted to the general mass, general mass if that point 

does not belong to the general mass that means it is a leverage point with respect to x 

definitely we are talking about x space then what will happen it will affect the beta 

estimate. So, now what you will do, you go for another regression without the i-th 

observation getting me, so if I say this one suppose if I write this one the i-th observation 

is not there y i cap this is x beta I can write.  



Here, i let it be, here only beta i within bracket let us give like this that is better parity 

will be there, so what is the second equation. Second equation is, here you have taken n 

data points, here you have taken n minus 1 data point, the i-th 1 this i the i-th 1 is 

eliminated. Then what we are saying this should not the difference between this beta cap 

n minus beta cap, i this difference should not be much really it should that in effectively 

there should not be any difference only rounding error some difference will be there. 

Then Cook has created one statistics the D i which is beta cap minus beta i cap transpose 

x transpose x then beta cap minus beta i cap this divided by p into s square and definitely 

i equal to 1 to n. 

So, he created one statistics this type of statistics, so what happen you eliminate the i-th 

observation do the second round in regression modelling, find out the beta values. You 

have several x values these are all matrix vector values or matrix of the order p cross p 

plus 1 cross 1 and then you create this type of statistics that D i equal to this, this one 

follows f distribution with p n minus p minus 1 degrees of freedom.  

Student: Sir 1 minute, when we will eliminate the i-th observation means x as well as y.  

That is total observation, yes.  

Student: So, that time this x matrix 1 we consider from that matrix also we have to 

eliminate that?  

Total that x y total as you said the i-th observation including x and y you eliminate, now 

this quantity, this quantity follows F distribution, now when what will be your say that 

this D i what we are trying to say this will become as close as possible. So, we will be 

looking for this D i value as small as possible then we will say that it is not away from 

the general mass and fine. So, as a result what happened using this, now can you not find 

out that what will be the influential observation it all depends on that where you want to 

put the cut off value depending on the F distribution we will be able to do.  
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Now, question is there are suppose 1000 data points, so should I go for that 1000 plus 1 

when every time you are eliminating 1 the first one second one like this so many 

observations. So, you will be having so many regression, fittings regression equation you 

have to develop you have to calculate beta that beta i i equal to 1 to n. But, it is not like 

this you do not require this several times there is the way out is that D i is r i by p h i i by 

1 minus h i i. 

So, h i i is this these are the basically the diagonal elements of the head matrix this is 

known p is known then what is r i is basically e i by square root of s square 1 minus h i i 

e i is the basically the error one, error one. So, i given that like this epsilon i cap you 

know s square, s square is SSE by n minus p minus 1, so that mean when you are fitting 

1 degrees in equation you are getting everything. Now, put this value r i value, here and 

find out this value and then you say whether it is what I can say, what is the distance you 

measure the distance and using F distribution you find out. 

Now, the cut off value what it says that the cut off value is given that if D i greater than 1 

then it is basically significant this is Cook’s, Cook has given this that for D i greater than 

1 the observation having this that will be significant. Now, we will say what is the 

procedure is first you find out the Cook’s distance using the formulation that formulation 

will be this one, you will be using this, use this find out this Cook’s distance, yes not 

coming yeah.  



So, using this you find the Cook’s distance, so ultimately 1 to n then D i value you are 

getting, so if I say D 1 D 2 like this D n then you find out the maximum one which one is 

maximum let the D i, this one is the maximum distance. So, for this maximum distance 

what we say that D i follow F p, n minus p minus 1, so I will take the maximum distance 

and then what is p value in our case. In our case p is 2 n minus p minus 1 is 9 and then I 

have taken 0.25 not 0.05 even when I have taken 0.25 this value is 1.62 that, but our D 

10 value is 0.52 only, so it is much closer. 
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It is if I see the F distribution table sorry, graph like this we have taken 25 percent this is 

25 percent t and this value is 1.62, but your maximum value, here it is 0.52, so it is not at 

all a influential point. 
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Then we will go for multicolinearity, now multicolinearity as I told you multicolinearity 

is a, is an issue where independent variables are not truly independent there is, there is 

dependence structure amongst the independent variables. Under such condition what will 

happen if there is linear case, linear dependence case the determinant of this x transpose 

x will you will not get it will become 0 and ultimately inverse you cannot create, and you 

will not get the estimate values. So, multicolinearity has to be tested and multicolinearity 

can be tested through four different procedures and these are known as variation inflation 

factor, tolerance statistic, Eigen value structure and multicolinearity condition number. 

