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 In this video, we discuss ARMA process which is simply a combination of AR and MA 

processes. We also discuss how to identify the ARMA process with the help of ACF and 

PACF diagrams. Next we discuss in a step by step manner how to build an ARMA model 

for forecasting. We also discuss the prediction process with time series models and 

compare it with the prediction process with structural models.  

 

 We also discuss how to determine the accuracy of out of sample forecasts. In this video, 

we will introduce ARMA which is autoregressive AR and moving average which is MA. 

So in this video, we will introduce ARMA process which is a very important component 

of ARMA models, ARMA class of models. Just to make an distinction here, I here is 

nothing but the integration of the process. So depending upon the levels of non-stationarity 

and we will define it in subsequent videos depending upon the level of non-stationarity, 



the order will be integrated of that order. And other than that, the most important part of 

that ARMA is AR and MA which we are going to discuss in this video. To put it succinctly, 

an MA process is nothing, but a combination of AR and MA process of different orders 

say (p, q). So, if AR process is of order p and MA process is of order q and we combine 

them, we get an ARMA process of order (p, q).  

By combining the AR(p)and MA(q)models, an ARMA (p, q) model is obtained: 

• 𝑦𝑡 = 𝜇 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + ⋯ + 𝜑𝑝𝑦𝑡−𝑝 + 𝑢𝑡 + 𝜃1𝑢𝑡−1 + 𝜃2𝑢𝑡−2 + ⋯ +

𝜃𝑞𝑢𝑡−𝑞 

• 𝜑(𝐿)𝑦𝑡 = 𝜇 + 𝜃(𝐿)𝑢𝑡 

• Where 𝜃(𝐿) = (1 + 𝜃1𝐿 + 𝜃2𝐿2 + ⋯ + 𝜃𝑞𝐿𝑞)   

• 𝜑(𝐿) = (1 − 𝜑1𝐿 − 𝜑2𝐿2 − ⋯ − 𝜑𝑝𝐿𝑝)   

• Also, 𝐸[𝑢𝑡] = 0; 𝐸[𝑢𝑡
2] = 𝜎2; 𝐸[𝑢𝑡𝑢𝑠] = 0; 𝑡 ≠ 𝑠 

 So, this is our ARMA process. Now as we have already seen, we can put both these AR 

and MA terms in a more compact notation like this where 𝜑(𝐿) is nothing but 1 − 𝜑1𝐿 −

𝜑2𝐿2 and so on, the algebraic polynomial. Similarly, the theta L or the MA process can be 

written as 𝜃(𝐿) = (1 + 𝜃1𝐿 + 𝜃2𝐿2 + ⋯ ) and so on, which is the algebraic notation. Also, 

we said that 𝑢𝑡 here are white noise processes and these 𝑢𝑡, the white noise processes that 

these 𝑢𝑡 are can be defined with the expected value of 0, their variance which is expected 

value of 𝑢𝑡
2 as 𝜎2 and their auto covariance as 0 for all the times which are not same as s 

for all the t's that are not same as s. The auto covariance is 0 because white noise is a 

process with more discernible structure. 

 



 

 What about the ACF and PACF plots? Interestingly being combination of AR and MA 

process, the ACF and PACF plots are sort of combination of AR and MA process taken 

separately. For example, if we put them together, both the ACF and PACF plots are 

exponentially declining in magnitude irrespective of their order. For example, look at this 

ARMA process of order (1,1), ARMA (1,1) because here AR term is order of 1 and MA 

term is also order 1. So this ARMA (1,1) process and it has exponentially declining 

structure, which is sort of combination of AR and MA itself. If you recall, AR had 

exponentially declining ACF while single while cutoff of PACF same as the order of AR 

process. For MA process, it was exponentially declining PACF while ACF was cutting off 

at exactly the same as number of order of MA process. If we combine them both for AR 

and MA, if we combine these terms, we get both ACF and PACF which is exponentially 

declining for both ACF and PACF and that is how you can exactly identify and differentiate 

between AR, MA and PAC ARMA model on ACF PACF diagrams. To summarize, 

ARMA processes are nothing but a combination of AR and MA processes and part of a 

very wider class of ARIMA models. I in ARIMA would show the level of integration or 

sort of non-stationarity how, what is the characteristic of non-stationarity depending upon 

the order of non-stationarity whether it is level 1, level 2, the I term would be there. But in 

finance and economic series, mostly the I part is modeled separately and then the remaining 

part is modeled as ARIMA model. 

