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Lesson-2  

We will discuss Data Handling and Data Claiming with R. 

As a best practice, I would recommend that we set our working directory where we want to read 

and write data.  To start with, go to this session, set working directory, choose directory and then 

select  the appropriate folder where we would like to set our working directory and click open.  

Notice that a command will appear on your console window.  You can copy paste it for future 

references.  So, whenever you are working in future, you can run this compound simply to set the 

working directory at appropriate place. 

 

 Now as an example, we will read an CSV file.  We have already seen how to read and write data 

in here.  So, we will simply write this read.csv, give the name of the file which is salary.csv, run 

this command and data will be read.  Another way to read this data is go to this import dataset, go 

to from text.  You can click on this salary file, click on open and it will read the data for you. 

 

 So that is another way to read the data.  You can see the format, the way in which data is read.  

You can select the correct options if header is yes or row names, separator and all.  You can see 

the permutations and combinations.  The way the file will be appearing, you can see here in the 

data frame. If you click on import, the data will be read.  So this is another way to read the data.  

In case it was an Excel file, you can import dataset from Excel and then again with same  

procedure browse and read the data.  Again select the data and read it.  So, this is how we will 

read the data. 

 

As a next step, we would like to see the dimensions of data.  So there are 14,017 rows or 

observations and seven columns or variables.  So this is the dimension of data frame.  Most of 

these commands we have already seen in the fundamentals of our module.  

As a next step, we will summarize the data. 

So we can see all the variables, their nature and various other aspects.  You can also use brief 

command to have a look at this data.  Brief command will give you broad overview of data.  You 

can see that how data looks from starting to end.  It starts from first three rows that are visible and 

last two rows. 

 

  You can also have a look at the head of the data with head command.  You can see initial six 

elements using head commands.  If you want to see more or less, you can select head data, maybe 

eight and you'll see the  initial eight elements.  Moreover, you can also see the structure of data 

with str command.  It will give you the names of variables like name, their nature, which is 

character or numeric if it is, agents, all the variables we can see here, gross pay, annual salary and 

so on. So, we get the names of the data. 



You can also check the column name.  So simply by writing call names, you can check all the 

column names that are there.  So you can see there are seven columns name, job title, agency ID 

and so on up till gross  pay.  As a first step, you'd like to change the names of some of these 

columns. So, if you want to change the names of these columns, let's see how to do that.  So let's 

say I want to change the, so we'd like to change the name of the first column  from name in small 

to name in caps like this.  Also, probably you would like to change the names of some other 

columns starting from two to four, multiple columns and you'd like to change the name maybe 

from job title to title.  So earlier name was job title for the column number two.  I want to keep it 

title. Then there's a column called agency ID, which I would like to convert to ID and then there 

is agency column, which I would like to convert to agency name.  So I'll run this command.  

Notice now the new names of the data variable.  So all the names are changed as we wanted.  You 

can also see the head command and you will see that the names are changed as you  wanted them 

to be. 

 

  So with this, we have understood how to input the data, see its structure, summarize it  and 

change the column names.  In the next video, we'll talk about cleaning the observations in the 

data frame. 

 

Now, we’ll talk about cleaning the observations, cleaning the observations, and cleaning the data 

frame.  Let's consider two vectors.  We have already seen what a vector of variable is. 

 It contains NA value also.  So it contains certain values along with NA observation.  So if I print 

this variable, I'll get those variables, including the NA observation.  Now if I run this command X 

greater than two, notice that second element of the console  is NA, which means R is not able to 

compare the second value with two.  How to go about it?  So while comparing X greater than 

two, we'll also use an interesting command and which is given by ampersand symbol and then 

we'll use is.na  

What is is.na?  is.na checks whether a value is NA or not.  Let's look at this. 

