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In this lesson, we will discuss single and multi-index models. We will start the 

discussion with the rational and intuition behind these models, which leads to a 

simplifying correlation structure. First, we will discuss the expected return and risk 

characteristics of individual securities. Subsequently, we discuss the portfolio 

characteristics in the presence of single-index models. 

 

We will also understand the index models with the help of a simple example. We will 

examine the role of β that is sensitivity of the portfolio towards these indices. Next, we 

will introduce multi-index models. We will compute the expected returns and risk for 

individual securities. And then we will derive these for portfolios. 

(Refer Slide Time: 00:56) 

 

Single-index models and correlation structure. In this video, we will introduce single-

index models, their correlation structure, and compare them with a situation where there 

is no simplifying structure is assumed. 

(Refer Slide Time: 01:12) 



 

We will begin with the two equations that provide the base to all the analysis in portfolio 

management. These are the equations corresponding to portfolio returns, which is this 

one, portfolio returns 𝑅̅𝑝 =  ∑ 𝑋𝑖𝑅𝑖̅
𝑁
𝑖=1  and standard deviation. These notations are 

familiar to us. 𝜎𝑃
2 =  ∑ 𝑋𝑖

2𝑁
𝑖=1 𝜎𝑖

2 + ∑ ∑ 𝑋𝑗𝑋𝑘
𝑁
𝑖=1 𝜎𝑗𝑘

𝑁
𝑖=1   

 

Here 𝑅̅𝑝 is the expected return on portfolio. Xi is the weight. 𝑅̅𝑖 is the individual security 

expected returns. Σ p2 is the variance of portfolio. Σ i2 are the variance of individual 

securities and σjk is the covariance between security j and k. Now for the analysis of 

portfolio and examination of an efficient frontier, three key inputs are required here in 

these equations one and two. 

 

First is the expected returns for each security which is a𝑅̅𝑖. Standard deviation for each 

security which is σi and correlations across each pair of security which is either you can 

see ρjk correlation or covariance σjk. Correlation is just the standardized form of 

covariance. 

(Refer Slide Time: 02:24) 



 

So now if an analyst is following 150 stocks, they need to prepare 150 estimates of 

expected returns. So 150 estimates of expected return 𝑅̅𝑖, 150 estimates of standard 

deviation, that means σi’s. But the correlation structure and correlation requirements 

are much intensive. That means ρjk’s and for example, if you have n stocks you need n 

into n minus 1 upon 2 correlations. 

 

For example here you have 150 stocks, so you need 150 into 149 upon 2 correlations, 

which is 11,175. So we need 11,175 inputs for correlation coefficients. This kind of 

mammoth nature of correlation coefficients has motivated researchers to look for 

correlation structure across securities to simplify the analysis. How? Consider N 

variables to track. 

 

It is difficult, but if one finds that 90% portion of these variables is explained by one 

single variable or one single index in this case, then you only need information about 

that one variable to predominately define or get information about all the N variables. 

And this leads to the genesis of single-index models. That means, the observed 

covariances essentially reflected the correlation structure between that index and these 

securities. 

(Refer Slide Time: 03:53) 



 

This search for correlation structure across securities has led to an important set of 

models called single-index models. These models assume a single common influence 

that impacts or affects large number of securities simultaneously in a similar manner. 

The single common factor is responsible for the core movement of large number of 

securities, thus simplifying the correlation structure to a large extent. 

 

The model is based on evidence that most of the stocks follow market movements to a 

certain degree. For example, when market goes up, a large number of stocks go up and 

vice versa. This leads to the genesis of single-index models, where market index such 

as nifty or S&P 500 acts as the proxy of the single-index that is market index. 

 

Therefore and hence this returns on the security, returns on a security can be described 

by a single-index model with this equation. Here Rm is the return on market index. Ri 

is the return on the security, ei is the error term which is specific to the security, β is the 

constant which measures the return in Rm for a given change in Ri. For example, a βi of 

2 would indicate that 1% change in market would cause 2 percentage change in stock’s 

return. 

 

Again, this ai is also the part of return that is unrelated to market performance. So this 

ai and ei are two components that are not related to market. ei can be written as or said 

to be the random probabilistic element of the stock return with the expected value of 0. 

So expectation of ei is 0 or 𝑒̅𝑖 is assumed to be 0 here. 

 



To summarize, in this video, we examined how the assumption of single-index models 

simplifies the correlation requirements considerably. We also discussed how these 

single-index models help us define the expected returns from a security in the form of 

a single influence or single factor like market in a more simplistic manner. 

(Refer Slide Time: 06:12) 

 

Construction of single-index models. In this video we will provide the definition of 

single-index models and various aspects related to that definition. 

(Refer Slide Time: 06:23) 

 

The basic equation of single-index models can be simply written as Ri  = αi + βi * Rm + 

ei. Important to note that Rm and i are random variables. This Rm and ei are random 

variables. Often random variables are defined by a probability distribution like a normal 



distribution with a mean and standard deviation. In this case, consider the mean of RM 

and ei as 0. 

 

So mean of ei as 0 as we discussed earlier. Expected value of ei or mean of ei as 0 and 

mean of Rm or expected value of Rm as 𝑅̅𝑚. And their standard deviations as σm and σ 

ei. We have also said that Rm and ei are uncorrelated and therefore if they are 

uncorrelated, therefore the covariance between ei and Rm should be 0. Or in other words, 

the correlation between ei and Rm should be 0. 

 

That is E ( (ei – 0) *(Rm - 𝑅̅𝑚)) should be equal to 0. Generally, this equation, this model 

is estimated with the regression analysis. In regression analysis by design to a great 

extent it is guaranteed that e i and R m are correlated, not correlated over the period of 

analysis. So over the period of analysis, this assumption to a great extent is held by the 

model itself by the design or construction, we can say. 

