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We will continue multivariate normal distribution. Today our discussion will be on two 

issues; one is statistical distance, distance including constant density contours, constant 

density contours, and then we will see that how to determine that your data is 

multivariate normal, so examination of data for multivariate normality. So, let us see a 

statistical distance. First suppose you consider two variable case, X 1 and X 2, now this 

is let it be this is the origin with mu 1 and mu 2, in that sense so let us give this point 

name as O and you want to know the distance from O to P. P is another point what is X 

11 from 1 and your X 21.  

So, that when this point is from variable point of view X 11 and x 21 or other way the 

you can write that X 12 you can write that manner also, then the distance between this 

two points, that is OP that every all of us know that this is X 11 minus mu 1 square plus 

X 12 minus mu 2 square, and this square root. This is a point with coordinate values for 

X 1, this is X 11 for X 2, this is X 12 and this is the reference point O with mu 1 and mu 

2 as coordinate then the distance is this distance is known as Euclidean distance. 
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Now, let us see that we have several points scattered on a bivariate plot X 1 and X 2 in 

such a manner that it basically resembles like this, the figure is like this or you can 

increase this. Now, if you find out all points equidistance from this O, that is mu 1 and 

mu 2 coordinates, all points equidistance from O that mean the equal Euclidean distance, 

and if you join them you will get a circle. So, all points on this circle are equidistance, 

okay? 

Now, we will go to the process level for example, I told you in one of the classes that we 

have a manufacturing process and that process takes certain inputs and gives certain 

outputs. This output is measured in terms of its quality, let there are two variables, you 

are measuring here X 1 and X 2 related to the output, it may be related to the process. 

Also for the time being let us consider the output, then if you make a plot of X 1 and X 2 

you may get a figure like this. Now, with little assumption in the sense that as if the 

figure resembles an ellipse, then I am keeping another observation on X 1 and X 2 which 

is here closer to this mean point, let it be here.  

So, as we have assumed earlier also this is our mu 1 and mu 2 this is one point, let this 

point is Q, let another point somewhere here which is P, correct? Now, if we go by 

Euclidean distance OP the distance between O, the origin and P it will be greater than 

OQ from Euclidean distance point of view. Euclidean distance what we say that all 

points which are equal distance that will make an ellipse, and this suppose I want to get 



Euclidean distance with respect to Q, OQ that is the distance then you will be getting 

something like this. The circle when you make, this circle see definitely OQ, this 

distance is less than OP, correct? 

Suppose, you do not know the distance concept, we are not interested in terms of 

defining the scattered observation from distance point of view, getting me? Then which 

one is closer to OP or Q so that if you see the scatter plot which one is closer to O, that 

mu P, this P is closer to O. The reason is because you are the general mass, the structure 

of the general mass is like this, like an ellipse and point P belong to this general mass. 

whereas, point Q is does not belong to the general mass. So, from the process point of 

view this is outlier, Q is outlier. Whereas, P belongs to the general mass because what to 

do figure is like this, it is like this, your point is here and all values are like this, as it 

your Q point is here, see Q and P, it simply indicates that if we go by Euclidean distance 

measure we cannot capture this behavior. 

What is the problem? Here the problem lies see the variability across X 1 and X 2 is not 

captured in this equation and it is because of the variability along the two dimension. The 

difference in variability you are getting this structure. So, we want to include variability 

into the equation. Now, let us see if we give weightage to each observation by its 

variability. What will happen? 
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Suppose, we will now first write this OP square, in the general sense X 1 minus mu 1 

square plus X 2 minus mu 2 square X 1 and X 2 variables. This is your Euclidean 

distance, instead of this if I give weightage to the observations by its variability I can 

write like this, X 1 minus mu 1 by sigma 1 square plus X 2 minus mu 2 by sigma 2 

square, that means the mean subtracted observation is weighted by 1 by sigma 1 as well 

as 1 by sigma 2 depending on the variable. So, this one if I write this is OP square, is it 

not an equation of ellipse? Definitely, but not this ellipse, that is equation of ellipse. But 

not this ellipse, why here what happened? There are correlations, so if we change, so this 

is an equation of ellipse and it represent two variables which are independent like this. 

