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In this lesson, we will introduce various volatility models such as exponential weighted 

moving average models, autoregressive conditional heteroskedasticity ARCH models and 

generalized ARCH models.  We will start the discussion by providing some stylized 

empirical phenomena that result  in nonlinearity in the relationships pertaining to volatility 

and risk and therefore the subsequent  requirement of nonlinear models in the context of 

risk and volatility.  These phenomena include negative skewness, excess kurtosis, volatility 

clustering and  leverage effects often associated with volatility in financial markets.  We 

start by introducing historical volatility models and implied volatility models.  Next we 

discuss conditional volatility models.  Then we discuss the shortcomings of these models 

that result in more advanced models such as EWMA  or exponential moving average 

model. 

 

  The phenomena of volatility clustering leads to ARCH class of models.  However, the 

ARCH class of models are less parsimonious.  This requirement subsequently leads to more 

sophisticated GARCH family models.  In the GARCH family model, we discuss standard 

GARCH11, EGARCH and GJRGARCH models. 

 

 In particular, these advanced GARCH models are extremely useful in capturing the 

volatility clustering and leverage effects observed in financial markets.  In this video, we 

will study the background and motivation behind studying nonlinear models in the context 

of volatility and risk modeling.   



 

 

In finance and economics, most of the models are linear in nature.  For example, have a 

look at this model  

𝑌 = 𝛽1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝜇  

and then this error term mu are more compactly in a matrix form  

𝑦 = 𝑥𝛽 + 𝜇 

where error term is often assumed to be distributed with a normal distribution and zero 

mean and variance of sigma square.  The properties of linear estimators such as OLS to 

estimate this kind of linear model are well researched and understood. 

 

  Moreover, many models that appear to be nonlinear in nature can also be made linear 

through suitable transformations.  For example, a model like Y equal to alpha plus beta X 

square, we can take the log of for example Y equal to alpha plus alpha into e to the power 

beta X. Such model can be made linear by taking log transformations.  So there are number 

of ways through suitable transformations such relationships can be made linear.  However, 

in particular the relationships pertaining to risk and volatility in finance are often 

considered for nonlinear modeling. 



 
 

  Let's explore why.  One of the very important property of financial market returns is called 

kurtosis.  While the normal distribution assumes a kurtosis of 3, the financial return data 

often does  not agree to that.  For example, it often exhibits something called leptokurtosis 

where it exhibits excess kurtosis that is excess peaked Ness for example as compared to 

the normal distribution here in dotted  form.  The actual return distribution may be 

excessively p and also exhibit fat tails. 

 

  So it exhibits fact tails that means higher probability in extremities, extreme probability 

as compared to that predicted by a normal distribution.  So, it has evident fat tails and 

excess peakedness which makes it difficult to model through linear relationships that 

assume normality.   



 

The next important property studied in financial markets is the symmetry of distribution.  

And often it is found that unlike the predictions of normal distribution which says for 

example here in the blue curve, it's very symmetric on both sides, positive and negative.  

However, actual financial market returns exhibit negative skewness. 

 

  That means there is a high probability of negative events, negative events as compared to 

positive side.  So, this is skewed sort of skewed distribution and it is often negatively 

skewed.  So, there is a high probability of negative returns being observed.   

 

 

Another very important property is volatility clustering or volatility persistence.  That is in 

financial markets, you tend to find clustering of high volatility periods as well as clustering 

of low volatility periods. 

 



 For example, here you can see clustering and munching of high fluctuations and clustering 

and munching of low fluctuations together which suggests that period of high volatility  

occur together while periods of low volatility occur together.  This kind of phenomena is 

slightly difficult to model through linear relationships as it indicates some kind of 

autoregressive nature in volatility.   

 

 

Another stylized fact of volatility clustering and persistence is that shifts from high to low 

and low to high volatility are not uniform.  That is low to high volatility shifts are more 

abrupt.  You suddenly find jumping from low to high volatility while shifts from high to 

low that is in this  fashion are more gradual. So, shifts from high to low volatility are more 

gradual while low to high volatility are more sharp.   

 

 

The next property which is very critical is called long term mean reversion.  That is 

volatility of assets tends to gravitate towards long term mean.  Generally this long term 

volatility level is sort of inherent level of volatility which  irrespective of whether there is 

some information or not or whatever market conditions, this  long term mean volatility 



always persists.  Researchers believe that this is driven by microstructure volatility. 

 

  For example bid-ask bounds.  So, phenomena that are part of market microstructure such 

as bid-ask bounds lead to this all-time inherent volatility of financial markets.   

 

Lastly a very stylized fact is leveraging effects.  It is often observed that volatility rises 

more following periods of falling prices and as compared to that when prices are rising 

volatility is less.  For example, during the rising periods volatility is less and falling periods 

there is a higher volatility. It is often argued that when prices are falling the leverage that 

is debt to equity ratio increases.  Inherently debt to equity ratio is a measurement of risk.  

A higher debt to equity ratio indicates a high-risk level and therefore there is a feedback 

sort of loop created.  That means if prices are falling and debt to equity ratio is rising 

inherently company becomes more riskier and therefore this further contributes to 

additional risk or additional volatility to the already existing levels of volatility and 

therefore it is said that volatility rises more falling price fall than as compared to that during 

the rise of the price of the same magnitude.  To summarize in this video, we discussed 

some of the stylized fact of volatility and risk that require us to model the relationships 

near to volatility risk for nonlinear modeling. For example, we said that volatility in 

financial markets or distribution of returns exhibits excess kurtosis as compared to normal 

distribution.  It is negatively skewed.  We also observed volatility clustering, that is high 

periods of high volatility are clustered together.  We also observed what we call leverage 

effects, that is volatility rises more during falling prices as compared to that during rising 

prices.  We also discussed that there is some kind of long term mean reversion property of 

volatility and also the transition to high volatility periods from low volatility periods are 

more abrupt while those from high volatility to low are more gradual. 

 

  

 In this video we will discuss volatility and its theoretical underpinnings behind the 

computation of volatility and as a mathematical measure to proxy risk.   



 

 

Recall that volatility or denoted by sigma is the standard deviation of returns per unit of 

time when returns are continuously compounded.  For example while we are considering 

daily volatility this is the standard deviation of continuously compounded returns per day.  

So the formula for continuously compounded returns is natural 𝑙𝑛 (
𝑃𝑡

𝑃𝑡−1
) and when you take 

the standard deviation of continuously compounded returns for a period let us say our day 

then that number is the standard deviation of daily returns.  Let us take an example. 