 So for example, if I process I2, first we will try to remove the non-stationarity of level 1 

or 2 whatever it is and once you model out non-stationarity, you will focus on ARIMA part 

of it in modeling through an expression like this. And lastly, between AR, MA and ARIMA 

process, you can differentiate between them using the ACF and PACF plots visually. For 

ARMA process, both the ACF and PACF are geometrically declined which is different 



from ACF and PACF for AR and MA processes separately. In this video, we will introduce 

to building and estimating ARMA AR and MA class of models. Starting with ARMA 

model, the first step is identification of the ARMA process that means understanding what 

the order of AR and MA terms p and q is, order of TR process and order of q process. 

 

 Once you understand the structure and order of the model, then second step is estimation 

of these parameters. For example, if it is ARMA (p,q) model, you have parameters that is 

coefficients corresponding to AR and MA process that you will try to estimate with process 

such as OLS and MLE. OLS is ordinary least square estimation and MLE is maximum 

likelihood estimate depending upon the context and nature of model. For example, OLS is 

more suitable to linear modeling while MLE approach can be used for non-linear as well 

as linear. Then we come to as last step as model diagnostics that is you test the model. 

 Generally, you try to test the residual of the model that residual should be generally the 

assumption with residuals is that they are white noise term. So, they should have no 

autocorrelation structure that is one. Often the model is also tested for overfitting. For 

example, you start with an overfitted model and then you test the parameters whether they 

are significant or not. So, you keep on eliminating insignificant parameter to arrive at a 

very parsimonious model. 

 The idea behind using a parsimonious model is to choose as less number of AR and MA 

terms as possible. A parsimonious model has two very good properties. First and foremost, 

it consumes less degrees of freedom which means observations or data observed resulting 

in lower standard errors. So, if you have a parsimonious model relative to a bulky and more 

complex model, it will consume less degrees of freedom and result in lower standard of 

errors that means good and high power of test. The second step is second part is overfitting. 



 So, a model which is bulky and complex and not less not so much parsimonious may have 

a problem of overfitting that means it may fit two data specific properties which we often 

refer to as noise also in physics parsons. While a more parsimonious model has less 

tendency of overfitting and it may rather fit two important properties of data which is often 

referred to as signal in physics parlance and which means the implication is that a very 

bulky model may give very high and good fit with a given sample on which it was trained 

while in out of sample a new data it may perform poorly. In contrast, a parsimonious model 

may be relatively not as efficient in a given set of data in which it was model but its relative 

performance on out of sample data would be extremely good. How do we choose between 

two computing models? So there we use something called information criteria for selecting 

different lags or structure of ARMA process that is (p,q)  order ARMA orders that is (p,q)  

terms. We have very three famous: 

• Akaike’s (1974) information criterion (AIC)=−2 𝑙𝑜𝑔[𝐿] + 2𝐾. Schwarz’s (1978) 

Bayesian information criterion (SBIC)=−2 𝑙𝑜𝑔[𝐿] + 𝐾 ∗ 𝑙𝑜𝑔(𝑇) 

• Hannan–Quinn criterion (HQIC)=−2 𝑙𝑜𝑔[𝐿] + 2𝐾𝑙𝑜𝑔(𝑙𝑜𝑔(𝑇)), Where 𝐾 =
𝑘

𝑇
 = k 

is number of parameters, T is the sample size, and - 𝑙𝑜𝑔(L) is log-likelihood of 

observing the parameters obtained from the model. 

 These criteria are nothing but a combination of two terms. The formula is different but 

essentially they are combination of two terms sort of trade of or two competing parts. First 

part, this part which is 𝑙𝑜𝑔[𝐿] which is the log likelihood function sort of log likelihood 

function which is computed based on the residual errors from the model. As you keep on 

increasing the parameters there are two competing effects at play. This residual these 

residual errors will come down. 

 So as you keep on adding more and more parameters this first term will go down as 

residual errors will go down. The second term which is k increases with parameters, so 

number of parameters. So the two competing effects residual, this term represents residual 

for example here this term represents the decrease in decline in residuals with addition of 

new variables while the second term, this term captures increase in number of parameters. 

So you try to choose AIC value which is lower k here is=
𝑘

𝑇
 where k is number of 

parameters and t is the sample size. 𝑙𝑜𝑔[𝐿] like I said is the log likelihood of observing the 

parameters essentially it is computed from the residual squares. 