So, if I across X 1 variability high X 2 then this one is our equation of ellipse, and if you 

take a point here, suppose this is your P, this one is O, O is mu 1 and mu 2 and P if say X 

1 and X 2 then OP. Then this distance is this one, this is the formula for this distance and 

as this one is the equation of ellipse. All points on this ellipse, the distance will be 

computed using this function and what we say here? We say all points on the ellipse are 

equidistance, we say that all points on the ellipse are equidistance definitely from O.  
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From inference point if you take this ellipse what will happen? Your OP square, you can 

write X 1 minus mu 1 by minus or plus you write whatever may be there, you write plus 

some constant will be coming here, let it be a 1 2, I am giving X 1 minus mu 1 by sigma 

1 X 2 minus mu 2 by sigma 2 plus X 2 minus mu 2 by sigma 2 square. This is the 



covariance part between the two variables, this is what is statistical distance, this is what 

either this elliptical distance, this is what is statistical distance, so in essence that the 

statistical distance, one of the pioneers in developing. 
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This is P C Mahalanobis, he is Indian scientist, he is founder of ISI, Indian Statistical 

Institute. Now, you get the slide. 
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In this slide there are in the right hand side there are four figures, first that left most one, 

top one, that one resembles circle, second one, it basically depicts one ellipse, third one 



is also ellipse, fourth one is also ellipse, but the second and third one, the variability 

along X 2 is more in case of second one. And in case of third one the variability along X 

1 is more and in case of fourth one, it is there are change in variability as well as there is 

correlation between the two variables. 

So, first one is random in the sense we are saying that the two variables are independent, 

second also two variables are independent, third one also two variables are independent, 

only in fourth one variables are dependent. Now, you think that this is the bivariate case, 

you think from multivariate point of view. So, when number of variable will be more 

than 2 then it will be difficult to pictorially visualize, but the points are there. So, ellipse 

will become ellipsoid. 
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So, can you tell me that what is the difference between this figure, this or this figure. So, 

if I say this is my quadrant one, quadrant two, quadrant three, quadrant four. Quadrant 

one versus quadrant three. 

Student: In quadrants. 

One and quadrant three. 

Student: Quadrant one. 



Quadrant three this is quadrant one this is quadrant three. 

Student: Variability along x axis. 

Yes. 

Student: Is more than variable sum is less than the variability. 

Along y axis or x one and x two you have given x one and x two. 

Student: And Y are uncorrelated. 

Uncorrelated first quadrant, second quadrant, third quadrant variables are not correlated. 

Now, what can you talk about the variability of X 1 and X 2 in the second quadrant, the 

circle is there, variables are uncorrelated and variance same along X 1 and X 2 variance 

is same. So, if X 1, X 2 variance is same then it will ultimately resemble a circle. If there 

is difference in one of the axis, the length will be more that will be the major axis, other 

one will be the minor axis.  

If there is correlation ultimately the total ellipse will be shifted to the other direction. 

This is very important concept, later on in principal component analysis we will again 

bring back to this figure, there we will see that if they are highly correlated. What is the 

need of measuring so many variables? Can you not measure a smaller number of 

variables that we will discuss. 
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I think if you look into this figure, this figure you have seen earlier also and this equation 

also you have seen earlier. What is the exponent part of a multivariate normal bivariate 

normal density function? This is the exponent part and we have also discussed that 

exponent will resemble an ellipse. Where is the distance? This is what is the statistical 

distance. 
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What is the will be the distribution of this exponent part? 

Student: Is this chi square type. 

Yes it is chi square. Why it is chi square? 

Student: The X minus mu by sigma Z square. So, that is basically the… 



(Refer Slide Time: 18:56) 

 

X minus mu transpose, then sigma inverse X minus mu, that is the exponent part and 

minus half is there, we are not considering that minus term. You see this X minus mu 

transpose and X minus mu that is the square term of normal variable, and this capital 

sigma is the variance part, covariance part, so what capital sigma is population sigma. It 

is a constant value. So, the square of normal is your what is square of normal is Z. 

And Z follows chi square, the linear combination of Z follows chi square distribution. 

So, this will follow chi square distribution that what we are saying probability that this 

value will be less than equal to chi square P, some alpha value, this will be 1 minus 

alpha. Now, in this equation mu sigma are population parameters and X is the random 

variable and your chi square distribution will be a different types, the shape of the chi 

square distribution can be like this, can be like this, can be like this depending on the 

degrees of freedom and you all know how to see chi square distribution. Chi square 

distribution degrees of freedom is there one side, another side the probability values. 
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Then we will discuss contour. What is basically constant density contours? You see this 

figure carefully, this is bivariate density function, this is the mu that is the bottom 

reference point. Here say that is coming through, if you just see from the top if you see 

what you will see, you will first see the point for this, the point then if you come little 

distant lower and take a cross section then you will be seeing this ellipse.  