 

  For example if your current price is sixty dollar and it is given to you that standard 

deviation or daily volatility or standard deviation daily standard deviation is two  percent 

that means on average the stock moves by up and down by one point two dollars on  a 

given day,  so average movement. Or in a more concrete manner if you want to translate 

your understanding  through a probability distribution like normal distribution let us say 

you believe that returns  are normally distributed with a mean zero or  zero percent  and 

you want to know the ninety five percent confidence interval for return these two cut  offs 

if you believe that returns are normally distributed then these ends ninety five percent  ends 

these markers are one point nine six minus one point nine six and plus one point  nine six 

that is two point five percent probability here extreme probability two point five percent  

probability here extreme probability and in between you have ninety five percent 

confidence  interval.  If that were to be the case then your window of ninety five percent 

interval of returns is one minus one point nine six zero percent minus one point nine six 

into two percent this is on the lower side of it which is minus three point nine two percent 

the upper side is very also symmetric so it is zero percent plus one point nine six into two 

percent which is again three point nine two percent.  So effectively if you want to know 

that the range of the price that will be sixty dollars into one minus three point nine two 

percent and sixty dollar into one plus three point nine two percent. So, this will be your 

price lower range lower level and upper level of prices with ninety five percent confidence 

band. 



 

  

 Another very important property of volatility that is driven by simple volatility models is 

that they assume that the volatility remains constant at each day. Basically the assumption 

is that your returns are independently and identically I distributed. So returns are IID that 

means they are independently and identically distributed which is to suggest  that first the 

distribution remains same that means the standard deviation or volatility  remains constant 

for each period each day at some level sigma.  So whatever this level is it is constant each 

day and the distribution remains same and  also returns are certainly not correlated. If these 

properties are held then a resulting  property is that variance over t periods is t times the 

variance of one period or in  other words volatility when measured through standard 

deviation it increases with the square  root of time. 

 

 Let's understand what it means. In the previous example we said that daily  volatility was 

two percent and we want to convert into five day volatility which means  five periods. So 

what we'll do is we'll multiply the standard deviation value of two percent  with the square 

root of the period t which is five. So we get a value of four point four  seven percent or in 

dollar terms sixteen to four point four seven percent which is  two point six eight. What it 

means now that if you want to know the average expected change  in a period over a period 

of five days then it can be either plus minus two point six  eight dollars it can go up or 

down by two point six eight dollars. 

 

  Let's also think in terms of what it means if you want to have a ninety five percent  

confidence interval. Again recall that we said these lower and upper ends of this if  we 

believe that follows a normal distribution then these ends are one plus minus one point  

nine six and if the mean the returns are distributed with a mean of zero percent then the 

lower  end of the return is zero percent minus one point nine six into four point four percent  

which is eight point six percent. Similarly the upper end is zero plus and with symmetry  it 

is again plus eight point seven six percent.  It was minus. So now if I want to know the 

average movement in my return the price return  we saw now if I want to know the price it 



will be simply 60 ∗ (1 − 8.76%) and upper level would be60 ∗ (1 + 8.76%) 

 This would be my price bank for a five year period with an expected up and down  moment 

and return of eight point six seven six percent with ninety five percent confidence  level. 

 

 

 To put it more succinctly let's say if you have monthly standard deviation Sigma monthly 

is given at some level if you want to know the annual standard deviation you  want to 

analyze it you simply multiply it by square root of twelve where t is equal  to twelve 

periods. Similarly if Sigma daily is given to you you analyze it by multiplying  number of 

trading days which is 252 trading days so you multiply it by square root of  252.  To 

summarize this video we discussed the mathematical underpinnings behind the 

computation of standard  deviation or volatility as a risk measure. We noted that it is the 

standard deviation  of continuously compounded returns for a given period and to translate 

it to different periods  we multiply the standard deviation measure by square root of the 

time periods. 

 

 For example  if you wanted to convert the daily standard deviation to annual you multiply 

it by number  of trading days in the year which is square root of 252 and so on for monthly 

and weekly  periods. However this result is given by a simple assumption that returns are 

IID that  is they are identically and independently distributed that is there is no serial 

correlation  in returns across period by period and also the distribution of returns period by 

period  remains the same which means the standard deviation is same at some level Sigma 

which  does not change over period by period. However this seems to be a slightly difficult 

assumption  to sustain.   

 

In this video we will discuss two very fundamental models of volatility that is historical 

volatility models and implied volatility models. While these models are very simplistic and 

obviously  they face certain challenges in their assumptions still they provide the backbone 



and fundamental  building blocks to more advanced models that will be discussed 

subsequently in this lesson. 

 

   

To begin with we start with the historical volatility models. These are the most simple  

volatility models and they rely on historical estimate of the volatility or what we call  as 

variance or standard deviation of returns. The standard deviation is computed simply  from 

past returns and it becomes the best estimate for future volatility of returns  if certain 

assumptions such as returns are independently and identically distributed  or they are IID 

holds true. This model is very useful and easy to calculate for example  the variance is 

nothing but deviation mean deviation squares divided by n minus 1. In  some theoretical 

values you use n while n-1 is more of a sample characteristic  to get a more unbiased 

estimate of volatility because generally it is assumed that we are  working with samples 

not the population of returns. 

 

 However as you would have guessed  it this model has a very fundamental problem that it 

gives equal weight to all the historical  returns which is not a very good property. Generally 

you would like to give more weight  to more recent observations of returns. The next set 

of models are implied volatility models that rely on some kind of option pricing formula 

such as Black-Scholes. So for example  any option pricing model would use volatility as 

input along with some other parameters  such as risk-free rate, strike price and current value 

of underlying to compute the option  prices. The idea behind these implied volatility models 

is to use the observed value of parameters  such as risk-free rate, option prices, strike prices 

and so on to back calculate the implied  volatility from these models. 

 

 Now essentially this implied volatility is the market forecast  of the volatility of underlying 

asset returns over the lifetime of the option.  To summarize in this video we discussed two 

very fundamental models that is historical  volatility model and implied volatility models. 

While these models are simple to understand  and very intuitive the assumptions behind 

them are not very tenable in real life phenomena  but still these models are widely held and 

employed because as such they provide the  very fundamental building block to more 



advanced models as we will be discussing in subsequent videos.  In this video we will 

introduce the concept of conditional volatility which is based upon  the fact that more recent 

factors or more recent information arrival has more influence  on the volatility levels 

observed currently. The idea behind conditional volatility models  is to give more weight 

to recent periods. 