(Refer Slide Time: 07:50) 

 

However, there is one additional assumption of single-index model that is not 

guaranteed by regression analysis. This is as follows. Single index model assumes that 

ei, the error ei is independent of ej for on the security. Or more formally one can say the 

expectation of ei ej 0 or correlation between errors ei ej  is 0. This requires that the only 

recent stock should commove is because of the market movement. 

 

There are no other effects like industry effects, etc., that can cause correlation across 

stocks. So there is nothing in regression analysis that ensures it. And therefore the 



performance of the model depends on how close this assumption is to reality. This 

model Ri  = αi + βi * Rm + ei under the assumption of single-index model is assumed to 

represent the dynamics of all the stocks in the market. 

 

That is, if there are N stocks i equal to 1 and so on 2, 3 and up to N. All those stocks 

the return is expected to be defined by the single-index model. Generally, it is given 

that or assumed by default that the single-index would be market factor because market 

factor there is a wide evidence that market factor affects most of the stocks in the market 

systematically. 

(Refer Slide Time: 09:11) 

 

Let us now define the single-index model. Basic question of single-index model we 

have already seen. This is the basic index equation. Under the assumption of single-

index model, this equation is assumed to represent the return dynamics of all the stocks 

in the market. Now, by design or you can say by construction of the regression model, 

the mean of error term or residual term is 0. 

 

This is by design insured by regression model. Then by assumption, the index is 

unrelated to the idiosyncratic component which is ei or the error term that is expectation 

of ei and market is 0. That means market returns and error terms are not correlated. 

There is no correlation between error and market or residual or stock specific term and 

market. Also securities are only related to each other through the index which is market. 

 



That is, there is no correlation across securities between two stocks. Between two 

stocks, the residual terms or stock specific term, there is no correlation or covariance in 

other words. However, this assumption is not insured by regression model as we 

discussed earlier. Also by definition will define the variance of error term or stock 

specific residual or stock specific component of return as σei
2 and the variance of market 

is defined as σ2
m. 

(Refer Slide Time: 10:30) 

 

Now that we have boundary conditions, we can derive the expressions for expected 

return and standard deviation and covariance easily. Expected returns under the single-

index model can be easily obtained by this expectations operator on 𝐸(𝑅𝑖) =

𝐸[𝛼𝑖 +  𝛽𝑖𝑅𝑚 +  𝑒𝑖] = 𝐸(𝛼𝑖) + 𝐸(𝛽𝑖𝑅𝑚) + 𝐸(𝑒𝑖) 

 

 

Now expectations of ei is 0, we already discussed that. Since α is constant time, so 

expectations of αi will be α  itself and expectations of βi * Rm should be βi because βi is 

a constant and 𝑅̅𝑚. 𝑅̅𝑚is the expectation of market return. So this is our single-index 

model, expected returns definition for single-index model. 

(Refer Slide Time: 11:13) 



 

 

Coming to standard deviation, standard deviation of return can be easily given by this 

formula, 𝜎𝑖
2 = 𝐸(𝑅𝑖 −  𝑅̅𝑖)

2. Now we can extend the expression for returns, the return 

definition here, which is (𝛼𝑖 + 𝛽𝑖𝑅𝑚 +  𝑒𝑖). And 𝑅̅𝑖 we already know 𝛼𝑖 + 𝛽𝑖𝑅̅𝑚. 

 

Simplifying this expression, we get expectations of βi times Rm - 𝑅̅𝑚 + ei
2. This can be 

expanded in the form of A plus B whole to the power 2 equal to A square plus B square 

plus 2AB. In the similar manner, we can expand this expression. 

 

And here please note we will obtain this expression βi
2 expectations of Rm minus 

𝑅̅𝑚 raised to the power 2 plus expectations of ei
2 because, the third term which is 

expectations of ei times Rm minus 𝑅̅𝑚 will be 0 because by assumption there is no 

correlation between ei error term and market term and to a great extent this is ensured 

by the regression model as well. 

 

So the resulting expression for standard deviation becomes σ i square equal to β i square 

times σ m square plus σ e i square. Notice it does not include a common term which is 

the error and R m because by assumption as well as to great extent by the design and 

construction of the regression model, there is no correlation between error and market 

returns. 

𝜎𝑖
2 = 𝐸(𝑅𝑖 −  𝑅̅𝑖)2 = 𝐸[((𝛼𝑖 + 𝛽𝑖𝑅𝑚 +  𝑒𝑖) − (𝛼𝑖 + 𝛽𝑖𝑅̅𝑚))]

2
 

𝜎𝑖
2 = 𝐸[𝛽𝑖(𝑅𝑚 −  𝑅̅𝑚) + 𝑒𝑖]

2 = 𝛽𝑖
2𝐸((𝑅𝑚 −  𝑅̅𝑚))

2
+ 𝐸(𝑒𝑖)

2 + 2𝛽𝑖𝐸[𝑒𝑖(𝑅𝑚− 𝑅̅𝑚)] 



𝜎𝑖
2 = 𝛽𝑖

2𝐸((𝑅𝑚 −  𝑅̅𝑚))
2

+ 𝐸(𝑒𝑖)
2 𝑏𝑒𝑎𝑐𝑢𝑠𝑒 𝐸[𝑒𝑖(𝑅𝑚− 𝑅̅𝑚)] = 0 

𝜎𝑖
2 = 𝛽𝑖

2𝜎𝑚
2 +  𝜎𝑒𝑖

2  
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Lastly, coming to the covariance part. The covariance between two securities i and j 

can be easily defined as  𝐸[(𝑅𝑖 −  𝑅̅𝑖)(𝑅𝑗 −  𝑅̅𝑗)]. Further, again expanding for Ri, Ri 

can be expanded in this form by the single-index model definition. Similarly, 𝑅̅𝑖 can 

also be expanded with the definition of single-index model. So we get the resulting term 

like this. 

 

This term can be further opened and simplified in these terms. Please notice across these 

terms the expectation of ei ej is 0. This is by assumption. Regression model does not 

exactly hold this. But by assumption, since market is the only influencing factor, 

therefore there should be no correlation across error terms or idiosyncratic part of 

return. So this is 0. 