If you come even little more you will be getting the second ellipse, like this you will be 

getting different ellipse and as we have already discussed that all points along this ellipse 

is equidistance, we have proved this one by statistical distance they are equidistance. So, 

here what is happening? The total data set, the total data which is represented by this, 

here it is basically bivariate normal distribution and you are capturing. Now, the more 

you want to include more number of observations your ellipse will be bigger. What does 

it mean? What I am trying to say, suppose your case is like this, your case is like this. 
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This is the case, now if you take this, you take like this, this is cross section here this is 

the cross section then what is the portion you are considering? You are considering a 

smaller portion, if you take a cross section, here you are considering a bigger portion. So, 

as a result what is happening your ellipse is becoming like this. So, I can say this may be 

25 percent ellipse, this is may be 50 percent ellipse, this one may be your 75 percent 

ellipse, this may be 95 percent ellipse. What does it signify? This signifies that 25 

percent of observation will be on or within this ellipse, 50 percent will be within or on 

this ellipse, 75 percent will be on or within this ellipse, then 95 percent will be on the 

ellipse and that is what is this one? 

Alpha, if you choose alpha equal to 0.05 then you are creating an ellipse in such a 

manner that this will be 95 percent, 0.95 that means you are considering 95 observations 

to be within or on the ellipse, rest 5 percent will be in other may be out of this region. So, 

why we are saying this one as constant density contours? What is why we are saying this 

is constant density contours? What is contour? 

Student: Sir actually these are footprints of constant density contours, if you take the 

locus of the constant density we will get a elliptical. 
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Elliptical region, this is the plane that is why I said if you see the plane view from the top 

you see in the floor itself the footprints will be generated. An equal distance points will 

be making one ellipse, why constant density contour? What is the contour? A contour 

line of a function of two variable is a curve along which the function has a constant 

value, this is wikipedia definition. So, our function is fx 1, X 2 that is a function. We are 

taking when we are making a cross section here that means, we are taking a constant 

distance.  

Suppose, you are taking this 0.5 as a density then along this the problem, 0.5 we are 

making a cross section and that cross section will bring certain ellipse. Here also as a 

result we are seeing that this is constant density, that mean all the points on this ellipse is 

constant density, having constant density. 

Student: Definition we have seen the from the wikipedia definition. So, there is the two 

contour line of a function of two variable, the contour line of a function of two variable. 

Student: But sir contour should be generally for n number of functions. 

Yes, yes it can be, it is not that only two variable case for example, we want to draw a 

contour on the wall map for the cities having equal altitude, that mean from the mean sea 

level you will find out the cities altitude value. If you join a line that is also contour 



distance, contour similarly temperature contour, same manner here what is happening? 

You think from a hill point of view, this is a hill.  

Now, from the floor of the hill bottom of the hill you are going up and after certain 

height make a cross section as this is the for example, this is my floor, this is the height. 

So, this is the density you are making a cross section, there need not be that it will be a 

two variable function of two variables, it can be function of many variables and 

ultimately our case is multiple variables only. 
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Here, one example consider the data given in example one obtain constant density 

contours for alpha equal to 0.05 and alpha equal to 0.01 and we have seen that the d 

square this is x 1 minus 100 by square root of 10 square. This one we have given earlier 

considering this equal to chi square alpha. Now, when alpha equal to 0.05 then this will 

be chi square 0.05 variable is 2. So, degree of freedom is 2 and you have to see this 

value. What is this value? This value is 5.99. Now, this is the ellipse, this is the ellipse 

which is basically taken into consideration, chi square 2.05, 5.99 this is the ellipse what 

is basically constant, all the points are in equal density value. 

Now, how we get this 5.99 value? This is what is the chi square distribution and when 

your degrees of freedom for that distribution is 2 and our value is 5.99, see this is 0.05 

5.99 this value if it is 0.10 then your value will be 4.61. So, ellipse will be little smaller. 

Any question from your side? 



Student: Suppose in case of in two dimensional data we have an ellipse as you have 

shown. So, we have X and Y are correlated. Now, what is the degree of freedom? Is it 1 

or 2? 