 

 

 Let's start with the mathematical or theoretical underpinning behind this idea. Recall we 

said some kind of relationship in financial markets like  

𝑌 = 𝛽1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝜇  

Y equal to beta 1 plus beta X 2 and so on with an error term mu t is expressed like this 

where in vector or matrix form you can write 𝑦 = 𝑥𝛽 + 𝜇. Generally  it is assumed that mu 

t or error term or in financial markets the information term is  normally distributed with a 

zero mean and constant variance sigma square. Now if you  want to know the conditional 

variance of this error term it is simply variance of mu  t given mu t minus 1 mu t minus 2 

and so on that is conditional to the historical information  like mu t minus 1 mu t minus 2 

mu t minus 3 what is the variance of this mu t so that  is conditional upon historical 

information rivals which is also written as expected value  of mu t minus mu expected mu 

t square which is the nothing but mean deviation square what  we have already seen earlier 

mean deviation squares of mu t conditional to previous historical  information levels like 

mu t minus 1 mu t minus 2 and so on. 

𝜎𝑡
2 = 𝑣𝑎𝑟(𝜇𝑡−1, 𝜇𝑡−2, … . ) = 𝐸 [(𝜇𝑡 − 𝐸(𝜇𝑡))

2
|𝜇𝑡−1, 𝜇𝑡−2] 



 Now let's translate this  understanding in the context of financial markets. 

 

 

 Imagine a relationship like this  in financial market like return at time t is being regressed 

on historical returns lags  like r t minus 1 plus r t minus 2 and so on up till certain period 

plus a certain error  component. Please note in this kind of model the error term mu t would 

indicate the information  that has arrived in the current period so after accounting for all 

the lags of returns  or serial correlation returns whatever left in mu t is nothing but the latest 

information  and therefore it is often called a measure of information or innovation which 

proxies  the latest information arrival. Now the conditional variance of this mu t or sigma 

square t is  what we call as conditional volatility or conditional variance which is 

conditional  upon historical information or innovation such as mu t minus 1 mu t minus 2 

and so on.  As we have said earlier it is nothing but expected value of mean deviation 

squares that  is mu t minus expected value of mu t whole square conditional upon mu t 

minus 1 mu t  minus 2 and so on. Now recall assumption that this expected value of mu t 

is 0 so we can  simply write the sigma square t as variance of mu t conditional upon mu t 

minus 1 mu t  minus 2 and other historical information points which is nothing but expected 

value of mu  t square or simply the variance of current period innovation or information 

that is 𝜇𝑡
2 given the information or conditional to information that is 𝜇𝑡−1, (𝜇𝑡−2), and so 

on. 

 

 The above equation that we discussed provides the conditional variance of 𝜇𝑡that is zero 

mean normally distributed variable. The conditional variance is basically here  equal to 

conditional expected value of squared mu t's. Now let me give you the intuition  behind 

conditional volatility. Think of a string which is held at two ends A and B and  it is very 

tight a jerk is given at end A so it starts fluctuating. The jerk was given  at time t equal to t 

naught and they start fluctuating as time passes the jerk becomes  smaller and smaller and 

smaller. 

 

 Suddenly at time t equal to t1 you give another t equal  to t1 you give another jerk and 

again the fluctuation starts. Now please recall there  was already some effect of the previous 



fluctuations which will still sustain and added over to  it the jerk or hit that you gave at t 

equal to t1 that also contributes to it. So there  are essentially the historical fluctuations in 

the string and more recent fluctuations.  Obviously the impact of more recent fluctuations 

will be higher as historical fluctuations  will die away. But if I want to know what is the 

impact of this latest hit or latest  information or latest jerk to the string I need to somehow 

model out I need to somehow  model out the historical jerks or historical fluctuations. 

 

 Once I model out or extract  the historical information or fluctuation impacts on the string 

then only I would be  able to measure the impact of this jerk or information that came 

information shock that  came at time t equal to 1 and that is what we mean when we say 

that what is the variance  conditional to the previous historical information shocks or 

information arrivals that is mu  t minus 1 mu t minus 2 conditional to them what is the 

current variance or impact of  shock that is mu t. So this is how we develop the intuition. 

To summarize in this video  we saw the intuition and understanding of conditional 

volatility. The concept of conditional  volatility derives from the fact that recent periods or 

recent information arrival has  more say on the volatility levels and we need to in order to 

understand this we need to  model out or sort of extract the historical information shocks 

so that we get a more pure  and more sharp measure of recent volatility conditional to 

historical information shock  or information arrivals.  

 

In the previous video we discussed historical volatility models and we said about these 

models that they give equal weight to all the historical observations no matter how fast or 

further in time this information may be. 

 

 Obviously this kind of  mechanism is problematic and this leads us to what we call as 

exponentially weighted  moving average models. In this video we will introduce EWMA 

or Exponentially Weighted Moving  Average models and see its mathematical formulation 

and theoretical independence behind it.   

 



To begin with these models argue that the forecast of volatility or estimate of volatility  

should provide a higher weight to recently observed volatility or observations while  a 

lower weight to those observations that are much further in past. These are simple  

extensions of historical volatility models that allow more weight to recent data. The  effect 

of past volatility event decays exponentially as the weights attached to them fall. 

 

 Now  we will see how this works mathematically but just to give you some intuition 

suppose  the given particular period end is in past t-n 𝜎𝑡−𝑛
2 has a particularly high  level of 

volatility. Now as per the historical volatility model as long as this model this  particular 

observation is included in the model it will lead to heightened level of  volatility. However 

even for a single period as soon as it goes away its exclusion would  lead to sudden fall in 

volatility levels. Such drastic fluctuations in volatility forecasts  are not desirable and 

therefore EWMA models precisely account for this fact by exponentially  decaying the 

impact of this particular level of innovation or volatility on the volatility  estimates. 

 

  

Let us see how this works mathematically. This is the formula for EWMA model which 

gives  sigma square t equal to lambda into sigma square t minus one plus one minus lambda 

into  mu square t minus one  

𝜎𝑡
2 = 𝜆 ∗ 𝜎𝑡−1

2 + (1 − 𝜆) ∗ 𝜇𝑡−1
2  

where sigma square t is the estimate of variance for today using  historical information. 

What kind of information? First lambda which is the exponential decay  parameter. 

Customarily the values are like 0.9 or 0.8 in this range. Sigma square t minus  one is the 

estimate of volatility day before while 𝜇𝑡
2 is the information or innovation  term which is 

usually extracted from the squared residuals or many times it is directly  proxied by the 

square residuals on time t. Now in this model just imagine the impact  of the sigma square 

t minus one as time passes for example its impact on sigma square t plus  two and so on 

let's say on 50th period sigma square t plus 50. A little bit of visualization  and imagination 

about this model would suggest that as the time passes this factor will grow  by 



exponentially by let's say lambda to the power two lambda to the power three and so  on 

lambda to the power 50. 