 

By design of regression model and by assumption error terms are not correlated with 

market. So this correlation or covariance is also equal to 0. And same goes for this. So 

we have only this term remaining which is [((𝛽𝑖(𝑅𝑚 − 𝑅̅𝑚) +  𝑒𝑖)(𝛽𝑗(𝑅𝑚 − 𝑅̅𝑚) +

 𝑒𝑖))]. This is the expression for covariance. 

 



To summarize, in this video, we discussed how the assumption of single-index models 

results in the definition of return and expected return for a security. We also discussed 

how we can compute the risk or standard deviation and covariance between two stocks 

in the presence of or the assumption of single-index models. 

 

And we saw how this kind of analysis considerably simplifies the correlation structure 

and results in a model where computation of risk and return is very simplified. 

𝜎𝑖𝑗 = 𝐸[(𝑅𝑖 −  𝑅̅𝑖)(𝑅𝑗 −  𝑅̅𝑗)] 

𝜎𝑖𝑗 = 𝐸[((𝛼𝑖 + 𝛽𝑖𝑅𝑚 +  𝑒𝑖) − (𝛼𝑖 + 𝛽𝑖𝑅̅𝑚)) ((𝛼𝑗 + 𝛽𝑗𝑅𝑚 +  𝑒𝑗) − (𝛼𝑗 + 𝛽𝑗𝑅̅𝑚))] 

𝜎𝑖𝑗 = 𝐸[((𝛽𝑖(𝑅𝑚 − 𝑅̅𝑚) +  𝑒𝑖)(𝛽𝑗(𝑅𝑚 − 𝑅̅𝑚) + 𝑒𝑖))] 
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Single-index models with an example. In this video, we will examine the application of 

single-index models with the help of a numerical example. 

(Refer Slide Time: 14:25) 



 

Consider the following example, where we are given the actual returns and the β for a 

stock and market returns. So you have β equal to 1.5 and the actual returns are given 

here and the returns from market are given here. To perform this numerical, first we 

need to compute the average returns for the stock which are computed here. The average 

of these stocks to get the average return. 

 

And we also compute the average returns for the market here. Once we have the average 

return for stock and market here, we can solve the model which is the single-index 

model αi + βi * 𝑅̅𝑚. We can solve this equation, because we know here Ri, we know 

here Rm, we know the β, we can solve this to get the estimate of αi. 

 

Once you have the estimate of αi, you can then have all the entities known here in this 

model, which is the actual returns Ri or predicted returns Ri - ai – βi*Rm. You have Ri 

known. This αi or alternatively ai, what we are referring to is also known. Β is known 

and Rm is known. So you can compute the residuals also and define the model 

completely for each period. 

(Refer Slide Time: 15:40) 



 

So using this equation, we can solve for ai to get ai as 2% or αi. I am referring to ai or αi 

interchangeably. Now that you have α  you can estimate the values of ai as we discussed. 

(Refer Slide Time: 15:55) 

 

So while computing these values, we get these values of ei for each of the periods using 

these ei’s and we can check here the average of ei is 0, as we have assumed. A lot of it 

is ensured by regression model. You get average of ei or 𝑒̅𝑖 as 0. You can compute the 

variance of ei as 2.8. So we have the variance here. Using these values, we can compute 

the variance of ei which is σ square ei. 

 

This is also the residual component of risk in the model. Now that you have the residual 

component of risk, you can either compute separately the overall variance which is 

20.8, which is the total risk which includes the market part of risk as well as 



idiosyncratic part of risk. Also you can cross check it by computing the idiosyncratic 

part which is σ2ei, 2.8 separately and market part of risk. 

 

Market part of risk is βi
2*σm

2, which can also be computed for σ2. And you can compute 

the variance of market using these values which we can compute variance of market, 

which is 8 here. And then you can multiply it by βi
2, which is 1.5 into 1.5 into 8 plus 

2.8, which is 20.8, which again we indirectly compute it and directly also we compute 

it and the numbers are matching. 

 

To summarize, in this video, we understood the application of single-index model for a 

given security. We also cross checked the implications of applying single-index model 

by directly and indirectly computing the values for risk and expected return. 

(Refer Slide Time: 17:23) 

 

Portfolio characteristics with single-index models. In this video, we will discuss various 

portfolio characteristics such as expected return and risk in the presence of single-index 

models. 

(Refer Slide Time: 17:34) 



 

Now with the assumption that the single-index model holds, let us examine its impact 

on portfolio returns and standard deviation. The expression for expected returns on 

portfolios is provided by this equation 𝑅̅𝑝 equal to summation Xi 𝑅̅𝑖, i equal to 1 to N. 

Assumption here is that this kind of single-index models which is 𝑅̅𝑖 equal to ai +βi *𝑅̅𝑚 

holds where Ri is the expected return on security and 𝑅̅𝑚 is the expected return on 

market. 𝑅̅𝑝 =  ∑ 𝑋𝑖𝑅𝑖̅
𝑁
𝑖=1  

𝑅̅𝑝 =  ∑ 𝑋𝑖𝑎𝑖 +

𝑁

𝑖=1

∑ 𝑋𝑖𝛽𝑖

𝑁

𝑖=1

𝑅𝑚
̅̅ ̅̅  

 

Substituting for this expression, the portfolio return expression becomes 𝑅̅𝑝 equal to 

summation Xi ai plus summation X i β i R m bar. Also the variance of the portfolio can 

be written as X i square σ i square summation i equal to 1 to N. And submission i and j 

over X i σ ij, i not equal to j where σ  ij is the covariance term and σ i square is the 

variance of security i. 𝜎𝑃
2 =  ∑ 𝑋𝑖

2𝑁
𝑖=1 𝜎𝑖

2 + ∑ ∑ 𝑋𝑗𝑋𝑘
𝑁
𝑖=1 𝜎𝑗𝑘

𝑁
𝑖=1  

 

Σ ij is the covariance between security i and j. Now, substituting the expression for 

variance and covariance in the presence of single-index models as we saw earlier, the 

resulting expression becomes σ p square equal to summation i equal to 1 to N, x i square 

β i square σ m square plus summation i equal to 1 to n and j equal 1 to n where i not 

equal to j X i X i β i β j σ m square plus i equal to 1 to N x i square σ e i square.  