No, here that degrees of freedom case is purely dependent on the number of variables 

considered, whether they are correlated or not correlated it is immaterial. 

Student: But sir at the time of correlation the distribution should be, should the 

distribution be changed? 

No, the ultimate exponent value will be different because distribution will not change. 

Student: Sir the chi square distribution means the Z square, basically summation of Z 

square, but now that if there is a value of correlation. 
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No, that will not be that is not correct, why if there are P variables then our case is to the 

exponent is this one e to the power minus half transpose. This one you are talking about 

this part, this part whether there is because this is covariance matrix sigma. So, definitely 

there is correlation or covariance, we are considering this correlation component or 

covariance component this here. Basically, if you say this we are not going to statistic, it 

is a population. So, this expression is chi square distributed. 

Student: Sir, normal of values equal to degrees of freedom. 



Degrees of freedom always that mean what we are saying that X minus mu transpose, 

this X minus mu it is chi square P. 

Now, I think your question is suppose if you go for some transformation of the variable 

then your number of variable will reduce because of correlation. Suppose, if the data is 

correlated when you go for principal component analysis, like analysis what will happen 

your number of dimension will reduce. 

Student: Actually, I thought the rank of the covariance matrix that is the normal of 

independent variable should be the degree of freedom. 

No, here it is not like this, here the covariance component is well accounted for the 

derivation part. 
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Now, we will discuss another important aspect that is very, very important for all of us 

that when we collect data. 
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Suppose, you collect a data n cross p and our data points are like this. We are saying that 

we have collected the data from multivariate normal population, MN population, mean 

multivariate normal population and we are defining that our X is multivariate normal 

with p variables, mu and sigma the population parameters. What is the guarantee that 

your data is multivariate normal? It is true that if your population is multivariate normal 

the data we generate that will be multivariate normal. Also, but you do not know you are 

you do not know whether that population is really multivariate normal or not. So, what 

we do up here? We examine the data to understand that whether data comes from 

multivariate population or not. 

So, in this case in multivariate domain we will use chi square quantile quantile plot Q Q 

plot, chi square quantile quantile plot, Q stand for quantile. What is quantile? Any idea? 

You know, you know median so how do we get the median? Your data point you first 

order the data from smallest to largest ascending and then you find out the middle 

location and you say if this is my variable X and what is the middle value of X, that is 

median.  

So, when you are making median, how many parts you are making for the data? two 

parts 50, 50 where this is one side, this is another side. You know quantile quantile will 

make partition, the data total data into four parts. This is my quartile one, quartile two, 

quartile three, quartile four and we know that Q 1 and Q 3 the inter quantile range that 



we have discussed in descriptive statistics. So, while making quantile you are making 

partitioning the data into four parts. 

Now, you do one thing, you partition into hundred parts. What will happen? Sorry, that is 

percentile, so median then you are saying quantile then you are saying percentile. 

Suppose, I do not want like median quantile, I want to partition the total set into n parts 

then what name you will give? You cannot give you have you have to have some name 

that is quantile. So, that mean if you partition the data into two parts, the median that is 

also quantile, general name Quartile is also quantile percentile is also quantile and if you 

partition even more or less number than the hundred parts then that is also quantile. So, 

by quantile quantile plot, we want to see that how multivariate normality will be 

assessed.  
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For example, suppose you have collected n data points 1, 2, 3, n data points you have 

collected. Let the data is X 1, X 2 on xp variables and I am sure all of you are in a 

position to fill up this. Now, we will calculate the d square value, Mahalanobis di square. 

I am writing this one as di square where i stands from 1 to n correct. So, what is this? So, 

you have some reference point., somewhere that reference point definitely if it is a p 

variable case then it is the mu vector. mu 1, mu 2 like mu p you are getting on p variable 

you are getting this is your first observation, this is second observations. So, like this if 

there is ith point you will be getting x i 1, x i 2, x I p. So, this is your ith observation. 