 

 So here these two competing effects are at play and they their net which is the AIC 

information criteria they are used to compare the models with different structure that is 

different order of the process, ARIMA-PQ process. So to summarize in this video we 

discussed how to build estimate and test an ARIMA class of model and while deciding the 

structure of model how do we select the lags of AR and ME terms using the information 

criteria AIC, BIC and HQIC criteria. In this video we will introduce forecasting with time 

series models. We will also discuss and compare them with structural models of forecasting 

and prediction. To begin with understanding the time series forecasting process let us 

understand this notation that is conditional expectations 𝐸(𝑦𝑡+1|Ω𝑡): expected value of ‘y’ 

at ‘t+1’ given all the information up to ‘t’ (Ω𝑡) 

 So this notation 𝐸(𝑦𝑡+1|Ω𝑡) (given information Ω𝑡 is for information up till time t it is 

called conditional expectation of 𝐸(𝑦𝑡+1) given information available Ω𝑡 up till time t this 

is this notation. Similarly, we can write it for time t+2, t+3 and so on. Now let us think of 

a zero mean process like white noise process 𝜇𝑡 its conditional expectation at time t +1 

given time t is said to be 0 for all s greater than 0. So for all future periods it is forecast the 

expected value of its forecast is 0. There are two very simple methods of forecasting one 

is called naive no change forecasting. 



 

 This naive forecasting method suggests that forecast of a series y at time t+1 given it 

information time t is nothing but its previous value 𝑦𝑡 at time t. This is also more applicable 

in the random walk process where the process is purely random and therefore the best 

forecast of tomorrow is whatever the value today. So therefore the conditional expectation 

of the series y at time t +1 given that all the information and values known at time t is 

nothing but the value at time t itself which is 𝑦𝑡. This is also called no change forecast 

because we assume that future value the best estimate of future value is today value itself. 

There is another set of processes which are mean reverting which are expected to revert to 

their long term mean and therefore in that case the unconditional expectation is taken and 

that unconditional expectation of mean of y is taken as forecast sort of long term mean. 

 So in this case for a process which is mean reverting which is known to revert towards 

some kind of long term mean the unconditional long term mean. What is unconditional that 

we have taken the mean over a long horizon not specific to a particular information but 

over a long horizon that unconditional mean is taken. It is also in other words this is some 

kind of long term average that is used to forecast at any time t. Now this long term forecast 

remain valid for whether you are looking at t +1 or t+2 or so on and therefore this is 

unconditional. This is unconditional at what time you are looking is simply the 

unconditional forecast. 

 So we simply write expected value of 𝑦𝑡+1 is equal to that long term mean or expected 

value of 𝑦𝑡+2 is equal to that long term mean. Now notice there is no conditional this 

conditional omega t term is not there which means that this is unconditional. Now let us 

compare these time series models and forecasting with time series models with structural 

models. A structural model would look something like this 𝑦𝑡 = 𝛽1 + 𝛽2𝑥2𝑡 + 𝛽3𝑥3𝑡 +



⋯ + 𝛽𝑘𝑥𝑘𝑡 + 𝑢𝑡: conditional forecasts and then there is this error term this you can think 

of as a white noise error. When you are forecasting or predicting with this kind of structural 

model which is obviously driven by some kind of theoretical underpinning the conditional 

expectation of 𝑦𝑡 at time t with given information at t-1 would appear something like this. 

 

 However this kind of forecasting and because these betas are constant they are sort of 

population parameters so they are taken out. So inside expectations operator you have taken 

expectations on both sides we have 𝑥2𝑡, 𝑥3𝑡 ,  𝑥4𝑡 these are the values in the expectation. 

Now in order to conduct the forecasting or prediction or what we call as conditional 

expectation of 𝑦𝑡 we need forecast of 𝑥2𝑡 , 𝑥3𝑡,  𝑥4𝑡  which are time series processes 

themselves and that makes this prediction with the help of structural model extremely 

complex process because now you have to rely on all those k variables and do the modeling 

and prediction for the variables themselves. This is a difficult part and therefore one may 

have to examine the historical values of all these 𝑥𝑠 maybe find their some kind of mean 

or expected values first you have to find the expected values and then in turn you have to 

forecast the expected value of 𝑦𝑡 . However rather than going through this cumbersome 

exercise if you are relying on simple time series model of 𝑦𝑡  by modeling through its own 

values like 𝑦𝑡−1 , 𝑦𝑡−2 , and the white noise information shocks 𝜇𝑡  that have arrived 

currently and previously you can very easily model 𝑦𝑡 without considering these values the 

idea here is that this structural relationship or any other kind of structural relationship will 

remain anyway valid and therefore this relationship will remain also valid historically that 

means for 𝑦𝑡−1, 𝑦𝑡−2, and therefore when we are modeling 𝑦𝑡 with 𝑦𝑡−1, 𝑦𝑡−2, and so on 

essentially we are factoring these relationship that have appeared or captured their 

information historically. 