𝜎𝑃
2 =  ∑ 𝑋𝑖

2 𝛽𝑖
2

𝑁

𝑖=1
𝜎𝑚

2 + ∑ ∑ 𝑋𝑖𝑋𝑗𝛽𝑖𝛽𝑗𝜎𝑚
2

𝑁

𝑖=1 𝑖≠𝑗

+ ∑ 𝑋𝑖
2 

𝑁

𝑖=1
𝜎𝑒𝑖

2  
𝑁

𝑗=1
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Looking at these equations of portfolio risk and return, it should be clear that we require 

estimates of αi, βi and σei for each of the stock and estimates of Rm bar and σm square 

for market. Now if you need N securities, then 3N estimates for these three terms and 

2 estimate for these two terms. Overall 3N + 2. So if you believe that there are 150 

securities that you want to try, you need 450 + 2, 452 estimates. 

 

As compared to the 11,485 estimates, when we did not assume any kind of correlation 

structure like single-index or multi-index model, this is a very small requirement, a very 

simplifying structure that we have assumed here. 

(Refer Slide Time: 19:56) 

 

 



 

Let us further simplify the portfolio expected return in these expressions. We can define 

the β of a portfolio which is β p as weighted average of β i over all the securities where 

i equal to 1 to N. Similarly, α  p can also be defined as summation a i into X i, i equal 

to 1 to N. And therefore, the resulting expression for portfolio becomes X i α  i 

summation over i equal to 1 to N and X i β i R m bar summation i equal to 1 to N. 

 

And therefore, if I put this expression as α  p and this expression as β p, again R p equal 

to α  p plus β p times R m bar, which is very similar to the equation that we already 

saw, which is α  i plus β i times R m bar. Please note here in this equation, that if the 

portfolio under consideration is market portfolio, then α  p equal to 0 and β p equal to 

1. 

𝑅̅𝑝 =  ∑ 𝑋𝑖𝑎𝑖 +

𝑁

𝑖=1

∑ 𝑋𝑖𝛽𝑖

𝑁

𝑖=1

𝑅𝑚
̅̅ ̅̅  

𝛽𝑝 =  ∑ 𝑋𝑖𝛽𝑖;   𝑎𝑝 =

𝑁

𝑖=1

∑ 𝑋𝑖𝑎𝑖

𝑁

𝑖=1

 

𝑅̅𝑝 =  𝑎𝑝 +  𝛽𝑝𝑅̅𝑚 

 

That means, R p bar is nothing but R m bar. Also the stocks with β p greater than 1 are 

said to be riskier than the market. And stock with β p less than 1 are said to be less risky 

than market. 
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Now let us examine the risk of a portfolio using the equation we saw earlier, σ p square 

equal to X i square β i square times σ m square plus i equal to 1 to N and j equal to 1 to 

N summation X i X j β i β j σ m square plus summation i equal to 1 to N X i square σ i 

square. Let us simplify this equation a little bit. 

 

We can combine these two terms so that this i is not equal to j expression will be 

removed and this resulting expression is received which is just a combination of these 

two expressions and this expression remains same. Now again here we can replace this 

expression or divide this expression into these two components X i β i summation 1 to 

N and X j β j summation 1 to N times σ m square. 

𝜎𝑃
2 =  ∑ 𝑋𝑖

2 𝛽𝑖
2

𝑁

𝑖=1
𝜎𝑚

2 + ∑ ∑ 𝑋𝑖𝑋𝑗𝛽𝑖𝛽𝑗𝜎𝑚
2

𝑁

𝑖=1 𝑖≠𝑗

+ ∑ 𝑋𝑖
2 

𝑁

𝑖=1
𝜎𝑒𝑖

2  
𝑁

𝑗=1
 

𝜎𝑃
2 =  ∑ ∑ 𝑋𝑖𝑋𝑗𝛽𝑖𝛽𝑗𝜎𝑚

2
𝑁

𝑗=1
+ ∑ 𝑋𝑖

2 
𝑁

𝑖=1
𝜎𝑒𝑖

2  
𝑁

𝑖=1
 

𝜎𝑃
2 = (∑ 𝑋𝑖𝛽𝑖) (∑ 𝑋𝑗𝛽𝑗)𝜎𝑚

2
𝑁

𝑖=1
+ ∑ 𝑋𝑖

2 
𝑁

𝑖=1
𝜎𝑒𝑖

2  
𝑁

𝑗=1
 

(∑ 𝑋𝑖𝛽𝑖) =   (∑ 𝑋𝑗𝛽𝑗)𝜎𝑚
2

𝑁

𝑖=1
 

𝑁

𝑗=1
=  𝛽𝑝 

𝜎𝑃
2 =  𝛽𝑝

2𝜎𝑚
2 + ∑ 𝑋𝑖

2𝜎𝑒𝑖
2   

Now please note that these are nothing but β p. So this is also β p, this is also β p. And 

therefore, the resulting expression is σ p square times β p square σ m square plus X i 

square σ e i square summation i equal to 1 to N. This is a very interesting expression of 

standard deviation for portfolio in the presence of single-index models. 

(Refer Slide Time: 22:24) 



 

Let us carefully examine this expression of portfolio standard deviation. The expression 

says X σ p square is a function of β p σ and X i square σ a square. If you assume that 

there are large number of securities and equal amounts are invested in them that is X 1 

equal to X 2 and so on equal to X n equal to 1 upon N, then I can further simplify this 

expression as σ 1 upon N into σ e i square upon N i equal to 1 to N. 