 

 As long as this value is less than one like 0.9 or 0.8 this  value very exponentially decays 

and almost becomes zero in a very few steps and that  is a very desirable property of 

EWMA models in that they exponentially decay the impact  of historical volatility 

estimates and slightly give more weight to the more recent volatility  levels. Let's do this 

in more mathematically engaged manner. So we started with this formula   

 

 

where sigma square t was the estimate of volatility today using estimate of volatility 

yesterday  and the information or innovation on return squared terms that arrived yesterday. 

Now  in this model we can also write in terms of t minus one for t minus one day this will  

become t minus two and this will become t minus two. We can substitute this value here  

to get lambda and then this multiple which is this sigma lambda into sigma square t minus  

two plus one minus lambda into mu square t minus one plus the original term of one minus  

lambda into mu square t minus one. 

 

𝜎𝑡
2 = 𝜆 ∗ 𝜎𝑡−1

2 + (1 − 𝜆) ∗ 𝜇𝑡−1
2  

𝜎𝑡−1
2 = 𝜆 ∗ 𝜎𝑡−2

2 + (1 − 𝜆) ∗ 𝜇𝑡−2
2  

𝜎𝑡
2 = 𝜆 ∗ [𝜆 ∗ 𝜎𝑡−2

2 + (1 − 𝜆) ∗ 𝜇𝑡−2
2 ] + (1 − 𝜆) ∗ 𝜇𝑡−1

2  

 

 Now we can take away these error terms or mu square terms together mu square is nothing 

but the innovation or error or information that has arrived on a particular day. So this 

becomes one minus lambda into mu square term for t  minus one and lambda times mu 

square t minus two. Now notice as we keep on going further  historically in time it will 

start multiplying with lambda. So for example the mu square  t minus three term would be 



like lambda square into mu square t minus three. Then next term would be lambda cube 

mu square t minus four and so on and as we keep on going further historically in time for 

example lambda times n minus one mu square t minus n. 

 

𝜎𝑡
2 = (1 − 𝜆)(𝜇𝑡−1

2 + 𝜆 ∗ 𝜇𝑡−2
2 ) + 𝜆2𝜎𝑡−2

2  

𝜎𝑡
2 = (1 − 𝜆) ∑

𝑚

𝑖=1

𝜆𝑖−1 (𝜇𝑡−𝑖
2 ) + 𝜆𝑚 𝜎𝑛−𝑚

2  

 So this way this expansion can be done as we go on historically in past and this observation 

as we have seen  it will keep on moving further in time t minus three and so on lambda 

square sigma square  t minus n as we keep moving historically in time. So a generic term 

like this would be  obtained where the innovation term has this summation series one minus 

lambda summation  i equal to one to m lambda to the power i minus one while the estimate 

historical estimate  of the sigma has lambda to the power m into sigma square n minus m 

kind of term and if  and if this is sufficiently large for example for sufficiently large values 

of m this term  will converge to zero because lambda to the power m where it tends to 

infinity is equal  to zero. So this term will converge to zero and we are only left with this 

generic term.  So this is a more generic formula for EWA model while the previously what 

we started  with this this one is a more basic and easy to interpret formula of EWA which 

gives that  certain weight decay parameter assigned to estimate of volatility sigma square t 

minus  one and one minus lambda assigned to mu square t minus one which is the 

information or innovation  or volatility arrived today or rather saying today it's t minus one. 

So depending upon  whatever I'm forecasting it's immediate previous period. 

 

  

So looking at this model what happens  if we change the value of lambda the decay 

parameter a very low value of lambda puts  a high weight on recent return volatility and 

therefore estimates of volatility are  volatile. So for example if you choose a very sort of 

low value in this formula sigma t  square equal to lambda times sigma square t minus one 



plus one minus lambda into mu  square t minus one if you choose a very low value close 

to zero then this term will go  away and all the weight is assigned to the latest information 

or innovation or volatility  residuals arrived mu square t minus one. So all the weight is 

given here. However while  this is this estimate would be very informative in terms of its 

recency but it will be very  fluctuating it does not account for historical levels of volatility. 

In contrast if you take  a very high level of lambda let's say close to one then almost 

negligible weights will  be assigned to the recent levels while more weight assigned to the 

historical levels. 

 

  So that is sort of trade-off between recency and reliability of the volatility estimate.  To 

summarize in this video we discussed EWMA models of volatility. We said that these  

models are driven by the fact that previously historical models they do not account for  the 

fact that more recent levels of volatility should be assigned a higher weight while 

computing  the volatility estimate. So this leads us to either the search of more efficient 

volatility  models leads us to EWMA models which give not only give more weight to 

recent observations  but also the weight of historical observation does not decay in a very 

sort of radical or  one zero kind of manner it gradually or exponentially decays over time. 

So it is not that till the  time the observation is part of sample its entire impact is there and 

as soon as it goes  out of the sample or excluded from the sample it has zero impact. So 

this was the working  of historical volatility model in a EWMA model there is a gradual 

sort of decay. So when  the observation is excluded from the sample it is not that it is having 

a very sharp impact  on the volatility estimate it will not happen with the EWMA but it will 

happen with the historical  model.  

 

In this video we will try to understand the mathematical workings and theoretical  

interpenings behind EWMA model with the help of a simple example.  

 

Consider the following  information the decay factor lambda is 0.9 the volatility estimated 

on day t that is  sigma t is 1 percent the returns on day t that is rt or volatility on day t or 

mu t  observed rather we can call it observed volatility or volatility innovations mu t or r t 

square  under root square t or 𝜇𝑡 we can call this as 2 percent or volatility observed on given  



day or rather realized volatility you can also call it realized volatility or observed  volatility 

on given day t is 2 percent. 

 

 Now we want to compute the EWMA exponential being  moving average estimate of the 

volatility on t plus 1. Let us see how this works. As  per the information given to us lambda 

is 0.9 sigma t is 1 percent and this is daily  for daily period and return on day t is 2 percent. 

 

 

 So from this we can estimate we can  proxy this to mu t as 2 percent. Now using our 

formula sigma square t plus 1 which is  equal to lambda times sigma square t plus 1 minus 

lambda into r square t. Now we know the value of lambda 0.9 we also know the value of 

sigma square t which is square of this  which is 0.01 square then 1 minus lambda is this 

and r t square is 0.02 square. So r t  square is being used to proxy the volatility innovations 

on mu t square. So we get this  value as 0.00013. We can take the square root of this to get 

sigma t as. 