 

 So, this relationship the information pertaining to such structural relationship is in 

historical terms is already captured in 𝑦𝑡−1 , 𝑦𝑡−2 ,  and therefore when I am modeling 

𝑦𝑡 with its own historical values and white noise error terms such as this through some kind 

of ARMA process I am essentially without even going into this structural model I am 

factoring this. And therefore this kind of modeling is extremely powerful that it saves lot 

of time and effort in modeling the structural model and able to capture the information 

content of this structural process itself. So, to summarize this video we have understood 

what is time series forecasting, what are the elements of time series forecasting and how it 

is a better way when we are doing some kind of future forecast or prediction as compared 

to structural models it while it takes the information content of those structural models still 

it saves or avoids lot of problems in terms of information collection and get information 

gathering and building cumbersome models as done with the structural models. In a series 

of next few videos we will try to understand forecasting process with ARMA class of 

models. In this particular video we will understand forecasting with MA model. 

• Forecast from ARMA(p,q) model at time ‘t’ for ‘s’ steps into the future is given as 

• 𝑓𝑡+𝑠 = Σ𝑖=1
𝑝 𝑎𝑖𝑓𝑡+𝑠−𝑖 + Σ𝑘=1

𝑞 𝑏𝑘𝑢𝑡+𝑠−𝑘 

• Here, 𝑎𝑖 and 𝑏𝑘 are the autoregressive and moving average coefficients. 

Let us examine this simple ARMA (p,q) model at time t with s steps into future. The 

forecast would appear something like this notation is 𝑓𝑡+𝑠 representing at time t s steps at 

forecast. Now it will have two components first AR component that is its own previous 

terms if the actual value is not available then forecast f will be employed which is the 

previous values of the series itself and its coefficient 𝑎𝑖′ s which are autoregressive 



coefficients and then you have MA terms white noise process mu t s previous values and 

current values of mu t with MA coefficients. So, let us start with forecasting of MA process. 

Let us take a simple example of MA (3) order process 𝑦𝑡  equal to 𝜇 this is the constant 

term which we assume some kind of long term constant value which is known to us from 

historical experience and then three terms 𝜇𝑡−1, 𝜇𝑡−2, 𝜇𝑡−3 and their coefficient 𝜃1 , 𝜃2 𝜃3 

and the current information or innovation in shock 𝜇𝑡. 

•  Let us look at MA(3) model: 𝑦𝑡 = 𝜇 + 𝜃1𝜇𝑡−1 + 𝜃2𝜇𝑡−2 + 𝜃3𝜇𝑡−3 + 𝜇𝑡 

• Assuming parameter constancy (i.e., the relationship holds), then 

• 𝑦𝑡+1 = 𝜇 + 𝜃1𝜇𝑡 +  𝜃2𝜇𝑡−1 +  𝜃3𝜇𝑡−2 + 𝜇𝑡+1 

• 𝑓𝑡,1 = 𝐸(𝑦𝑡+1|Ω𝑡) = 𝐸(𝜇 + 𝜃1𝜇𝑡 +  𝜃2𝜇𝑡−1 +  𝜃3𝜇𝑡−2 + 𝜇𝑡+1|Ω𝑡) 

• The values of error terms up to time ‘t’ is known, but after that we have to take their 

conditional expectation, which is zero 

• That is 𝐸(𝜇𝑡+1|Ω𝑡)=0 

 

 

 We will assume parameter constancy that this 𝜃1,  𝜃2 and 𝜃𝑡will remain unchanged as we 

move ahead into future. So, if this relationship holds the one step ahead forecast 𝑦𝑡+1 will 

be obtained by simply just adding 1 in the subscript so the model become 𝜇 +

𝜃1𝜇𝑡 +  𝜃2𝜇𝑡−1 +  𝜃3𝜇𝑡−2 + 𝜇𝑡+1. In this model, we can obtain the forecast by simply 

taking expectation which is the forecast essentially nothing but conditional expectation of 



𝑦𝑡+1 using information available up till t that is conditional up till 𝜎t. So, we will apply the 

expectation operator and the constant terms such as 𝜇  and 𝜃1,  𝜃2  𝜃3 will remain 

unchanged and will be taken out. However, one important point till now we have been 

saying that the conditional expectation of error term as zero because these are white noise 

processes. 