𝜎𝑃
2 =  𝛽𝑝

2𝜎𝑚
2 + ∑ 𝑋𝑖

2𝜎𝑒𝑖
2  

𝑁

𝑖=1

 

 

Now in this expression if N is very large, then this expression tends to zero. This 

expression tends to zero. And therefore, the stock specific or the residual component of 

risk which is this, it approaches to zero and only this expression remains. What it means 

is that the remaining risk which is β p square σ m square, it is only on account of that 

single-index or market. 

 

Irrespective of the risk of securities, the risk of a well-diversified portfolio with a large 

number of securities is only determined by this market risk and the sensitivity of 

portfolio to this market risk. Here β p is just a weighted average of individual’s security 

sensitivity that is β i X i. So it is just a weighted average, this β p. 

 

That means, for a well-diversified portfolio, what matters is the contribution of 

securities to the portfolio risk which is how sensitive are the securities in the portfolio 

to the market movement. For example, consider the hypothetical situation in a well-

diversified portfolio, all securities have β equal to zero, let us say β is equal to zero. 



 

Then the risk of the portfolio will also be zero in the assumption of single-index model. 

So β p is also built up i’s are zero then β p is also zero and therefore, this σ p square 

becomes zero. Therefore, we are able to say that because we know that each securities 

contribution to market risk in this portfolio is zero and residual risk, which is the 

diversifiable risk which is also zero. 

 

Here β p square σ m square is the measure of portfolios non diversifiable or systematic 

risk. And therefore σ p, σ m the σ m is independent of securities and only the term β p 

is dependent on the securities and on average reflects the sensitivity of the portfolio 

constituent towards market risk. 

 

To summarize, in this video, we discussed the expected return computation and risk 

computation of this security and portfolios in the presence of single-index model. We 

found that the expression for expected return is quite similar to the one with single-

index model which is R p equal to α  p plus β p times R m bar, which is very similar to 

the one we saw earlier R i bar equal to α  i plus β i times R m bar. 

 

We also saw that the risk of a portfolio the center division has two component and if 

the portfolio is well diversified, the idiosyncratic component becomes zero. And the 

only component of risk that matters is the non-diversifiable risk, which depends on the 

market risk and the sensitivity of individual securities that contribute to β p or 

sensitivity of the portfolio to the market risk. 

(Refer Slide Time: 25:40) 



 

Single-Index Models: Market Model. In this video, we will discuss special class of 

single-index models, which is market model. 

(Refer Slide Time: 25:49) 

 

A less restrictive form of single-index model known as market model has found wider 

acceptance. The only difference here is less restriction. Consider a single-index model 

like R i bar equal to α  i plus β i times R m bar. Here the assumption that covariance 

between e i e j equal to zero, which was a very integral and subtle assumption of the 

index model is relaxed or waived, and it becomes the market model. 

𝑅̅𝑖 =  𝑎𝑖 +  𝛽𝑖𝑅̅𝑚 

 

 



This simply means that there may be some co-movement across securities that are not 

due to the market. This is in contrast to the single-index model. The relationship 

between the expected returns on the security and the market remains the same which is 

this relationship. However, since the assumption of covariance is not the same as the 

single-index model, we do not get the same simplified portfolio expression. 

 

What are the additional factors that may affect the returns of a security in addition to 

market index? In addition to this R m bar, there can be industry specific factors for 

example, industry or factors for example, international factors related to some 

international markets specific to regulatory changes or certain niche factors, which are 

not part of this market factor, but still can affect the returns of a security. 

 

Market model allows the presence of these factors and says that there can be possibly 

these factors which can cause correlation between the error term or auto correlation 

between the error term, between two errors like e i e j, because of these factors like 

industry factor. And they will not be on account of market factor. So this is market 

model which is a special class of single-index model which assumes the covariance 

between e i and e j is not equal to zero, it can be nonzero. 

(Refer Slide Time: 27:36) 

 

Estimation of portfolio β with single-index models. 

(Refer Slide Time: 27:41) 



 

The discussion on single-index model makes it amply clear that one needs to estimate 

β. One of the simple and most commonly employed methods relies on the estimation 

of historical βs. Here we make use of this very simple index model R it equal to α  i 

plus βi times Rmt plus e it. And we try to fit this regression model. These are the scatter 

points, these are our observations. 

 

And we try to fit this model R it bar equal to αi plus βi times Rmt bar. We fit this 

regression model. The model can be represented in the form of this straight line. The 

slope of this line which is βi is our estimate of β. So we are fitting a line across these 

scatter points with simple often used OLS ordinary least square method of regression. 

 

So this is called method of ordinary least squares. And this slope of this line is the best 

estimate of β over the period of examination. 

(Refer Slide Time: 28:42) 



 

Now, here since we are fitting the line across scatter points of Ri, this is the R it or often 

called Ri. So these are the security i’s written over different times and Rmt which is the 

market return or different time t. We are fitting this line and this expression we can 

observe Ri and Rm from the various databases which are directly available from 

exchanges or databases like Bloomberg. 

𝑅𝑖 =  𝑎𝑖 +  𝛽𝑖𝑅𝑚 +  𝑒𝑖 

 

This plot of Ri and Rm will result in this kind of figure, the line fit between Ri and Rm 

observations available over time. And for drawing the straight line like I said, we often 

use a measure called ordinary least square measure. The slope of this line is the best 

estimate of β over the period of examination. 

 

Now, once you have this kind of expression, the value of β is very easily computed in 

the form of this expression, which is nothing but σ m which is the covariance between 

security i and m and divided by σ square m which is the variance of market. This is 

nothing but this R it minus R it bar into R mt minus R mt bar summation over t equal 

to 1 to T and R mt divided by R mt minus R mt bar raised to the power 2 summation 

over t equal to 1 to T. So this is the expression which is driven by this regression model. 