Now, you want to find out where does the ith observation lie when if we consider a two 

dimensional case. This is my mu 1 and mu 2 then somewhere here this is my ith 

observation is falling. So, I want to get this distance, I think we have discussed the 

statistical distance part. What is the formula for statistical distance? X minus mu 

transpose sigma inverse X minus mu 

Now, in Mahalanobis distance the formula, that formula is X minus mu transpose S 

inverse X minus mu, getting me? So, when I say di square, I am saying xi minus mu, but 

I do not know the mu. So, I will write xi minus x bar S inverse xi minus x bar. So, if you 

write in this format X minus mu transfer a transpose and this sigma to the power minus 1 

X minus mu, in the this is the exponent of the multivariate normal distribution that also 

follows chi square distribution, that is the general statistical distance. But when I say this 

is S inverse, this is we show that Mahalanobis has developed this, so far every 

observation you can get this distance. Now, xi is 1 xi, 2 xip, p cross 1. So, xi minus X bar 

transpose S inverse xi minus X bar, what will happen? What is the? This is 1 cross p, S 

inverse will be p cross p and this is p cross 1. 

This one will be p cross 1. So, resultant will be 1 cross 1. So, you will be getting a value 

I am writing here, suppose this is d 1 square, for the second one you calculate d 2 square, 

same formula like this you will be getting di square then dn square, correct? So, what are 

the steps then you have collected data there are n multivariate observations, we want to 

compute the distance of each observations from the mean vector. Here, we will be 

concentrating on the sample mean that is X 1 bar, X 2 bar like xp bar, that mean so you 

require to calculate this mean vector, you also require to calculate the covariance matrix.  

Once you know this, you require to calculate S inverse, this also will be p cross p matrix. 

Once you all those things you have computed then you go for di square, for i equal to 1 

take this row first, put here every observation will be subtracted by the corresponding 

mean. Then you go for the second one, third one, like this and using this equation you 

have n number of distance values. Now, depending on the observation value it will be 

different types.  
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For example, what I mean to say now from the set of multivariate observations you 

calculated the distance and finally, you got data matrix like this d 1 square, d 2 square, di 

square, then dn square, that is what the data you got and this one I am saying, this is my 

d square matrix. What you require to do? Now, you have to find out the quantiles, please 

remember we say quantile quantile plot.  

So, if you require to know the quantile the one of the issue is you have to arrange this 

values observed values in ascending order. So, if I say my ascending data for the distance 

values are like this, d within bracket, one square within bracket, two square, like this d 

within bracket i square like, within bracket n square. This is my ordered data, so you will 

be having smallest to largest data set, fine? Now, how many data points you have? n data 

points, you create n quantiles here so here 1 to so you are now partitioning the entire 

data, this data transformed, data distance, data partitioning this distance data into n 

quantiles. What will be the distribution of this di square? What is di square? xi minus X 

bar transpose S inverse xi minus X bar chi square. 

So, this follows chi square as p variables are there, p then as I know that d square is chi 

square p di square and what you have created, you have created a data matrix. Now, 

different data that is where n cross 1 transformed data d and which is chi square 

distributed. So, that means all those you, this can be a chi square axis, I can get for 

quantile all points, chi square value I will be getting. Now, di square is chi square 



distributed so from di square if I compare with the chi square quantile values I must get a 

relationship, understood or not? This is nothing difficult. 
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Suppose, this is my chi square distribution for example, let like this is your chi square 

you know the lowest value and largest value from the data set, it is known what is this 

chi square value, if I say I want to know this chi square p what will be this value? We 

require to know, then what is the probability right inside? Getting me? So, if I know that 

what is the probability of this? And if I subtract by 1 I will be knowing the what is the 

probability of this. So, with respect to this probability from chi square table we will be 

getting this value.  

Similarly, for the second quantile you will also be getting, third quantile value you will 

be getting because you have n data set, this chi square X is each partitioned into n parts. 

So, everywhere I am saying that you have chi square 1, chi square 2, this one and two not 

degrees of freedom. These are the that is the quantiles. So, like this you will be getting 

chi square n values. Now, as I have said that di square is chi square distributed, so there 

will be relationship between d square and chi square. If you plot d square in this side or 

di square and chi square in this side you will be getting a straight line like this, you may 

get here, may get, no it will be a straight line linear relationship. Now, see the problem 

given here. 
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See this is my data set bivariate case, we have considered 10 points, 1 to 10 and this is 

my first observation 93, 52.33. My second observation is 94, 53.46 like this what we 

have done? You have calculated the distance for this observation. First observation from 

the mean value, X 1 and X 2 that mean value we have to find out and from that mean 

value and then using the distance formula di square equal to xi minus X bar transpose S 

inverse xi minus X bar. We computed this value 2.25.  