 

 So if I put is.na along with NA, it will give true and if I use exclamatory mark, which is a symbol 

for no, it will give false.  So I want to make this comparison of X greater than two, but I want to 

do it only with those  values that are not NA value.  So I'll put exclamatory mark, that means the 

value should not be NA and then run this along  with ampersand.  It says that the value has to be 

not NA and then the comparison with two has to be made  and notice now that NA value is 

ignored.  So instead of that NA, it is compared with two and we can get all the false, false, false. 

So, it has considered that NA is also not equal to two and it gives me a false value. 

Now let's say I wanted to check whether X is not only equal to zero, but also I want to put another 

condition which is with or operator, or operator is either one of them can be true along with X 

equal to two.  So if I run this, I get seven true, falses including one NA, we know because this 

second  observation is NA.  To account for that NA observation, we will write an additional 

command which is again  same as and exclamatory mark is not NA and this will account for that 

NA observation  and we will get false instead of NA. Similarly, there are some other operators, 



for example, many times the value is NA and not a number. 

 

  For example, something like zero by zero would be an NA and for R. So if I run zero by zero,  

that is true.  Sometimes the value is infinite.  So if the value is infinite, again similar operation, 

the same procedure we can select  is not infinite.  Let's say one by zero which is infinite value. 

 

So it will give me true.  So this way we can handle NA observations, observations that are not 

available and so  on.  Let's take one example.  So originally we had that data which we read.  

Now let me make a copy of this data so that we do not disturb the original data.  So, we read it in 

data underscore one. Now let's play around with this data underscore one a little bit.  So for this 

data underscore one, let's put some values, maybe thousand row, this value  represents thousand 

row element at fifth column.  Let's set it to NA.  Similarly, I'll also set 3000 positions in the 

second column as NA and then again, I will set maybe 4000 element on the third column as NA. 

 

Let's run these commands.  So there are three NAs that I have introduced in the original data.  If 

you want to check whether there were any NAs in the original data, how do we check?  A very 

simple way would be to check is dot NA data underscore one.  First we'll check original and I 

will add an exclamatory mark or sum.  So all the NA observations are taken here as proof.  As we 

discussed earlier, true is equal to one. 

 

So all the NA observations will be extracted from data and notice if I run the sum, it is zero.  That 

means there are no NA observations in the original data.  However, now that we have introduced 

three NA observations in the new data, if I check  the same command, I'll get the summation as 

three because three NAs have been introduced.  So now we have three NAs in this data. 

 

There are other ways to check that.  So for example, if I write all is dot NA, it checks whether all 

the observations are  not NA and it tells me no.  That means there are some observations that are 

NA.  If I would have run this on the original data, this would have given me true.  That means 

none of the observations were NA in the original data.  The new data which is data underscore 

one carries those NA observations. 

 

Now let's say you want to replace all those NA observations with zero.  A very simple solution to 

do that is this form that you have already seen inside data  underscore one.  I filter out those 

observations that are in it with this simple command and all those  observations I set as zero.  

That is one way to do that.  When I do that, all those observations will be set to zero. 

And if I take the summation, now I take the summation of is dot NA, it will be zero.  So all those 

observations are zero or I can also check this one.  All observations are not NA and yes, they are 

not NA.  So all the observations are replaced by zero.  You can replace it by any other notation if 

you want or in similar manner, we can process. 

 

So this was some of the data cleaning observations.  We will further move to some of the other 

ways to handle the data in next set of videos.  You can see some of the examples on how to 

handle NA observations.  Consider this data frame, we will create a data frame for the vector.  

We will create this data frame with the data dot frame command where element one is a vector  



which contains a new value and two numeric. 

 

The next element B is another character vector which contains two characters, one NA and  

another character.  So this is another vector and combination of these vectors is provided in BF 

data frame.  So we can see what is BF data frame.  It carries two NAs, one is the numeric variable 

NA and one is the character variable NA.  Now one way to deal is individually remove these NAs 

from individual columns. 