𝛽𝑖 =  
𝜎𝑖𝑚

𝜎𝑚
2

=  
∑ [(𝑅𝑖𝑡 −  𝑅̅𝑖𝑡)(𝑅𝑚𝑡 −  𝑅̅𝑚𝑡)𝑇

𝑡=1

∑ (𝑅𝑚𝑡 −  𝑅̅𝑚𝑡)2𝑇
𝑡=1
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Now once your β is estimated, you can also estimate the α  i simply by this equation α  

i equal to R i bar minus β i times R m bar, we can estimate α  i from here. But these β 

estimates are also subject to errors. Also the fact that firm characteristics such as capital 

structure, industry etc., change over time. Hence firm β is also expected to change. 

 𝑎𝑖 =  𝑅𝑖 −  𝛽𝑖𝑅𝑚  

 

Generally to make more accurate estimates of β analysis compute β of portfolio. So we 

tend to work with β of portfolios, not single securities, where portfolios are selected 

from specific industry. So these industry βs or industry portfolio βs are less noisy and 

more informative or more informationally efficient. So portfolio βs are less noisy and 

subject to less estimation error. 

 

Generally these are computed for industry specific portfolios. This happens because the 

randomness that is specific to security averages out in the portfolios. For example, there 

may be some random variation that is upward in one security and downward in the 

other. Overall, this effect is canceled out and therefore, historical βs of portfolios are 

often employed for future production of security βs. 

 

To summarize, in this video, we discussed the estimation of β through ordinary least 

square method where we fitted the scatter points. We fitted a straight line here, the slope 

of this fitted line between Ri, which is a security return and market return is often 

referred to as β which represents this kind of model Ri equal to αi plus β times Rm plus 

error term. 



 

The fitted line equation is Ri bar equal to αi plus β times Rm bar and β is our slope 

estimate. 
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Single-index models, β example. In this video, we will try to understand computation 

of β in the presence of single-index models. 

(Refer Slide Time: 31:38) 

 

In our previous discussion on the similar example, we assumed β to be given, but let us 

try to examine β now. In the example, we have been given values of R it which is for 

these five periods, we have return values, market returns for these same periods. So first 

we can compute the average values of market return which is 4% and security return 

8%, their variances also σ m square and σ it square which is 20.8 σ m square is 8. 



 

We can also compute the covariances with this expression R it into R it bar times R mt 

minus R mt bar. So this is R it minus R it bar times R mt minus R mt bar for which the 

values are computed here and we can see the summation is 60 when we divided by 5 

we average it out to get the covariance number σ m which is 12. Now the β is nothing 

but the ratio of this 12 divided by 8. 

 

So 12 upon 8, 1.5. This is my β for the returns that are given here. So this is how we 

compute β for any security where returns for the security and returns on the market are 

given to us. 
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A few words on β. In this video we discuss some of the very important properties of β. 

(Refer Slide Time: 32:51) 



 

Essentially β is a risk measure that is estimated from the relationship between the 

returns of a security and that of the market. Since it is the risk measure, then 

mathematics apart it should be linked to the firm characteristic and the risk profile of 

the firm. There are some of the very well-known for variables that affect the risk of a 

stock, for example, dividend payout, asset growth, leverage, liquidity, asset size, 

earnings variability, accounting data and so on. We will discuss some of these 

properties here. 

(Refer Slide Time: 33:17) 

 

It is assumed that firms that pay more dividends have positive future expectations and 

these firms are considerably less risky and therefore, have no β. These are called low β 

firms and therefore, we can expect a negative correlation between the firm β and 



dividends, firm β and dividends. High growth firms are generally young firms with high 

capital requirements. 

 

These firms are considered risky and therefore, these firms have a positive relation with 

βs. So the firms with high growth have positive relation with the β. Firms with high 

liquidity are also considered to be less risky and therefore, liquidity has a negative 

relation with β. So firm β with liquidity. 
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Next, large firms are considered to be less risky than the small firms and therefore, size 

is considered to be negatively related to β. Finally, a firm with high earnings variability 

is considered riskier and therefore, earnings β is expected to have a positive relationship 

with the security β. To summarize, in this video, we discussed some of the properties 

of security that are linked to β. 

 

These include relationship between dividend payments and β, growth and β, liquidity 

and β, size and β and finally earnings variability with β. 
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In this video, we will introduce multi-index models. We will discuss some of the basic 

properties of these models. 
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An improvement over single-index model is multi-index model. These models are often 

employed to explain and estimate the correlation structure of security returns. These 

models aim to capture the non-market influences that may cause securities to move 

together. That is the movement or correlation across securities that cannot be accounted 

for by the market index itself. 

 

These multi-index model aim to capture economic factors for structural groups for 

example, industrial effects. 
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The generalized multi-index model can be written in the form of this equation R i equal 

to a i star plus b i1 into i 1 star plus b i 2 star into i 2 star and so on up till b iL star into 

iL star plus c i. What is the interpretation of these a i star b i1 star and c i1? In this 

equation returns on security i is experienced as a function of indices i 1 star i 2 star and 

so on up till i L star. 

𝑅𝑖 =  𝑎𝑖
∗ + 𝑏𝑖1

∗ 𝑙1
∗ + 𝑏𝑖2

∗ 𝑙2
∗ + 𝑏𝑖3

∗ 𝑙3 
∗ + ⋯ + 𝑏𝑖𝐿

∗ 𝑙𝐿
∗ + 𝑐𝑖   

 

B ij star is a measure of sensitivity of stock i to changes in index j. And that is why it is 

written as or noted as b ij star. b ij star has the same interpretation as that of β i. b ij star 

is a measure of sensitivity of return of stock i to changes in index j and it has the same 

interpretation as that of β i in case of single-index models. 

 

For example, bij star of 2 means, b ij star of 2 means that if the index changes its 

direction in a particular direction by 1% whether increase or decrease, the stock return 

is expected to change by 2% in the same direction. This is similar to single-index 

models. The stock specific component again similar to simulate single-index models 

the stock specific components, this ai1 star and c i these are stock specific components. 