 

  Here sigma t plus 1 which is the square root of sigma square t plus 1 as 1.14 percent per  

day. So now note that for period t the expected value of r square t is sigma square t so 

expectation  of r square t or the volatility on tth day was 0.0001 or 1 percent which was 

lower than  the actual value. So the realized or actual value was 2 percent that is in terms 

of volatility 0.0004. What does this convey to us? So for example because of this increase 

so from the  historically observed the lower level of 1 percent now the volatility has 

increased by  a shock of 2 percent. So this r t is like a shock of 2 percent. This is sort of 

positive shock of 2 percent. The volatility on a given day is higher at 0.0004 or sort  of in 

percentage terms 2 percent mu t is 2 percent and this is where estimated future  value of 

volatility is more than estimated on the previous day more as in it is more  than this 1 

percent so previous day estimate was 1 percent but now it has increased by  0.14 percent 

to become 1.14 percent because the current day latest shock on volatility  was 2 percent 

which was on the positive side slightly higher. So that is why this estimate  has increased. 

To summarize in this video we saw how to compute  EWMA measure of volatility for a 

simple numerical example. We saw that depending upon the latest  more information the 



latest information show whether positive or negative the recent estimate  of volatility 

changes the recent estimate of volatility changes depending upon more  recent 

observations. Now it also depends on the decay factor lambda how much weight  we assign 

to these recent observations. 

 

 For example if this decay factor is zero for example  if this decay factor is very close to 

zero very small then almost all the weight is assigned  to the recent observations if this 

decay factor is close to zero. However if this decay factor  is very large decay factor tends 

to one then almost all of the weight goes to the historical  volatility estimates and these 

volatility estimates essentially depend on the previous  level of volatility levels which were 

must historically further apart while more recent  observations get a weight of 1 minus 

lambda so if lambda value is very high these recent  observations do not get a very high 

weight and therefore the selection of value of lambda  it is sort of compromise between 

sort of trade off between more recent observation or more  reliability. So if you give more 

weight to more recent observation that is RT square  your estimate will be very noisy very 

fluctuating but if you get very less value to it your  estimate would be less timely it will be 

sort of average of historical values of historically  estimated values and therefore not reflect 

a very timely signal to you of volatility.   

Previously with the class of EWMA models we captured a very simple yet powerful idea 

that  all the observations all the innovations should not get equal weight while estimating 

volatility  and more recent observations should get a higher weight. A natural offshoot and 

a more  systematic and robust offshoot of this concept or the idea conveyed by EWMA 

model is ARCH  family of model which capture this fact that volatilities auto correlated or 

auto regressive  in a very systematically and mathematically more robust manner. 

 

 In this video we will  introduce the ARCH family of models and their mathematical 

modeling.   

 

The motivation behind ARCH family of models is the empirically stylized fact of a certain  

returns called volatility clustering that is there are periods of prolonged periods  of calm 

and tranquility in financial markets and then there are periods of bust and periods  of calm 



and tranquility occur together while periods of bust also occur together. This  is called 

volatility clustering under the auto regressive conditional heteroscedasticity  or ARCH 

specification this auto correlation is volatility is modeled by allowing the conditional  

variance and we have already discussed what is the conditional variance 𝜎𝑡
2on the previous 

value of squared errors or mu t s or what we call as innovations or information  shocks that 

are employed to model the conditional variance or𝜎𝑡
2.   

 

 

In the ARCH family of models let us start with what we call as ARCH(1) specification.  In 

general the arch model or any volatility model is a combination of mean or sort of  return 

model which appears like this a linear function of y return y here would be return  some 

function of some exogenous variables and some lags of returns a linear function  which 

appears like this and an error term which is the sort of information or innovation  shock or 

information that has arrived in the period t. 

 

  So this is what we call as mean equation where this shock information shock is modeled 

as  mean 0 with the constant variation sigma square. So this error term is modeled mu t as 

a normal distribution with a mean of 0 and standard deviation of sigma this is the  

distribution of error and then we have the conditional variance equation as sigma square  t 

which is a constant term alpha naught plus alpha 1 into mu square t minus 1 where these  

innovation or error term square mu square t minus 1 are obtained from the mean model.   

𝜎𝑡
2 = 𝛼𝑜 + 𝛼1 ∗ 𝜇𝑡−1

2 + 𝛼2 ∗ 𝜇𝑡−2
2 + ⋯ + 𝛼𝑞 ∗ 𝜇𝑡−𝑞

2  

Please note the focus is not here on mean model which is a basic requirement basic 

mandatory  requirement to obtain these mu t's here we model the return with some of its 

own lag  terms plus some exogenous variables that are predictor of returns and then extract 

the  residuals that is mu t which sort of reflect the current information arrival the 

information  shock that has arrived in the current period and now this mu t will be used to 

model the  volatility conditional variance through this formula.  This is a simple ARCH (1) 

estimate this is a simple ARCH(1) specification where estimate  of conditional variance or 



sigma square t is a function of previous period innovations  that is mu square t minus 1. I 

repeat again this is a simple ARCH (1) specification where  estimate of volatility is a 

function of its immediate previous period innovation or information  shock or residuals 

that is mu square t minus 1 this is ARCH(1) specification. 

 

  In similar manner we can think of Arch (Q) specification as sigma square t which is 

dependent on previous  Q periods innovations or residuals or information shock in squared 

form. So many times when  residuals are not available we tend to use returns to proxy these 

as duals directly for  example I could use to proxy mu square t minus 1 I could use R t 

minus 1 square or mu square  t minus 2 as R square t minus 2 this we have done in the 

previous numerical example if  you recall so this can be done that and the distribution of 

mu is like this it is mean  of 0 with a sigma square variance. Now here one thing important 

to be noted because the  sigma square t is also positive and these mu square t are all positive 

the coefficients  and like alpha naught alpha 1 alpha 2 they cannot be negative and therefore 

some constraint  has to be put so that all the alphas are greater than 0 for all i equal to 0, 1, 

2  and up to Q. So all these alphas have to be greater than 0 which is a sort of sufficient  

condition to model this.   