 

For example, I can subset BF.  There are different ways to do it.  As you see, we use the subset 

command and I will select only those NA observations in  variable A in the data frame BF.  If I 

do that, notice the resulting output removes NA row, row which contained NA in  variable A 

which was a numeric variable and the remaining variable or remaining data frame  is a 2 x 2 data 

frame instead of 3 x 3 original data frame.  Similarly, we can do the treatment for column B and if 

I do that for B, again a 2 x 2 kind  of data frame will emerge where the NA observation, the row 

corresponding to NA observation in  column B which is a character vector is removed.  However, 

if you want to remove all the NA observations in the entire data frame, a more  comprehensive 

treatment is required, although many times it is not advised. 

So you can run this subset DF and then you can write complete dot cases which will only  select 

complete cases in the data frame and if you run this, notice only one row is left  and NA's rows 

that contained NA in variable A and B both are removed.  Another command which have similar 

effect which is NA.Tomit, it will also have similar  effect you can use.  So this will remove NA 

observations in our data frame. 

 We will work it a little bit more on NA.  So let's use a library car.  It contains a number of useful 

databases.  So we use this library car.  It contains a data called Friedman. 

 

  

We will work on this Friedman data.  This Friedman data seems to carry some NA observations.  

Again we will do all the similar commands like str, Friedman and so on to check the  structure 

and other properties of the data.  We can summarize it also.  As when I summarize it, these are 

the observations.  Now if I compute the median of this Friedman, kindly have a look at the 

summary data. 

Look at the density variable.  Notice that there are 10 NA observations.  Let us see what is the 

impact of these NA's.  Let us compute the median of Friedman density data.  We know how to 

compute that. 

If I compute the median, I will get an NA.  A simple treatment to this kind of problem is to use 

median and then R provides this  functionality to use NA.RM equal to 2.  If I do that, R ignores 

the NA observations, not available observations and gives us the  median value without 

considering both of them.  Similarly, if you compute the mean of density, again you will get an 

NA because there is a NA observation. 

 

  So you compute mean with na.rm equal to true and you get the mean.  So this is one good 

solution, one shortcut to handle NA in your observations.  A more drastic way to handle this 

problem is to use Friedman data, Friedman.good and remove all the NA observations as we have 



seen earlier na.omit.  While this kind of treatment removes all the NA observations, as you will 

see if I compute the summary measure of this Friedman.good data.  However, it is a rather more 

drastic treatment because despite the fact that there may be  only one NA in a particular variable, 

all the variable rows will be removed.  All those rows there are no even single NA observation is 

there, those rows will be removed.  Another way to do the same kind of treatment is to let's say 

have this Friedman data. 

 

  Let's create a Friedman underscore not available variable and in this variable we will use  

Friedman data.  Again we will use exclamatory mark and that are not complete or any 

observation.  This is the procedure to exactly notice what are the observations that can, what are 

the  observations that carry NA values.  So, we will use complete. cases since we want to extract 

all the observations that carry NA, we will put an exclamatory mark and in this variable notice in 

this command, in this not available data frame, we have all the variables that have some kind of 

NA observation. 

 

Let me print that.  So notice two columns, population and density column, 10 NA observations 

are up there.  Because there are some other columns like non-white, crime and all, they carry 

some  value.  So depending upon your requirement, whether you are interested in retaining these 

values from non-white and crime variables, you may decide to use NA.omit.  If you use NA.omit, 

then all these rows will also be removed from the table.  We will take one more example on how 

to work around with the NA.na values.  We will use using R library for that. 

 

So we will make use of using R library.  In this library, there is a babies database.  So let's extract 

this babies database.  From this database, there is a DWT column, which is the weight column, 

DWT, which is  dad's weight.  We will assign this to a variable x. 

 

And in this variable, there are certain values which are outliers.  Let's summarize this x variable 

and there we will see there are certain values which  are outliers, which are coded as 999.  Now 

this 999 may appear to be a numeric, but from a priori knowledge, we know that  this is outlier.  