 

Here a i star is the value, expected value of the unique return or constant, this is the 

constant term, usually one would expect this term to be zero. That is not significantly 

different from zero in the regression model output. However, short term investors, day 

traders are often lookout for securities with this kind of positive or negative α s or α  i 

star. Often I refer to this αi or ai. 



 

The securities are considered to be underpriced or overpriced. However, one cannot 

expect a very high and significant α  over long durations only to the extent trading costs 

prevent traders arbitrage from taking the long or short position in that security the 

nominal returns as indicated with this α  i star or a i star that can sustain for a short term. 

 

That is only to the extent trading cost prevent traders and arbitrages from taking a long 

or short position in that security the abnormal returns indicated by this α  can sustain. 

Any excess α  over the trading costs will be swiftly exploited by traders and arbitrages. 

This α  may also include risk free component of expected returns. 

 

And therefore advanced models adjust the expected returns with a risk free rate to obtain 

or estimate this α  that is a more precise measure of risk adjusted or nominal returns. C 

i is the random variable with a distribution mean of zero and standard deviation of σ 

square c i. So this is sort of stochastic variable. 
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The indices ij stars, these ij stars the indices, they would capture the influence of market 

returns, level of interest rates and various industry effects. While a model of this kind 

is often employed in the literature, it faces one major challenge. Some of the indices 

employed in the model may be correlated. 

 



This vitiates the estimation as the regression estimations of this kind require the 

independent variables that is all the independent variables ij like i1 star i2 star and so 

on to be uncorrelated. 

 

 However, when the variables are correlated, it is difficult to segregate their respective 

effects that is b ij stars on the security. 
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And therefore, researchers often perform a procedure called orthogonalization to 

remove the correlated portion from the respective indices and create orthogonalized 

indices that is the original equation which is this equation through orthogonalization 

procedure, which is a mathematical procedure is transformed into this new equation. 

 

The important point to note about this new equation is that unlike the original I 1, I 2 

stars which there was a possibility of these origins indices to be correlated, the new 

indices that are created that is I 1, I 2, I 3 and so on, these are supposed to be 

uncorrelated. That means, these new indices that are constructed, they are so 

constructed as to have no correlation with each other and the error term. 

𝑅𝑖 =  𝑎𝑖 + 𝑏𝑖1𝑙1 + 𝑏𝑖2𝑙2 + 𝑏𝑖3𝑙3 + ⋯ + 𝑏𝑖𝐿𝑙𝐿 +  𝑐𝑖 

So first and foremost, we can say that error term is not correlated with these indices and 

that can be represented as this ij minus ij bar. So the expectations of c i into ij minus ij 

bar is zero, which suggests that there is no correlation between indices and this error 

term. And also these indices are so designed that do not have any correlation with each 

other as well. So the new equation, this is our new modified equation. 
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This is our modified equation. In this equation, all these I 1, I 2’s are expected to be 

uncorrelated with each other. And they are also expected to be uncorrelated with the 

error term which is c i. So for example, for any security i this error term plus dual term 

c i is expected to be stock specific and therefore, not correlated with indices I j’s. 

𝑅𝑖 =  𝑎𝑖 + 𝑏𝑖1𝑙1 + 𝑏𝑖2𝑙2 + 𝑏𝑖3𝑙3 + ⋯ + 𝑏𝑖𝐿𝑙𝐿 +  𝑐𝑖 

However, for this new equation, unlike the original equation, where we would have said 

that I 1 star is probably the market influence or I 2 star is probably the influence of 

broad interest rate, here it is difficult to economically interpret the new indices. So the 

exact economic interpretation is difficult. To summarize, in this video, we introduced 

multi-index models. 

𝐸[𝑐𝑖(𝐼𝑗 − 𝐼𝑗̅)] = 0 

We also discussed some of the basic properties. We found that these indices can be 

correlated, these economic indices when they proxy economic variables like market 

influences like interest rate or broad market wide movements, they can be correlated. 

Through orthogonalization procedure, one can make these influences or indices 

uncorrelated and also uncorrelated with the stock specific components like residuals. 

 

However, the newly designed indices may not have exact economic interpretation and 

it may be difficult to interpret them. 

(Refer Slide Time: 42:04) 



 

Design of multi-index models. In this video, we will discuss some of the basic 

definitions, assumption and construction of multi-index models. 

(Refer Slide Time: 42:13) 

 

The final general multi-index model can be defined as follows, this equation R i equal 

to α  i or a i plus b i1 into I 1 plus b i2 into I 2 and so on up till b iL into I L plus c i for 

all stocks i from 1 to N if there are N stocks and j indices 1, 2, 3 and so on up till L. So 

there are total N indices. And here let us define the model. By definition, the residual 

variance of the stock i equal to σ c i square. 

𝑅𝑖 =  𝑎𝑖 + 𝑏𝑖1𝑙1 + 𝑏𝑖2𝑙2 + 𝑏𝑖3𝑙3 + ⋯ + 𝑏𝑖𝐿𝑙𝐿 +  𝑐𝑖 

 

So this is a stock specific component. The variance of index ij is equal to σ ij square 

which is the variance of index. So this is by definition. 
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Next, by construction we say that the means of c i the error terms in the model the 

residual, this term, the mean of this term is 0 by construction. So regression model to 

some extent, to a good extent in fact, regression model is to ensure that this property is 

held. We also assume that covariance, by construction covariance between indices j and 

k that is ij and ik are not correlated. 

 

Or the covariance between them is 0 which is this expectation of ij minus ij bar into ik 

minus ik bar. Remember, we discussed the orthogonalization procedure in the previous 

video where we said that the indices are so constructed that they do not have any 

correlation with each other. We also say that stock i and index j do not have any 

covariance or correlation. 