 However, when we are standing ahead in today, all the information or these information 

shocks what we are if you recall we said these white noise processes are nothing but being 

white noise processes are used to model the information shock that has arrived in the 

process. So, whatever information shocks have arrived till date they are already known. 

So, their conditional expectation is not zero will not take it as zero, but we use the actual 

values. So, for example, up till information t up till time t we have all the information 

available. So, for that we will use the actual observed values of 𝜇𝑡 +  𝜇𝑡−1 +  𝜇𝑡−2. 

 However, for 𝜇𝑡+1 because this is not known its expectation obviously will be zero. So, 

expectation of this 𝜇𝑡+1  will be zero, but the conditional expectation of these terms 

𝜇𝑡 +  𝜇𝑡−1 +  𝜇𝑡−2 will not be considered their actual values will be taken. So, in this spirit, 

when we take expectations this 𝜇𝑡+1  will become zero but for all the other terms we use 

the 𝜇 + 𝜃1𝜇𝑡 +  𝜃2𝜇𝑡−1 +  𝜃3𝜇𝑡−2 with the caveat that these 𝜇𝑡 𝜇𝑡−1 𝜇𝑡−2 are actual values 

that are already observed standing at time t. So, with this being the case we already have 

the forecast of 𝑓𝑡,1 one step ahead in future which is this. Now let us do the forecasting for 

two step ahead in future which is 𝑓𝑡,2  which is nothing but conditional expectation of 

𝑦𝑡+2again using the information of till time t. 

 



 Now, in this case we need to add the subscript here +1. So, for each we will add 1 to 

subscript and then we recall that when the expectation operator is applied t +1 will be zero 

but for 𝜇𝑡 𝜇𝑡−1 actual values will be employed and therefore this term will get eliminated. 

• That is 𝐸(𝜇𝑡+1|Ω𝑡)=0; therefore 

• 𝑓𝑡,1 = 𝐸(𝑦𝑡+1|Ω𝑡) = 𝜇 + 𝜃1𝜇𝑡 + 𝜃2𝜇𝑡−1 + 𝜃3𝜇𝑡−2 

• 𝑓𝑡,2 = 𝐸(𝑦𝑡+2|Ω𝑡) = 𝐸(𝜇 + 𝜃1𝜇𝑡+1 + 𝜃2𝜇𝑡 + 𝜃3𝜇𝑡−1|Ω𝑡) = 𝑢 + 𝜃2𝜇𝑡 + 𝜃3𝜇𝑡−1 

• 𝑓𝑡,3 = 𝐸(𝑦𝑡+3|Ω𝑡) = 𝐸(𝜇 + 𝜃1𝜇𝑡+2 + 𝜃2𝜇𝑡+1 + 𝜃3𝜇𝑡|Ω𝑡) = 𝑢 + 𝜃3𝜇𝑡 

• 𝑓𝑡,4 = 𝐸(𝑦𝑡+4|Ω𝑡) = 𝐸(𝜇 + 𝜃1𝜇𝑡+3 + 𝜃2𝜇𝑡+2 + 𝜃3𝜇𝑡+1|Ω𝑡) = 𝑢 

 So, this will be zero this will be zero because they are in future only for 𝜇𝑡  the actual value 

will be employed and therefore we are left with 𝑢 + 𝜃3𝜇𝑡.  So, this is our forecast for three. 

Now please recall this is a MA (3) order process order of three. So, only information that 

is available up till three step ahead will be used after that there are no 𝜇𝑡 's that are actually 

available.  

 

 Now in this case, as soon as we add one step ahead, we have t+3, t +2 and t+1 all these 

white noise 𝜇𝑡 are in future. So their conditional their expectations conditional expectations 

given Ω𝑡 which is the information available till t will be zero. So, all these terms will be 

zero and we are only left with 𝜇 and I hope you can see where we are going with this all 

future forecast t,5 t,6 and so on will become 𝜇 only which is the constant or some kind of 

long term mean of this process. As we said earlier for practical implications, we will have 

this 𝜇 as zero. So in that case, this if this 𝜇 is taken as zero all these values will become 



zero and only those values up till three forecast and by only three because this is an MA(3) 

order process. 