So how to handle this outlier?  Let's say you want to decide, you decide to add NA or replace 

these 999s with NA.  A very simple way to use this is this kind of command and then assign NA 

values. 

 

So this will assign NA values to all the 999 values.  Now once I do that, the values will be 

replaced by NA.  So again, similar problem with the use of NA variable will emerge.  So if I 

compute range of x, it will be NA.  If I compute some summary of x, notice there are some NA 

values, but still we get some  of the good summary measures like minimum, median, mean and so 

on.  For range also, we can write or make use of our NA dot rm equal to 2, which is very useful. 

 

So we get the range.  So in this way, we handle the NA values in our data frame and vector of 

variables.  Examine how to remove non-unique values.  Recall that we had original data, salary 

data, which was saved into data variable. 

 



We can check the head of this variable again.  So this was our salary data.  Let's create a copy of 

data as data underscore 2 and save the values here.  Simple assignment operation.  Now what 

we'll do is and notice the dimension of this data, it should be same as original  data, 14017 

observations.  Now let's create another data which carries data underscore 3, which carries not 

only this data underscore 2, but also some values which are there in data underscore 2, starting  

from 1 to 500. 

 

So all the columns and row numbers 1 to 500.  So we are adding row wise with rbind dot data dot 

frame to create a new variable data  underscore 3.  Now it should be quite obvious to us that this 

data underscore 3 will carry those redundant  or non-unique values at the end of it, which are 

exactly the values of row number 1 to  100, 500 from data underscore 2 data frame.  So if you 

look at the data dimensions of this data underscore 3, they are 500 more than the original data 

frame, which is data underscore 2. 

 

They are now 14,570.  Column number will remain same of course.  Now what we want to do is 

we want to remove these non-unique values and a very easy way  to do that, let's say we create a 

new unique data frame with a data underscore 4 and unique  function can be used which 

underscore 3 will run this command.  And now if you notice dimension of data underscore 4, it 

should be same as 14017.  So it carries only the unique observations and all those non-unique 

redundant observations  that were repeated, because at the end of it, we added row 1 to 500 from 

the data underscore  2 data frame, all those redundant non-unique observations are removed.  So 

with this, we conclude the discussion on removal of non-unique columns, handling the  data 

frames, data handling. 

 

Let's start with selection of columns and rows.  Selection of column and rows in R. Although we 

have already seen this in bits and pieces  earlier.  So let's say there is an iris data in R, there are 

certain columns and each column  carries certain observations which comprise rows.  So let's say 

I want to select column number 3, a very simple command like this will extract  the column 

number 3 for me.  I can use this head to see the initial elements that I have extracted. 

 

So these are the initial elements.  If I want to extract multiple column elements, let's say column 3 

and 5, I can do it like  this.  Column number 3 and 5 are extracted.  If I want to extract all the 

columns from 3 to 5, a very simple command, 3 to 5, we  have seen this notation, will extract 

column number 3, 4, 5. 

 I can check the head of this column number 3, 4, 5.  It gives me 3 columns.  Now you want to 

extract not only specific columns but specific row number elements also  from those specific 

columns.  Let's say you want to extract row number 4 to 10 for column number 3 to 5, then this  

kind of notation or this kind of command will extract row number 4 to 10 for columns 3,  4, 5, 

which is petal length, width and species.  Although you can also extract columns with their 

names, but generally that is not so  advisable.  You can extract, let's say you want to extract 

column number species and another is petal  width.  You can also do that, however, it has 

problems because you need to remember the spellings  and there you may make some mistakes. 

 

So it is better to use numeric notation, but you can use this.  So for example, you have species, 



species, I need to remember the name exactly, so I  need to use species and petal dot width 

exactly the same name.  I need to remember with exact spelling and then I can extract this, these 

two.  Better would be to use head so that we can see the initial elements, so I can extract  that.  