 

So the resulting Arch Q a more generic version of Arch model that is Arch Q model 

specification  can be written as a combination of mean equation which is y equal to beta 1 

plus beta 2 x 2  plus beta 3 x 3 and so on plus mu t where mu t is normally distributed with 

a mean of  0 and a variance of sigma square and then the conditional variance expression 

or the  conditional variance estimate of Arch model sigma square t for period t is written 

as  either H t you can also write as H t or sigma square t as alpha naught plus alpha 1 plus  

mu square t minus 1 plus alpha 2 into mu square t minus 2 and so on till alpha Q into mu 

square  t minus Q where all these mu squares are the innovation or error terms for models 

for period  t minus 1, t minus 2 and up till t minus Q. 

𝑦 = 𝛽1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝜇𝑡 , 𝑤ℎ𝑒𝑟𝑒 𝜇𝑡~ 𝑁(0, 𝜎2) 

𝜎𝑡
2(𝑜𝑟 ℎ𝑡) = 𝛼0 + 𝛼1 ∗ 𝜇𝑡−1

2 + 𝛼2 ∗ 𝜇𝑡−2
2 … … . + 𝛼𝑞 ∗ 𝜇𝑡−𝑞

2  



constraint  that all these alpha naught and alpha 1 and alpha 2 have to be greater than equal 

to 0  that has to be put to ensure that in none of the estimates the estimate turns out to  be 

negative which will be the next previous estimation.   

 

 

However, this model has particularly two problems one is that what if the lag structure is 

very long then this model becomes as you can see very extremely un-parsimonious if lag 

structure  is long. Second, you would a simple way to solve that kind of issue and you can 

see that  here would be to somehow get the expression in the form of sigma square t minus 

1 which  as we will see the Garch family of models is a very simple and intuitive extension 

to  this form of ARCH models. The idea here is that large Q s mean that models very less  

parsimonious and there is a higher probability of getting negative coefficients or alpha  i s 

which leads us to think of a simpler ways and of expressing this model and as you  would 

have already thought that probably and the intuition comes from EWMA model that 

probably  we could replace some of these mu i s and express this sigma square t estimate 

in terms  of previous period estimates of sigma square t minus 1 because essentially the 

information  that is captured in sigma square t some of that is also capturing captured in 

sigma square  t minus 1 in a slightly more parsimonious manner. So, rather introducing all 

such long  like the structure we could rather in a parsimonious manner use somehow sigma 

square t minus 1  and that leads to the natural expansion of Arch series towards Garch 

family of models. 

 

  To summarize this video, we noted that the Arch series of models very nicely capture  the 

idea that the volatility estimates should have higher weight in the more recent terms  and 

as the time passes and a particular period becomes older and older its impact on the  

volatilities estimate should decay. However, the Arch family of model has its own set of  

problems such as it has slightly less parsimonious structure and we also have to externally 

put  constraints so that coefficients remain positive all the coefficients remain positive. To 

account  for these problems a natural offshoot is a Garch family of models which is 

essentially  derived from Arch family of models which we will discuss in the next set of 



videos.  In the previous discussions we noted that even though Arch set of family models 

are  extremely useful in modeling volatility though they still have their own set of problems.  

For example, an extremely non-parsimonious structure of lags or lagged volatility levels  

makes it vulnerable to negative coefficients or resulting in negative coefficients in 

estimation. 

 

  In this video we will introduce and in a series of next few videos we will introduce Garch  

family of models and how they improve upon the Arch modeling.   

 

 

In a sense the GARCH models or generalized what we call generalized Arch models they 

are essentially the generalized version of Arch model that allow the conditional volatility 

sigma square t to depend not only on the past information or innovation terms that  is mu t 

but also its own lags that is sigma square t minus 1 and previous lags. Let us see how. So, 

our estimate of volatility which is sigma square t or H t has three important components 

alpha naught, alpha 1 into mu square t minus 1 plus beta 1 into mu square t minus 1 this is 

called simple Garch 1 specification and as we will see shortly it is a very powerful  and 

useful specification.  

𝜎𝑡
2 = 𝛼0 + 𝛼1 ∗ 𝜇𝑡−1

2 + 𝛽1 ∗ 𝜎𝑡−1
2  

First and foremmeansthe term alpha naught this  term alpha naught makes this model 

capable to handle what we call as long term mean reversion  property that means because 

of this term this term helps model achieve some kind of long  term means so that when the 

value is higher the sigma square t estimate is higher than  the normal levels it tends to pull 

it towards some kind of long mean or whether it is lower  then also it pulls higher towards 

that long term mean. 

 

 So, this alpha naught drives that  property of long term mean reversion we will see the 

value of that long term mean shortly.  Now this mu square t minus 1 into alpha 1 creates 



that dependence on recent information.  So, this mu square t minus 1 captures the 

information or gives sort of alpha 1 way to the latest information that has arrived and all 

the previous levels of information are  captured through the sigma square t minus 1 with 

the idea that historical information  structure will be captured through this sigma square t 

minus 1 and its coefficient beta  1. Now because of this extremely, extremely parsimonious 

structure the coefficients alpha 1 alpha naught and beta 1 only three coefficients  being 

present the chances of these coefficient turning to be negative is very less.   

 

 

Let us see when we make the statement that GARCH is a more parsimonious model as 

compared to ARCH and very less likely to reach non-negative constraints. 

 

 Let us see why we could make  this statement. If this is the model if the generalized is 

called GARCH 1 1 model so you have 1 lakh for mu square t minus 1 and 1 lakh for the 

previous conditional estimate  sigma square t minus 1. So, your volatility estimate is 

dependent on previous values of mu square t minus 1 and sigma square t minus 1.  So, it 

becomes this kind of model. Now you can simply substitute for sigma square t minus 1 in 

the same manner to get it in the form of mu square t minus 2 and sigma square t  minus 2. 

These values can be substituted further here resulting in this kind of model and as you 

would have now guessed it we can keep on substituting fitted variance terms like  this. 

𝜎𝑡
2 =  𝛼0 +  𝛼1 ∗  𝜇𝑡−1

2 + 𝛽1 ∗ (𝛼0 + 𝛼1 ∗  𝜇𝑡−2
2 + 𝛽1 ∗ 𝜎𝑡−2

2 ) 

 but sigma square t or its different variance.   



 

So, as we go on substituting these fitted variance terms, we can get this expression.   