So, what we will discuss we will first discuss the variance inflation factor. 
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What is variance inflation factor, variance inflation factor is something suppose we are 

talking about that out of this p independent variables there is correlated structure in the 

sense dependence relationship. So, arbitrarily we are taking one independent variable as 

dependent variable we are not considering y. Here, we are considering only the 

independent variables then we are taking one of the independent variable as dependent 

variable and all other independent variables as independent as influencing that 

independent variable. So, x j is, now affected by X 1, X 2, X p then you are making a 

regression equation, so your regression equation is. 
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Now, X j is beta 0, beta 1 X 1, so like this beta p X p plus epsilon this does not include X 

j and y then you find out the R j square, so that will be S S R j by S S T that is for the j-th 

variable. So, then you create variance inflation factor equal to 1 by 1 minus R j square 

for example in our case absenteeism and machine breakdown the beta values are this and 

variance inflation factor is 1.092 both cases 1.092. If R j is 0, if r j is 0 then VIF will be 

equal to 1 and we do not want R j apart from value, apart from 0 value mean we want 

that 0 value.  

That is the best value because R j 0 means no correlation, means no regression is not 

valid regression that means, that means X j is not dependent on the other independent 

variable. So, you have to create this type of variance inflation factors for each of the 

variables then you see this, here what happen your R square R j square this R j square 0 

mean VIF 1. If it is 0.2, 1.2 like this then there is another concept called tolerance is 

nothing but just reverse tolerance is 1 by variance inflation factor, so if you use tolerance 

or variance inflation factor both are same ultimately.  

Here, what is happening you are getting within a 0 to 1 scale, 0 to 1 scale, here any value 

is possible, so as if we get in terms of 0 to 1 scale it is easier for us to interpret. So, now 

then what will be the VIF value that should be considered you are getting me for 

basically we say that if the VIF value is 10 or more this mean high collinearity, high 

relationship. So, 10 or more 10 is the cut off value, it should not be 10 or more 5 also 5 is 

the warning limit you can think of, so that means if tolerance is 0.1 or less or variance 

inflation factor 10 or more that is not desirable, but when if it is 5 and then it is warning 

case. 
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Then another issue is that another is the Eigen value criteria, what is this Eigen value 

criteria, in Eigen value criteria, so all of you know that the correlation matrix. 
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We are talking about correlation matrix of x n cross p which will be, so this is p cross p 

matrix. Now, using spectral decomposition this r can be written like this that I can write 

that v j, lambda j, v j transpose j equal to 1 to p where lambda j is the j-th Eigen value 

and v j is the j-th Eigen vector. So, you can any this p cross p matrix, this matrix can be 

decomposed its Eigen value and Eigen vector components. This can be that mean if I 



know Eigen values and Eigen vector, I can reconstruct r because this one is p cross 1, 

this one is 1 cross 1, this one is 1 cross p. So, if you multiply this two ultimately p cross 

p matrix you will be able to recreate, now what is the meaning of this Eigen value, here 

when you do the spectral decomposition. 
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Eigen value, here this is something like this suppose you consider two variable case 

suppose X 1, X 2 X 1 if they are dependent you may get a structure like this for the 

perfect dependent case will be like this, so here r 1 2 equal to 1. So, what we mean to 

say, here that we do not require X 1 and X 1 to measure if we transform the axis by 

certain degree. This theta degree then what will happen you will get another dimension 

which will capture the totality of the data given here. 

Now, so that means if I can do some manipulation, here transformation, so you rotate 

this X 1 and X 2 by theta, you are coming to this place and here this axis is having the 

variability from here to here. This variability is captured by lambda and the direction is 

captured by, so what we mean to say we are trying to say here that only 1 dimension is 

required. If the structure is like this only 1 dimension is required to measure this and that 

1 will be lambda 1 and then v 1. 

So, lambda 1 v 1 is sufficient enough to capture this data because if I go in along this line 

my variability, here is this, but what is my variability along perpendicular to this line 0. 

So, lambda represents the variance component, so if my structure is like this then lambda 



1 and I have taken two variables, two variables which in the standardized case suppose 

this one and this is one. So, then both the variability 1 1 is captured by this, so this will 

become 2 because the total variability is 2, here for the two variables, so other dimension 

there will be 0, so what will happen lambda 2 will become 0.  