Now, we will come to the next step, which is creation of new variables inside data frame.  So the 

way to do it, let's say you want to create a new variable called petal dot ratio  and this variable is 

equal to ratio of petal dot length divided by petal width and you  want to create another variable 

called sepal dot ratio, sepal length divided by sepal width  and you run that as well. 

 

Now if I check the header, I will find that new columns are added, if I check that you  have sepal 

ratio and petal ratio available.  So there is a minus spelling mistake which I need to correct, so 

you get the sepal ratio  and petal ratio variable here.  Extracting observations based on conditions 

and summarizing the observations.  So let's start with extracting observations. 

 

Let's say in the iris data, I want to extract those observations petal width of more than  0.5 along 

with another condition and that condition should hold true where the species  is it should have, let 

me check the head of this and I want a data where petal width is  greater than 0.5 and species 

should be, I am going to use m percent to create that effect,  species should be equal to equal to 

setosa.  So now with this and I need to add a comma that all the columns are deselected.  So with 

this all the variables where petal width is greater than 0.5 and species equal  to setosa will be 

selected, pardon me for the spelling mistake, it should be setosa. 

 

And so now if I run this, I can see the row that has been extracted for which petal width  is greater 

than 0.5 and species equal to setosa.  Similarly, I can create same effect with subset command as 

well, with subset I will specify  the data, I will specify the petal width to be greater than 0.5 and I 

will use m percent  operator to create the and effect where I am saying that species should be 

equal to  equal to setosa.  So with this I will have the similar effect and the same row although it 

seems there is  only one row which will be extracted. 

 

So now we will move on to some rising observations.  So a very basic summary measure for any 

data frame is summary, we can see the nature of  all the variables, their summary measure 

depending upon whether they are numeric, character or  so on.  We can also use structure 

command to get a sense of variables and we can also use brief  command which will give us a 

sense of variables.  Some initial three rows and closing two rows 149 and 140 we get a sense of 

the variable.  Now you can create a user defined summary also let us say you want to summarize 

in this  fashion. 

 

You can use this summarize command and you can tell R that you want to summarize iris  data 

frame.  Inside iris data frame you want to create a mean variable let us say petal dot length  dot 

mean which is the mean of petal length.  So you can create a mean of petal length variable.  So 

we have a petal length variable for which we want to create a mean petal length mean.  So maybe 

I want to create a mean variable for sepal length again maybe you also want  standard deviation 

for these two variables so I will use this d for standard deviation.  Now if I run this command 

notice mean notice the output in console you have mean of sepal  length and petal length you 



have standard deviation of sepal length and petal length  they are produced. 

 

So in this way I can create more variables with a more user defined or user desired summary.  

How to work with data frames.  We will install library car which we have already used.  As a first 

step we will make use of Davis data which is already inbuilt inside the car  data frame.  There are 

200 rows and 5 columns.  If we check the head of tables these are some of the elements gender 

column, weight, height,  reported weight, reported height. 

 

Now as a first step we will create another variable which is a data frame element.  This data frame 

is expected to have same dimensions as Davis data.  So we will use the following command 

matrix and number of rows same as Davis data and  number of column also same as Davis data.  

So we will create this variable. 

 

 Let's see what is inside this data.  This data carries 200 rows and 5 columns.  We can check the 

demo for.  So this is a new variable that we have created to store the observations for practice.  

Also we'll give the name to the variables inside Davis.  So currently if you look at the head output 

you will notice that there are no names automatically  by default x1 x2 are provided. 

 

So we'll create some names for this.  Since we are planning to use Davis data to fill this variable 

we'll use similar names  that are gender, weight, height, reported weight, reported height.  So this 

is our new variable.  You can see the head now it will be changed with the new names that we 

have created. 