𝜎𝑡
2 =  𝛼0(1 + 𝛽1 + 𝛽1

2 + ⋯ . . ) + 𝛼1 ∗ 𝜇𝑡−1
2 (1 + 𝛽1𝐿 + 𝛽1

2𝐿2 + ⋯ . ) + 𝛽1
∞𝛼0

2 

 We keep on iterating in terms of mu square t minus 1 and taking the sigma square back in 

time for example sigma square t minus 1 to sigma square t minus 2 and so on up till  

infinitely long ahead in time and therefore this term and generally it is assumed that  all 

these coefficients are less than 1 so this term will approach to 0. So, essentially you would 

get a term which is a some kind of constant term and then another terms which  are function 

of lags of mu square t minus 1 for example this would be mu square t minus  1 and this L 

represents lag for example this will be mu square t minus 2 this will be mu  square t minus 

3 and so on. So, essentially you can think of this expression as a some kind of arch model 

like this this is some kind of arch model with a constant term and  lags of mu square t minus 

1 but because we have taken or absorbed so many lags we can  think of it as infinite order 

arch model. 

𝜎𝑡
2 = 𝛾0 +  𝛾1𝜇𝑡−1

2 + 𝛾2𝜇𝑡−2
2 + ⋯ … … .. 

GARCH 1-1 kind of model is more than  capable enough to model most of the series in 

economics and finance and that is why because  of this extremely parsimonious nature the 

chances of these coefficients turning to be  negative is very less and it provides a 

considerable improvement over the arch family of models  because it captures infinite 

series of arch model with just simple GARCH 1-1 specification  generalized arch.  To 

summarize in this video we introduced the GARCH model as a simple combination of three  

terms which is some kind of long term mean alpha naught a coefficient alpha 1 which is  

assigned to innovation terms mu square t minus 1 and alpha 2 assigned to historical 

estimates  of sigma square t minus 1 with such a simple and parsimonious structure it could 

capture  a model which is equivalent to an infinite arch process so an infinite arch process 

is  simply captured by this kind of GARCH 1 model although we could generalize it but in 

economics  and finance this GARCH 1 model is reasonably capable and robust to handle 



any kind of time  or price series and therefore in this model the chances of coefficient 

turning to be negative  is also very less.   

 

In this video we will discuss the GARCH 1-1 model, which is a very powerful and useful 

model in more detail.  We will also discuss some of the issues with GARCH 1 model that 

leads to search or requirement of more advanced GARCH models.  Recall our expression 

for GARCH 1-1 model as sigma square t which is a combination of constant alpha naught 

plus alpha 1 into mu square t minus 1 plus beta 1 into sigma square  t minus 1. 

 
  Here the unconditional variance of the error term is given as alpha naught upon 1 minus  

alpha 1 minus beta 1.  One required condition is that the summation of alpha 1 plus beta 1 

is less than 1.  If this condition is not held then the process is non-stationary in variance 

probably many of us would have heard this term non-stationary mean or stationarity of a 

series this is what  we call as non-stationary or stationarity of variance.  So if alpha 1 plus 

beta 1 is less than 1 then the process stationary but if this condition is not held then it is 

non-stationary.  While there is no precedence or no rational for alpha 1 plus beta 1 greater 

than 1 which  essentially would mean that the volatility explodes, volatility sort of 

explodes. 

 

  This is called explosion of volatility infinitely in times to come but generally there is no  

precedence of that at best what you have is alpha 1 plus beta 1 equal to 1 which is often  

termed as unit root or non-stationarity in variance or integrated I-GARCH.  So this 

relationship of alpha 1 plus beta 1 equal to 1 (𝛼1 + 𝛽1 = 1)captures what we call as non-

stationarity or unit root process in I-GARCH integrated actual variance.  So given that a 

GARCH process stationary this unconditional variance what is the application of this 

unconditional variance if the GARCH process stationary as you keep on forecasting  the 

future values of sigma square t let us say sigma square t plus 1 sigma square t plus  2 sort 

of unconditional forecast.  So you keep on forecasting as horizon increases from 1, 2, 3, 4, 

5 and days after certain time the historical information that you had till time t equal to 1 

the impact of that  information will die away and the volatility estimates will converge to 

this value.  So what we obtain here is a very useful property what we call as long term 



mean reversion long  term mean reversion what it means is that if the GARCH process 

stationary as the horizon  increases and you keep on forecasting for t equal to 1, t equal to 

2, t equal to 3 and  so on the impact of historical information that was available at t equal 

to 0 dies and  what you are left with is sort of unconditional forecast which converge to 

their long term  value long term unconditional value which is provided here this is a very 

useful property  of GARCH 1 specification. 

 

   

Now this GARCH model as you would have noticed nonlinear in nature so it cannot be 

estimated with ordinary least squares scheme.  Once you have the idea of proper mean 

equation and variance equation as we have already discussed some variants of mean and 

variance equation so once you have some idea of these mean and  variance equations you 

need to estimate them with what you call as maximum likelihood method  the discussion 

the elaborate discussion of maximum likelihood estimation is out of the syllabus and not 

part of this discussion.  So we said that GARCH model effectively requires maximization 

of some kind of log likelihood  function basically this essentially it means obtaining some 

sort of parameters a family  of parameters for GARCH in this case the parameters are alpha 

naught alpha 1 and beta 1 as we  saw that maximize the probability of getting the observed 

or actual data so these parameters  observing those parameters that maximize the 

probability of getting the actual data  that we observe from financial markets so that would 

be the scheme of MLE or what we  call as maximum likelihood estimates these estimates 

of alpha naught alpha 1 and beta  1 would be employed.  Sometimes the model or the 

process of MLE does not exactly converge if the observations are too less than it may not 

converge and various other reasons it may not converge  as well it is a non-linear kind of 

iteration where you maximize some kind of probability  density of getting the observed 

data.   



 

So now to summarize this video we discussed that GARCH 1 1 process appears like this 

sigma  square t equal to alpha naught plus alpha 1 into mu square t minus 1 plus beta 1 

into  sigma t square t minus 1 which is a GARCH 1 1 model with 1 lag of innovation or 

error  term mu square t minus 1 and 1 lag of conditional variance which is sigma square t 

minus 1. 

𝜎𝑡
2(𝑜𝑟 ℎ𝑡) =  𝛼0 + 𝛼1 ∗ 𝜇𝑡−1

2 + 𝛽1 ∗ 𝜎𝑡−1
2  

  However, notice in this model even though very parsimonious it still has three coefficients  

which may turn out to be negative so we need some kind of artificial constraints to ensure  

that these coefficients alpha naught alpha 1 and beta 1 do not turn out to be negative.  The 

second and also very important this model does not capture the asymmetric response of  

volatility or what we call leverage effects of price movements.  Recall we earlier said that 

in financial markets what we observe is called leverage effect where rising prices result in 

sort of lower levels of volatility while falling prices  results in higher level of volatilities 

or price innovations or shocks to price that  are on the positive side have less impact on 

volatility while those that are negative  have a higher impact of volatility.  So this 

asymmetric nature or asymmetric behavior of volatility is not observed or modeled by this 

kind of model. 