 Since the MA(3) order process has a memory of only three periods, any forecast of four 

or more periods will converge to that long term and conditional mean mu or the intercept 

term. If this is being taken as zero, then this part will become zero only and only up till 

three period forecast will survive. To summarize in this video, we have discussed how to 

forecast with MA process. We noted that MA forecast become or converge to some kind 

of long term conditional mean for any term higher than the order of process. So if it is an 

MAQ process, any forecast which is more than Q steps, maybe Q plus one or Q plus two 

will converge to the long term and conditional mean which is the intercept term if it is zero, 

then that forecast will be zero and only those forecast that are up till Q steps ahead in future 

will survive for an MAQ order process. 

 

 In this video, we will try to understand forecasting for AR processes. Let us consider a 

simple AR(2) process. Its structure would be 𝑦𝑡 = 𝜇 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝑢𝑡;  unlike MA 

process, AR process has infinite memory. Here, 𝜇 which is again the constant term may be 

taken as zero also, 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2  which are the previous values along with the 

coefficients, autoregressive coefficients 𝜙1 𝜙2 and the white noise order term. Now, as we 

will see shortly, very shortly that unlike MA process which was restricted to the number 

of lags of white noise terms, AR process has an infinite memory. 

 We will see that. So let us understand what will be the ‘t+1’ forecast here. So forecast at 

‘t+1’would be the constant term + 𝜙1 and we will add for each of these subscripts we will 

add one. So here we have 𝜇 + 𝜙1𝑦𝑡 + 𝜙2𝑦𝑡−1 + 𝑢𝑡+1 which is the white noise error. In 

this case, when we are computing the forecast for one step ahead and by taking the 



conditional expectation of 𝑦𝑡+1 at an information available till time t, please recall that up 

till time t we have 𝑦𝑡 and 𝑦𝑡−1 already observed. So we will not be taking their expectation 

but actual values because they can be observed. 

• 𝑦𝑡+1 = 𝜇 + 𝜙1𝑦𝑡 + 𝜙2𝑦𝑡−1 + 𝑢𝑡+1, then  

• 𝑓𝑡,1 = 𝐸(𝑦𝑡+1|Ω𝑡) = 𝐸(𝜇 + 𝜙1𝑦𝑡 + 𝜙2𝑦𝑡−1 + 𝑢𝑡+1|Ω𝑡 ) = 𝜇 + 𝜙1𝑦𝑡 + 𝜙2𝑦𝑡−1  

(since actual values of 𝑦𝑡 and 𝑦𝑡−1 are observed). 

 

•  𝑓𝑡,1 = 𝐸(𝑦𝑡+1|Ω𝑡) = 𝐸(𝜇 + 𝜙1𝑦𝑡 + 𝜙2𝑦𝑡−1 + 𝑢𝑡+1|Ω𝑡 ) = 𝜇 + 𝜙1𝑦𝑡 + 𝜙2𝑦𝑡−1  

(since actual values of 𝑦𝑡 and 𝑦𝑡−1 are observed). Similarly, for next steps 2 and 3 

• 𝑓𝑡,2 = 𝐸(𝑦𝑡+2|Ω𝑡) = 𝐸(𝜇 + 𝜙1𝑦𝑡+1 + 𝜙2𝑦𝑡 + 𝑢𝑡+2|Ω𝑡)=𝜇 + 𝜙1𝑓𝑡,1 + 𝜙2𝑦𝑡 

• 𝑓𝑡,3 = 𝐸(𝑦𝑡+3|Ω𝑡) = 𝐸(𝜇 + 𝜙1𝑦𝑡+2 + 𝜙2𝑦𝑡+1 + 𝑢𝑡+3|Ω𝑡)=𝜇 + 𝜙1𝑓𝑡,2 + 𝜙2𝑓𝑡,1 

So the generic forecast will appear like this which is nothing but 𝑓𝑡,𝑠, s steps had forecast 

with a constant term, immediate previous term s-1 and next previous term s-2. Why these 

two terms precisely because this was an AR two process. Hence, the generic ‘s’ step ahead 

forecast becomes: 

• 𝑓𝑡,𝑠 = 𝜇 + 𝜙1𝑓𝑡,𝑠−1 + 𝜙2𝑓𝑡,𝑠−2. These steps can be used to generate ARMA(p,q) 

order forecast 

 



 So that's why we are having these two terms but with these we can go ahead infinitely in 

future and we'll always get a forecast which is not same as mu or zero as was in the case 

of MA which means for every n steps in future we can obtain some kind of conditional 

forecast using previous two values which do not become zero unlike the case was MA. In 

MA as soon as we are ahead of the MA order of the process which was MQ the forecast 

will converging to mu which is the conditional mean or zero if in case it was zero. But here 

every time you observe some kind of forecast depending upon its immediate previous 

values and that is why we said this AR process has infinite memory. More importantly now 

that we have forecast for this AR(p) order kind of process and MA(q) as we seen earlier 

we can combine them and obtain the complete forecast for ARIMA(p,q) process. To 

summarize this video we have understood how to forecast for AR process. 