So, in the two variable situations when you decompose the R matrix into its Eigen value, 

Eigen vector and if you find out that one of them is 0 lambda value is 0, then it is a 

perfect correlation case. So, similarly if there are p such variables, so you will be getting 

lambda 1 greater than equal to lambda 2 greater than equal to lambda p this way you 

extract. So, the first component will have the maximum followed by like this, so it may 

so happen that when the r r is basically if it is it is basically p cross p. So, we assume that 

R or S or X transpose X when we do regression we assume that X transpose X is full 

rank, now what will happen if you find out that out of this p lambda Eigen values.  

Suppose lambda 1, lambda 2, lambda n these are basically having values not equal to 0, 

but M p plus 1 to M p these are close to 0, close to 0. So, what will happen in that case 

basically rank deficient that means this is not full rank and this 0 are representing that 

there are large number of v M plus 1 to p that large number of independent variable, so 

called independent they are not independent. So, there is multicolinearity this is what is 

known, is known an Eigen value collected here, so you take the R that is the correlation 

matrix go for your spectral decomposition.  

That means Eigen value, Eigen vector decomposition then finds out the Eigen values if 

you find out that some of the Eigen values are close to 0, it simply indicates that your 

case is not independent, the independent variables are not truly independent. Then there 

is a multicolinearity number this multicolinearity number is known as MCN which is 

basically the largest Eigen value divided by the smallest one. Now, if the there are many 

values close to 0 then definitely this lambda p this one is very close to 0 and it will be 

very high value MCN will be very high value, so if n MCN greater less than 100 it is not 

a serious multicolinearity problem not serious.  

But, if it is greater than 1000, it is a serious issue getting me, then there is one 

relationship mean from the MCN and VIF point of view that V I variance inflation 

factor. It is M less than MCN less than sum total of, this VIF m is the maximum variance 



inflation factor, so less than this less than p into j equal to all the sum of all the variance 

inflation factor. 
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Now, can you not find out the data for data whatever we have given, here we have seen, 

here this one if it is asked to you that you find out that whether multicolinearity problem 

is there or not, so what way you proceed what will be your case. 
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For example 9, 62, 8, 58 and then 7, 64suppose these three data points are given to you, 

so this is my X this is 3 cross 2, this is X 1 and X 2 what is our aim we want to test the X 



1, X 2 that multicolinearity issues are there are not 1 is that you find out the regression. 

You regress X 2 on X 21 since there are only two variable X 1 and X 2 is enough and 

then find out the V I F, other one is I said that can you not find out the R value, how do 

you compute R. Here, what you require to do I told you in early multivariate descriptive 

statistics class I told you first find out R R, I told you that X tilde transpose X tilde 1 by n 

minus 1 and your X tilde is suppose if I say X tilde is something like this yes. 

So, suppose X i j tilde is there then X i j tilde will be X i j minus X j bar by standard 

deviation of this, so we require to get R square value R value first. Here, once you get R 

value suppose for example let R value is I am giving some arbitrary value, here suppose 

R value is this one and this is one and let us take 0.8. Here, although it is not like this 0.8, 

so you got the R value, so what is required to do you require to find out, find out the 

Eigen values, how do you find out Eigen values. 

Student: Normal process.  

Normal processes that characteristic root. 

Student: Yeah.  

Guess I show you how to first consider that 1 minus lambda 0.8, 0.8 1 minus lambda this 

determinant this equal to 0.  
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Let us see this what will happen, here will we get 1 minus lambda square minus 8 square 

equal to 0, so 1 plus lambda square minus 2 lambda minus 0.64 it is this equal to 0 then 

lambda square minus 2 lambda plus 0.36 equal to 0 then there are two roots. So, lambda 

will be minus b means plus 2 plus minus root over this square mean 4 minus 2 into 0.36 

divided by 2 into 1, into 1 this is the case. So, then plus 2 plus minus root over 4 minus 2, 

72, 0.72 by 2, so 2 plus minus root over 3.28 divided by 2, so 3.28 what will be the 

square root.  