 

Now let's assign the values of Davis variable inside this.  So we'll assign the values.  So this is our 

output variable dollar gender.  So we'll assign the gender variable from Davis data.  Similarly 

we'll assign the weight variable, height variable, reported weight variable,  and we'll also assign 

the height variable.  So in this fashion we have created this output variable which has similar 

dimensions as Davis  data and for practice we have assigned this output variable same data or 

same variables  as Davis variable like this. 

 

So it has gender, weight, height, reported weight and reported height variables.  So in this video 

we have learned how to create a data frame, how to assign values to that  data frame, set its 

dimensions and then assign values from different sources.  Learn how to deal with factor 

variables and we'll also perform some operations on data  frames.  So we'll learn working with 

factor variables.  We'll make use of library using R in which there is a cars 93 variable which 

we’ll make use of. 

 

We'll make use of this cars 93 variable which carries various dimensions of cars.  Now as a 

starting point let's create a sub data frame or extract certain elements of  cars 93.  Let's first three 

rows and out of all the first four columns.  So this is a three four three cross four kind of data.  

Let's see what is inside this.  It carries four columns manufacturer, model, type and minimum 

price and three elements  for each column or variable. 

 

Now we can see the structure of this new data small data frame.  We can also summarize this 



small data frame.  As a starting point let's assign some NA values to this.  So I'll assign the third 

row fourth column.  I'll assign a new value and first row first column also I'll assign a new value.  

Now if you print this data frame D notice the first column manufacturer first value  is NA. 

 

Similarly fourth column minimum price last value is NA.  In this sub data frame if you want to 

add let's say some new elements.  Let's say you want to add to the third list you want to change 

the values that are there  in column two and four and you want to change them to new elements 

maybe A3 to the second  column and 30 to the fourth column should be easy right.  However 

notice that it gives you a NA message and if you print D notice on the second column  third row 

is created.  The reason being if you notice the class of D model it's a factor variable so it has some  

levels what are these levels. 

 

We can check those levels.  Levels D $ model.  So it has some levels.  There are a number of 

levels which is because these levels have a stick because we extracted  it from original class data 

so original levels are sticking.  So let's first remove the unused levels which is quite simple.  I'll 

use this drop level command drop levels from D $ model and if I run this command all  the 

unused levels will be removed and then I will run this level command to see the remaining  levels 

which are currently used.  So if I run this you will find two levels are currently used one is integer 

one is legit  so only two levels are remaining all the unused levels have been removed now.  The 

problem is because this is a factor variable which is using certain levels which are specified if I 

add new levels like A3 they are not added and instead they create NA values because  R is 

confused that this level is not specified. 

 

So how to specify new levels.  So we'll try and specify some new levels to this model variable.  

Please note we'll not ignore the earlier levels so we'll first create the existing levels  with the 

model variable.  So these are the existing levels that will make use of and in addition we'll add 

certain  more levels.  We'll add probably A3.  We'll also add A4 and we'll maybe adding A6 also.  

Now that we have assigned these levels if I check the levels of model variable it will  have three 

levels added and now we have five levels. 

 

Now if we run the original command which created NA which is this D3C24 where we are  trying 

to assign A3 to the third element of second column and 40 to the third element  of fourth column 

there is no NA creation and you can see A3 has been assigned to model  because we already 

specified it as a level.  So this is how you add level.  Let's say now you want to add a fourth 

column and there are multiple ways to do it.  One way is to use this index notation where I use D4 

and then say I simply add all the  four elements first element let's say name of the car which is 

oddy then one level which  is A4 since we have already specified A4 as a level this will not create 

any trouble then  type as midsize and price minimum price is 35. 

 

So if I do that a new row is created fourth row and we can see the elements oddy A4 midsize  35.  