So, my first observation is 2.25 distance apart from the mean, my second observation is 

1.40, this distance unit distance apart from the mean, like this 102 and 63.71 this is the 

tenth observation is 3.57 units apart from the mean, understood? Now, this is the 

calculation part. Only you have to utilize this formula, correct? Carefully if you use this 

formula you are in a position to get this. This is your first step. What is your second step? 
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Second step is because you want to find the quantile values, so you order that is 

ascending order, third one is you find out the chi square quantile value. What is this chi 

square? p n minus i plus half, this is the chi square quantile value. What is happening 

here? 
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You see that you have 10 data points, i equal to 1 to 10 data points. So, this 10 data 

points ordered data points so that means your this is the chi square axis. Let it be this is 

the chi square variable axis so you have divided into 10 parts, 1 to 10 parts, you have 



divided and what will happen, your chi square will be something like this we have 

discussed. 

Now, you want to get the chi square value here. So, first you find out the probability 

value, here right hand side you use because you will be using table then for that 

probability value you find out the chi square value, that is why what you are doing here, 

you are writing chi square p n minus i plus half. So, if I want to do little more 

manipulation here what is n minus i plus half, n is 10. We have taken 10 data points, so 

this 10 minus 1 plus half, 9.5. So, we want to find out the probability, so how many data 

points are there? 10 data points are there. So, if I divide by n again, so that by 10, so this 

that mean this will be 0.95 and this one also you write this by n because this probability 

value you want to, this is the probability value, alpha value. 
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So, your first one first chi square, this value is chi square 0.95. What is this value? You 

see here, 0.1 then what will be the second one? 10 minus 2 plus half divided by 10, this 

will be 8.5 means 0.85. So, your second value here you find out for chi square 0.85 chi 

square, 0.85 is 0.33. So, third one will be 0.75 0.58 0.65 chi square 0.65 0.56. So, like 

this then what we have done here? Then we have this side di square Y axis, X axis is chi 

square value and when you plot this, you will be getting this type of straight line, getting 

me? So, clear? 

Student: Yes sir. 



That I, your total data set is this, your total data set is, total data set is this one, every 

observations is transformed into one value here, we get value that is the Mahalanobis d 

square. 

And you are now finding out the distribution for this and you all know this is chi square 

distributed using this property and the steps like this plot, if you get a straight line that is 

multivariate normal. If we depart substantially then definitely that is not multivariate 

normal, but there will be there will always be some amount of departure. So, what is the 

departure acceptable that also you want to check. So, there are some other methods for 

checking also, like case test is there, Kolmogorov Smirnov test, d max so you will be 

able to check all this things. This is what is our in totality the multivariate normal 

distribution, we have discussed along with the properties so my as it is very important 

one. 
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So, first of all you must know that your multivariate normal density is 1 by 2 pi p by 2, 

then your covariance to the power half e to the power minus half X minus mu transpose 

sigma inverse X minus mu and definitely your all j xj less than equal to infinite j equal to 

1 to p. So, there are two parts, one is constant and another one is exponent and it is 

exponent which is very, very important. So, the exponent part X minus mu transpose 

epsilon inverse X minus mu, it follows chi square p, this distribution is chi square p and 



this is also known as constant. This will give you the constant density, this will give you 

constant density. 

Now, this formula is chi square, this is chi square, but this quantity resembles an ellipse, 

this will be an ellipse when p equal to 2 for more than p 2 variables it will be ellipsoid, 

then there is another concept called statistical distance keep in mind this is very, very 

important concept. Constant density contours the properties of multivariate normal 

distribution is important properties of MND that if x is what we say properties X is 

multivariate normal then xj will be univariate normal, that we have seen j equal to 1 to p.  

Now, if X is multivariate normal subset will also be multivariate normal, so that mean if 

I create a subset xq 1 that will be q mu q and sigma q then linear transpose of x this will 

be your univariate normal with a transpose mu a transpose sigma a. If you find out q 

linear transpose then that will be your multivariate normal that is a transpose mu, only 

the matrix multiplicability, compatibility part from multiplication point of view we have 

to check. 

And then finally, when you collect data that data must be examined and you have to 

check that whether, the data is coming from multivariate or not, and that is possible 

through chi square quantile quantile plot. There are other plots also, but we will be 

looking into this. So, I have given you one data set, that five variable data set if you can 

find out whether the data coming from multivariate normal or not using this statistical 

distance concept or you take your own data set just test use excel or Matlab.  

Thank you. 