 

  There is nothing that captures or models this asymmetry in volatility behavior.  So these 

are some of the shortcomings of this model and in the next video we will discuss  some of 

the more advanced models that tries to overcome these handicaps or shortcomings  of the 

GARCH model.  

 

 In this video we will conclude our discussion of GARCH family models by introducing 

two models that is GJR model and eGARCH model that tries to overcome the shortcomings 

one that is leverage effect, help us model leverage effect and second negativity constraints 

of  model coefficients.   



 

So we start the discussion with the leverage effect and it has been well observed that 

negative shocks induce more volatility than positive shocks as we discussed earlier and  we 

gave it a name leverage effect.  Now there are two very important models, one is called 

GJR GARCH model and eGARCH, Nelson  and Seagarch model that tries to overcome 

this.  Let us start with the GJR GARCH model which appears like this where estimate of 

volatility  sigma square t is a function of alpha naught, alpha 1 and beta 1 which are familiar 

terms  with us. 

 

  𝜎𝑡
2(𝑜𝑟 ℎ𝑡) =  𝛼0 + 𝛼1 ∗ 𝜇𝑡−1

2 + 𝛽1 ∗  𝜎𝑡−1
2 + 𝛾 ∗ 𝜇𝑡−1

2 ∗ 𝐼𝑡−1We already saw them in 

GARCH 1 1 but one more term is added which is gamma into mu square  t minus 1 into i 

t minus 1.  So we already understand these terms GARCH 1 1 parameters.  Let us discuss 

this particular last term.  Here i t minus 1 is sort of indicator or dummy variable which 

takes a value of 1 if gamma  mu t minus 1 is less than 0 or it is equal to 0 otherwise.  So 

essentially we are running two models, so essentially we are running two models one  when 

the shock is positive, when the shock is positive then only this version GARCH 1  1 is run 

but when the shock is negative then we are running a slightly more elaborate model  to 

capture that asymmetric response. 

 

  The idea here is that with running this asymmetric or sort of different models for positive 

and  negative shock that the negative shock, the negative original shock would be captured  

by this gamma and as you would have guessed if the leverage effect are indeed significant,  

if the leverage effect are indeed significant then this gamma which captures the leverage  

effect should be significantly positive.  So for the leverage effects to exist this gamma 

should be greater than 0 because this  i t minus 1 is 1 only for negative shocks.  For the 

positive shocks it is 0 so only this model is 1.  So, if there is some incremental positive or 

higher impact of negative shocks that would  be captured by the positive coefficient 

through this complete term, positive coefficient gamma  and this complete term.  So, again 

this model has parameters alpha naught, alpha 1, beta 1 that were only from  GARCH 1 1 

and then additional gamma. 

 



  Now for this model also the parameters that is alpha 1 naught, alpha 1, beta 1 and alpha  

1 plus gamma have to be positive or greater than 0 to ensure that the estimate of volatility  

sigma square t is positive.  So, that additional constraint has to be put although it accounts 

for the asymmetric nature  of volatility or leverage effect, but still non-negativity constraint 

has to be put externally.   

 

Another very important model of Nelson-Egache model captures both the properties that 

is  non-negativity and as well as the leverage effect.   

𝑙𝑛 𝑙𝑛 (𝜎𝑡
2)  = 𝜔 + 𝛽 𝑙𝑛 𝑙𝑛 (𝜎𝑡−1

2 )  + 
𝛾𝜇𝑡−1

√𝜎𝑡−1
2

+ 𝛼[
|𝜇𝑡−1|

√𝜎𝑡−1
2

− √
2

𝜋
] 

Look at the expression here you have estimate in the natural log form then the omega beta  

into natural log of sigma square t minus 1 and then mu t minus 1 into gamma upon square  

root sigma square t minus 1 plus alpha and magnitude of the error terms mu t minus 1  upon 

sigma square t minus 1 and so on.  In this model notice that estimate of volatility is modeled 

in the form of natural log and  therefore the non-negativity constraint is removed because 

whatever even though the parameters  can be negative the estimate of volatility may still 

be positive because of this log  thing. 

 

  So, this model affords it can afford the negative parameters that is a very useful property  

and volatility estimate will still turn out or rather conditional volatility estimate  will still 

turn out positive.  The second and very important property of this model is the asymmetric 

response of volatility  while the mod of mu t minus 1 captures the symmetric response or 

the both sides it considers  negative and positive sides as same, this mu t-1 captures the 

asymmetric nature. Now as per out knowledge of asymmetry effect negative shocks should 

have high impact on volatility and therefore we are estimating the gamma to be negative 

and significant , which would capture the volatility shock in this volatility model.  



To summarize this video, we studied two advanced GARCH models, GJR-GARCH and E-

GARCH. GJR which could account for asymmetry or leveraging effect  but it still has the 

problem of externally put non-negativity constraint that is non-negativity constraint in 

parameters or coefficients , i.e., alpha not, alpha one, beta one has to be externally put. 

Whereas nelson EGARCH model can overcome both these constraints that it could not 

only  model the leverage effect but also we need not to put any non-negativity constraint 

because of natural log to estimate even though coefficient can be negative, the estimate of 

volatility will still be positive.  

shocks induce more volatility than positive shocks as we discussed earlier and  we gave it 

a name leverage effect.  Now there are two very important models one is called GJR 

GARCH model and Nelson  EGARCH model that tries to overcome this.  Let us start with 

the GJR GARCH model which appears like this where estimate of volatility  sigma square 

t is a function of alpha naught, alpha 1 and beta 1 which are familiar terms  with us. 

 

  We already saw them in GARCH 1 1 but one more term is added which is gamma into 

mu square  t minus 1 into i t minus 1.  So we already understand these terms GARCH 1 1 

parameters.  Let us discuss this particular last term.  Here i t minus 1 is sort of indicator or 

dummy variable which takes a value of 1 if gamma  mu t minus 1 is less than 0 or it is 

equal to 0 otherwise.  So essentially we are running two models, so essentially we are 

running two models one  when the shock is positive, when the shock is positive then only 

this version GARCH 1  1 is run but when the shock is negative then we are running a 

slightly more elaborate model  to capture that asymmetric response.  The idea here is that 

with running this asymmetric or sort of different models for positive and  negative shock 

that the negative shock, the negative original shock would be captured  by this gamma and 

as you would have guessed if the leverage effect are indeed significant,  if the leverage 

effect are indeed significant then this gamma which captures the leverage  effect should be 

significantly positive. 

 

   