Another way to do the same thing is to use rbind and I can create D equal to rbind and  with rbind 

I can again write the same elements rbind D original D and with this original  D I'll add the new 

set of variables oddy A4 and 35 this will also have the similar effect.  So if I run this command 

I'll again get the new variable D which has the next element  which is oddy A4 midsize since I 



have added already added the fourth row this will be  added in the form of fifth row.  So this is 

another way to do it.  Now let's say you want to create a new column fifth column which is a 

multiple of minimum  price let's say D dollar minimum price multiplied by 1.3 a new column will 

be created we can  print D V5 is created if you want to give it a name you can select a name that 

you find  useful let's say you pick a name of column D fifth column and call it mod price. 

 

So a mod price name will be assigned if I print D instead of V5 we have now modified  price or 

mod price.  Another more simpler way to do that would be simply use D dollar mod price I give it  

a name mod price and then assign the same value which is D dollar minimum price into  1.3 this 

will also have the same effect and a new column mod price will be created.  Another easy way to 

do the same effect is within function within function transformation  will be made inside data 

frame D and within D we are assigning or creating a new mod price  equal to minimum price this 

is also quite simple mod price into 1.3.  So if I run this again I'll get a new variable D which is 

mod price is created.  So this is how you transform the value work out with vectors and transform 

variables inside  a data frame.  Transforming data frames between long and byte format.  So we'll 

transform the data frames across long and byte format.  So let's start with a simple construction of 

data frame.  Let's create a number of variables first let's say variable speed dot 1 this may be first  

observation for different speed let's have number of values here. 

 

So these are hypothetical values of speed observations for different vehicles A, B,  C, D, E, F.  So 

these are some of observations.  Similarly we'll have another set second set of observations as 

speed 2 with hypothetical  values here may be.  Similarly we'll have third observation for the 

speed variable again some random values  like 800.  We'll have fourth set of.  So objective here is 

to create a rather wide format and then we'll see whether we are able  to in the interest of time 

we'll keep the value the same. 

 

So there are five speed observations speed 1 dot speed 2 speed 3 4 speed 5.  Another there is ID 

variable which identifies the units 1, 2, 3, 4, 5, 6.  Then we have one variable which may give the 

name.  Let's call it A, B, C, D, E, F. 

 

So these are speed variable 6, 5 speed variables ID run.  Now let's combine them under the 

variable speed.  And give it a name.  Let's combine them first C with the command C by dot dot 

data frame first ID variable  then run variable then speed dot 1 speed dot 2 speed dot 3 speed dot 

4 and speed dot 5.  So, these are the variables that we have created speed variable. 

 

Then you have head of speed.  We can see the variables ID and their runs.  We can see the 

summary.  Structure.  We can see the variable.  It's a rather wide data frame.  In order to make 

this a long data frame we'll take the help of package reshape2. 

 

So this reshape2 package will be added with the library command.  We'll add this reshape2.  And 

now we are going to go.  So the way it works, we'll create a long data format by using melt 

function.  Melt function will help us create this wide data format which is speed and then we’ll 

give the ID of variables that are to be fixed. 

 



So we'll give the names speed.  So first two variables.  So we are giving the name of first two 

variables.  We want them to be fixed.  These are ID and run variables and the variable which we.  

The variable which we want to create a more long data frame. 

This is the speed variable.  So all the five speeds we want to put them in one variable called 

speed.  So if I run this command.  Now if I run the command notice how long variable appears 

now.  So in this all the values are put in the value column and all the speed variables speed.1  

speed.2 and so on are separated now.  So you can see that speed.1 speed.2 and so on they are 

combined into one column which  is speed and their values are put in value.  So now this is rather 

long data frame.  So now also we get the interpretation when we are saying long and wide. 

 

And now we'll try to get back to our original wide data frame.  How to do that for that we'll create 

a new data frame called wide.  We'll use this dcast.  dcast and we'll specify that we want the long 

data frame.  The variables ID plus run they need to be fixed and the variable speed need to be 

adjusted.  If I do that look at the head of wide data frame. 

So this is how we work upon wide and long data frames different context required different 

formats maybe long or wide.   