 

 We noted that unlike MA process which were restricted to the order of the process the 

forecast for MA process, the forecast for AR process have infinite memory that they can 

be made infinitely long horizons. But in conclusion if you want to forecast for ARIMA 

(p,q) model you can separately forecast for AR and MA processes and then add them 

together to get the complete full ARIMA (p,q) order forecast. In this video we will be 

introduced to some basic terminology related to forecasting models. First we will start with 

in-sample versus out-of-sample forecasting. For example, let us say we have data available 

from January 1990 up till December 99. 

 One approach to develop a model is to view the complete data from January 90 to 

December 1999 and test its fitness or try to see how fitted values will appear. But this is 

not a very good approach because generally it is expected that when we are training the 

data using this data training the model, the model would generally do well on this data 



itself. So, more in evolved way is to take a certain set of the sample maybe January 1990 

to December 1998 call it training data set. Part of the sample on which the model is trained 

and parameter estimated and a certain set of sample which is left out or hold out sample 

from January 99 to December 99. These set of observations are not used in as a part of 

training data set and these observations are used for testing the model. 

 So, we use certain set and this is up to the searcher how many generally a good ratio is 70, 

30 or 80, 20. So, on 70 to 80 percent of the observations the model parameters are trained 

and once the model is trained we estimate we try to predict on these set of observations and 

then test the model accuracy which is called out-of-sample forecasting. So, model this was 

the in-sample estimation and this is out-of-sample forecasting or evaluation of the model 

period. The next is what is the forecasting requirement? For example, I may want to 

forecast for one step ahead, somebody may want to forecast two step ahead or three step 

ahead. Generally, it is well accepted that if you go further and further if you go s steps in 

future where s is pretty large your forecasting accuracy decreases. 

 So, as a researcher I should have some idea, some experience about my data that whether 

one step or two step or three steps in future forecast are more efficient rather than a very 

lengthy forecast. Third is rolling versus recursive forecasting. Let us understand it. So, let 

us say I am planning for a one, two or some kind of s step and forecast. A rolling window 

approach would start with a certain initial set maybe January 1990 to 1998 December and 

then forecast maybe one, two, three steps in future. 

 Now, when as a researcher maybe I have found that s steps maybe three steps in future, 

three steps at forecast is good enough for me. So, when I am going to the next three steps, 

there are two ways either I can keep my initial window fixed and add the next three steps 

one t +1, t +2 and t +3 in my current set of observations and then make use of original 

sample s observations plus these three newly added observations to make the next set of 

forecast. Another approach would be to rather than keeping the initial, this is called the 

previous approach was called recursive window because the initial period was kept fixed 

and as we move ahead in future we keep on adding each observation one by one we keep 

on adding to our original sample. So, our sample size increases. The second approach is to 

have a rolling window approach where as we keep adding future we add one observation 

but at the same time we exclude the last observation. 

 So, this January 1990 will be excluded when January 99 will be added, then February 99, 

February will be excluded and February 1999 will be added and as we keep on moving 

ahead our sample estimation period will remain fixed, that is approximately this length is 

180 month that remains fixed as we keep on moving ahead. So, we exclude one period 

when we add one period, this is called rolling window approach. Both these approaches 

have a trade-off. For example, with recursive window the benefit is that your sample 

estimation period in sample period becomes larger but at the same time the previous values 



that are still not taken away from the sample they may not be in sync with the current 

market conditions they may be probably more stale and therefore some of the very old 

values may not be up to the date and may not give me the right picture. While with rolling 

window we limit our sample size to in this case 180 or a certain number but at the same 

time as we move ahead we keep on excluding historical values so that our sample on which 

we are training the model is more in sync with the current market conditions. 

 So to summarize this video we learned some terminologies related to forecasting. This 

included one step versus multi-step at forecast. We have in-sample versus out-of-sample 

prediction and rolling versus recursive method of forecasting. In this video we will try to 

understand how to determine the accuracy of forecasting. As we noted earlier that often it 

is important to have model trained on in-sample on a given sample data while use the 

holdout sample or out-of-sample the second cut-off sample for out-of-sample prediction 

and then find the accuracy of forecasting on this out-of-sample prediction set. 