So, see if it is 12 then 144, if it is 14 190, no it will not, it will not be 12 this is 328 I 

think 2 point around 1 point something will it be 2, 2 into 2 is 4 it cannot be. So, it will 

be less than 2 for example 2 plus minus may be it will be 1.8 by 2 then it is 3.8 by 2 this 

one is 1.9 another one is 0.2 by 2 0.1. So, we can we can say that it is basically it is a 

multicolinearity problem because we have already taken this essentially then what it is 

what is what is coming. Now, that multicolinearity issue can also be tested using the R 

matrix, so if any what will be the value of this correlation coefficient and which will tell 

you that.  

Yes there is multicolinearity definitely with the two variable case when 0.88 is saying 

that it is almost that multicolinearity is like this. Now, what is our MCN multicolinearity 

number that lambda 1 by lambda 2, so our 1.9 by 0.1 this is 190 or 19 this is 19. So, what 

we have seen that multicolinearity number less than 100 is not a serious issue that is 

what is given there if multicolinearity number is greater than 1000, that is a serious issue. 

So, then what we will do, we will go by this logic as I am able to see that there is 0.8 and 

one of the, this one this 1.9 this one of the dimensions the variability extent is much 

higher second one is much lower.  

So, should I go for regression or we will simply dimension we reduce the dimension and 

then we will go for regression what will be your issue. Basically, see if I go actually 

although 0.1 in, here we are getting 0.9, because of this two variable case I think this 0.8 

where is not at all a simple issue I think we should not go by this. That is what I 

personally feel using that analysis, by this logic, now this 0.8 is it is a reasonable 

correlation coefficient. 

Student: Sir, we can perform dimension reduction. 

Dimension reduction it is better. 



Then see then what we will do suppose, here it is p for two variable case, but there are P 

variables. 

(Refer Slide Time: 50:00) 

 

Suppose P is greater than 15 variables or 20 variables, so under this case you will be 

having a big correlation matrix. Using this correlation matrix seeing this value you 

cannot judge because even in the two variable case if I see 0.8 and then I discard. But, 

from multicolinearity number point of view, it is saying that you should go, you should 

go for, should go for regression without bothering for multicolinearity, so you cannot 

judge just by seeing the R matrix, fine. Then the solutions are what are the solutions, 

solution is one is the principle component analysis when there is multicolinearity.  

So, principle component regression you can go for, so principle component regression 

that mean you reduce the dimension as you are saying then find out the what are the that 

are significant values. Only those components you take then your y is for those 

components you find out the regression line the beta 0. Suppose beta 1 P c 1 plus beta 2 

P c 2 plus like this beta P P c P and so on P c P we will not go, we will go for beta m P c 

m P is the number of variables where m definitely is less than equal to P. 

Now, if you go for P C A what will be the problem, problem is that, now your original 

variables are missed that one, then but you may be interested, no I will not do like this. I 

want to keep the structure regression equation structure is like this X 1 and X 1 this is the 

structure X p X 0, now what happen they are dependent suppose this is dependent with 



this is dependent. So, what do you want if you go by P C A this structure will lost this 

independent variable original variable will lost. So, you may be interested to that first 

you find out of these many variables, what are the independent variables, what are the 

dependent materials. Strict sense if you still find that, no these are still independent 

variable they cannot be treated as dependent variable. 
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Then you can allow them in modelling, you can allow them to co vary, in the sense I will 

do like this only, in regression you are doing this. But, here you can allow the covariance 

structure to be, getting me, so you do not go for transformation you will simply allow the 

covariance structure to be kept as it is.  

Then estimate this estimation is also possible this estimation we will be understanding 

through path model or path analysis. So, then remedy multicolinearity what we have 

discussed remedy to multicolinearity, multicolinearity one is the transform the data 

transform X that is usually we go for P C A. Here, P C A is possible only if your, if your 

interest is prediction because you do not bother about the original data is transformed to 

what scale and whatever these things. But, we want to predict then fine any electrical 

engineering you know that some of that prediction, using that is principle component 

regression that is done, if you want to keep the independent variable. 

Student: Sir name of the variables same. 



Same and you want, you do not want to lose the nature of the variables then you go for 

path analysis this path analysis what it will do it will estimate same regression 

parameters this regression parameters. But, it will allow the independent variable to co 

vary amongst them this covariant structure will be taken into consideration and then 

these two analysis. Is it is better to go for path analysis when variable explanation is an 

important issue variable’s contribution in explaining the y is important, so I think we can 

stop now. 