In this video we'll talk about merging data frames.  Merging different data frames and various 

properties of the merge command. So we'll talk about merging data frames.  Let's create two data 

frames.  We create variable v1 and these are movies, and they are domestic collections. First we'll 

create that.  So, first movie is the Avengers, Avengers Dark Knight, The Hobbit games, Skyfall, 

Hobbit. And then v2 which is their foreign collection.  Maybe let's put some hypothetical 

numbers. 

So we are putting some hypothetical numbers here.  Now let's combine them.  So we'll combine 

them.  We'll give them a name domestic v1 and v2.  So we have combined them.  Let's see their 

names.  Use head domestic.  If you want to create more appropriate names you can use col names 

with Name, Domestic.  Now we have created the name.  So now if I run the head command, I will 

get the new data frame. 

 

Probably I'll adjust a little bit so that it is visible.  Next we'll create foreign collections variable.  

So again we'll start with the same process.  We'll create v3 which is equal to and we'll use the 

movie's name.  Probably we'll change the movie's names a little bit.  So this time around we'll use 

a little bit difference we'll make. 

So probably we'll remove the one of the Hunger Games and add Ice Age.  Probably we'll change 

this.  And then we'll add the collections.  The idea is to create two data frames with slightly 

different movie names.  And their collections and then try to merge them and see how it works 

out.  So, this time around we'll add again since it is hypothetical case so we'll for collections we’ll 

use some again same hypothetical numbers, so it doesn't matter the numbers don't matter here. 

 

 So, then we have foreign.  So we'll give it a name foreign.  Equal to v3 comma v4.  So these are 

foreign we can check the head.  Again we'll switch the names.  Please notice this time around 

while giving the names I will be using a slightly different  notation so instead of exact name 

earlier we'll use the small cap not in caps.  So notice instead of name variable earlier we are I'm 

using small name with small n and then foreign.  So this name will be our joining variable but I'm 



using a different syntax. 

 

Let's see the head.  So now this is our name variable so let's create the final variable which is 

merge  and notice how I create this variable so final variable, which is using merge command.  

I'm merging the domestic variable with foreign variable and notice by dot x so first is domestic  

variable so by dot x equal to name.  And the second variable is foreign so by dot y equal to name 

but please notice here  name I'm giving with n as a small and I'll add them up.  Now this is a 

rather difficult case here if to make it simpler it is always advisable to use the same syntax so like 

this capital name again. 

 

And if I do that now the name is foreign, I need not give the second thing.  I can simply put it like 

this or rather I'll use for instead of this I will write in fact  I'll write a new command if I would 

have written it like this capital name I'll execute this.  It will be better if I keep this command.  So 

now if I run this and now in order to add this I need things are more simple now I need not  give 

two names I can simply use this.  And head final so you can see it has merged the data let's see 

what exactly has happened. 

So if you notice if I do this kind of command, it has merged all the movie names, and this kind of 

merge is sort of intersection.  So if you notice two movie names are missing one is Ice Age and 

one is Hunger Games.  Now since one of the movies was not present in one data frame while 

other was present in other, so they are excluded it's the sort of intersection of merge or inner 

merge.  Let's do the outer merge that is also doable.  So, for that we'll use instead of this 

command I will use all = t and now if I run this command then notice there is Ice Age movie 

there and NA is in the domestic because it was not there in domestic. 

 

 Similarly Hunger Games NA is in foreign, but all the movie names are present now.  So this is 

called outer merge.  Then you can also decide whether you want to merge based on one variable 

or the for example  if I write all dot x equal to t in that case all the domestic will be taken and 

those that  are not present in domestic will be ignored.  Similarly if I do it for all dot y then all 

values that are available in foreign will be  considered and domestic will be ignored.  So now we 

conclude with the merging aspect of data frames and in this complete module we learned how to 

clean and handle data and a more complex form of data which is data frame.   

 

Thank you. 