 Let us see and proceed how to do that. Let's say you have built some kind of Arma Arima 

model and you have as using the method that we have already seen you have forecasted 

certain values for one two three four and five steps ahead. These are your forecasted values 

on out-of-sample because this is out-of-sample you already have the sample values 

available actual sample values to test. The approach to do is compute some kind of error 

measure. In this particular example we will use mean square error, mean absolute error and 

root mean square error. In the first step we will compute the difference between forecasted 

and actual values which is the error but generally there are two ways either you take the 

square or the absolute value. 

 



 Why we are doing this because if you are using some kind of summative measure 

summation for positive negative values they will cancel each other out. So large positive 

negative errors will cancel each other out and my measure will not be good. So generally 

a good measure is like mean square mean absolute they tend to take either square or 

absolute values of errors. So once you have this square of errors you take the difference 

which is your error so your error will be and then you square it you will get those values 

and then you can sum them up and take the mean. How to do that? So for example these 

are our squared values these are squared errors this is the squared number once we have 

the summation of this square I can divide it by five to get what we call as mean square error 

MSE squares and then divide to compute mean and this is mean square error. 

 

• MSE=(0.3600+0.0025+0.0000+0.0256+0.0081)/5=0.08 

• MAE=(0.6000+0.0500+0.0000+0.1600+0.0900)/5=0.16 

• RMSE=SQRT(MSE)=sqrt(0.08)=0.28  

Also a more advanced version of this mean square error is root mean square which is 

nothing but the square root of this MSE in this case 0.08 I can take the square root to get 

the 0.28. The second way is to take the absolute value so again I can compute the error F 

minus A forecast minus actual take its mod or absolute value and then I can sum up all 

these values and divide by number of observations for example in this case I have these 

absolute errors I can sum them up all five and divide by five to get what we call as mean 

absolute error. To summarize in this video we have understood how to compare across 

different models by using some kind of error measures these error measures like MSE, 

MAE, RMSE we have seen there are more possible error measures but please note they do 



not have any meaning in absolute sense on it on their own they do not have much meaning 

per se when they are more useful in comparing across competing models and why they are 

being used because we want to compare different models on their capacity of out of sample 

prediction so using the actual and forecasted values from different models we compute 

these error measures on the out of sample or hold out sample part of the data and then  

 

compare across different competing models to compare their error values on its own these 

error values do not make much sense we do not have a way to say that this is bad or good 

only when we have competing models and their respective errors we can compare them 

across different error measures also what kind of error measures are being used that is up 

to researcher in different cases different measure are used for example when you are 

working with financial market returns probably the positive errors are not so much as bad 

as negative errors so an investor would rather like to have those models where or evaluate 

a model based on its negative error how much extremely negative returns or losses he is 

witnessing maybe he is not very worried about positive returns or gains he probably is more 

interested on the negative side negative tail of errors so what measures error measures we 

are going to use that is up to the researcher at the context but these errors will be used on 

out of sample forecasting or prediction in comparing across different competing models to 

summarize an ARMA process is simply a combination of AR and MA processes it can be 

easily identified on ACF and PACF plots as exponentially declining process on both the 

plots to build an ARMA model first we identify the order of the process next we estimate 

the parameters through some kind of estimation procedure such as OLS or MLE procedure 

lastly we diagnose the model with the help of residual diagnostics and out of sample 

prediction accuracy of the model for lag selection process we use information criteria one 

of the important objective here is to find extremely parsimonious model which fits the data 



well in a strict theoretical sense for an ideal model the residuals extracted from the model 

should not have any discernible structure and should act as a white noise process 

forecasting with ARMA model requires conditional forecast for next 1 to S steps ahead for 

those terms where information is available the actual values are employed where the actual 

values are not available conditional expectations are employed often models appear to be  

 

extremely efficient when examined with the sample on which it was trained this often leads 

to overfitting process that is a very bulky and complex model which does not do very well 

in new data that is why different computing models are tested on out of sample or hold out 

sample which was not used while training the data the two key terminologies in forecasting 

are first rolling sample forecast which employs fixed window of sample which is moving 

in a step by step manner second is recursive window forecast where initial point is fixed 

and new data points are added and sample increases with each step in the forecasting 

process the choice between the two methods is a trade-off between a sample which is a 

large larger in size versus that which is in sync with the current market conditions lastly 

across different competing models we compare their performance on out of sample 

forecasting accuracy through error measures such as MSE which is mean square error MA 

mean absolute error or RMSE for example which is root mean square error and then select 

the best model. Thank you. 