𝐸[(𝐼𝑗 −  𝐼𝑗̅)(𝐼𝑘 −  𝐼𝑘̅)] = 0 

 

So the expectations of c i into ij minus ij bar equal to 0. So this is also by construction. 

The way these in indices are generated not only they have no correlation with each other 

they also do not have any correlation with error term or residual in the model. Last and 

a slightly more difficult term that covariance between error terms c i here for security i 

and c j for security j are not correlated. 

𝐸[𝑐𝑖(𝐼𝑗 − 𝐼𝑗̅)] = 0 

That means expectation of c i into c j is 0. Now this is a slightly tricky term as we will 

see. 
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This is the last assumption that the covariance between c i and c j is zero is very 

important for multi-index models. It suggests that the only reason stocks vary together 

is because of their common relationship with the indices specified in the model that is 

I j’s. And therefore, there is no other reasons two stock i and j should have a correlation 

because all that is common to them is contained by these indices that we have modeled. 

 

So the remaining error term that is c i c j that are residuals or stock specific terms should 

not have any correlation. However, there is nothing in the model that forces this to be 

true including the regression model that also does not ensure that this relationship is 

held. And therefore, this is only an approximation or sort of assumption, and the 

performance of the model will be as good as this approximation. 

 

To summarize, in this video, we discussed some of the basic properties of multi-index 

model. We discussed some of the definitions and also some of the properties that are 

held by construction. And lastly, some of the properties that are just assumptions only. 

And the performance of the model is as good as these assumptions are held in practice. 
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Multi-index models expected return and risk. In this video we will introduce the 

expressions for expected return variance and covariance for multi-index models. 
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Similar to single-index models, the following equations provide the expected returns, 

variance of returns, and covariance between securities in the context of multi-index 

models. We can straightaway translate those results. For example, for expected return 

R i bar equal to α  i plus b i1 into I 1 plus b i2 into I 2 and so on up till b iL into I L bar. 

𝑅𝑖 =  𝑎𝑖 + 𝑏𝑖1𝐼1̅ + 𝑏𝑖2𝐼2̅ + ⋯ + 𝑏𝑖𝐿𝐼𝐿̅ 

 

While the expression up till here is very similar to single-index model in a very identical 

fashion we introduce other indices and their sensitivities with respect to security i that 

is b i2 b iL and so on. So this is our expected return expression. Again similar to the 



single-index model, we introduced variance of return as σ square equal to b i1 square 

into σ i 1 square and so on until b iL square into σ i square plus σ c i square. 

𝜎𝑖
2 =  𝑏𝑖1

2 𝜎𝑙1
2 + 𝑏𝑖2

2 𝜎𝑙2
2 + ⋯ + 𝑏𝑖𝐿

2 𝜎𝑖𝐿
2 + 𝜎𝑐𝑖

2  

 

This σ c i square represents the residual or stock specific idiosyncratic component of 

risk, which is specific to security i. The remaining components include one variance 

terms for the index which is included and the sensitivity of the security. So it is also 

very similar to the single-index model where we had just one term which is b i1 square 

into σ iL square. 

𝜎𝑖𝑗 =  𝑏𝑖1𝑏𝑗1𝜎𝑙1
2 + 𝑏𝑖2𝑏𝑗2𝜎𝑙2

2 + ⋯ + 𝑏𝑖𝐿𝑏𝑗𝐿𝜎𝑖𝐿
2  

 

Now that we have L indices we have b i1, b iL square into b i σ L square so up till L 

terms. But again very similar to the variance of single-index model. Lastly, we have 

covariance between security ij which is given as σ ij equal to b i1 into bj 1 into σ i1 

square plus b i2 two into bj 2 into σ i 2 square and so on up till b iL into b jL into σ L 

square. 

 

And again it is also very similar to the single-index model where we had only one term 

which is b i1 into b j1 into σ L square. And in a very identical and intuitive manner, we 

have introduced the covariance transfer other securities. Here for example, b i1 into b 

j1 are the sensitivities of security i and j with respect to this index I capital I and so on. 

So security i, security j and their inference with respect to this index i1. 

 

Similarly, i2, j2 with respect to index I 2. And similarly, we have all the other 

covariance terms. So this is how we define covariance terms. 
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Here we can clearly see that the expected return and risk can be estimated for any 

portfolio. If we have the estimates of α  i this one and for each stock b ik between each 

stock and the index and an estimate of σ c i square for each stock, which is the variance 

of the stock. And finally, an estimate of ij bar, which is index specific, mean of the 

index and variance of σ ij square which is the variance of index ij for each index. 

 

Assuming there are N securities and L indices that results in total 2N + LN +2L 

estimates. For example, as an analyst if you are following, let us say 150 stocks and 10 

indices, then this means 1820 inputs. Generally, analysts start with the single-index 

model, which is usually the market index and then keep on adding industry indices. 

 

The structure although it is slightly more complex than single-index models, but is still 

less complex when no simplifying correlation structure is assumed. 
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Please note that these industry indices are so constructed that they are uncorrelated with 

each other as well as with the market. The basic assumption here is that a firm’s return 

can be affected by market and some other industries. Researchers often derive indices 

from the available data using quantitative techniques, for example principal component 

analysis and factor analysis. 

 

One can add more and more indices to increase the explanatory power of the model. 

However, with more indices, the model becomes less efficient and more complex. So 

it is a tradeoff between complexity, efficiency and explanatory power of the model. To 

summarize, in this video, we discussed three important properties of multi-index model 

including expected return, variance of return and covariance between securities i and j. 

 

Lastly, we also discussed that in a multi-index model addition of new indices can be 

done on purely on mathematical basis. However, there is a tradeoff while you add more 

and more indices you add to the explanatory power of the model but at the same time 

your model becomes complex and probably less efficient. 

 

So while adding more or less indices and optimizing the model, there is a trade off in 

terms of complexity, efficiency and explanatory power of the model. 
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Multi-index models: 3-Factor Fama-French Model. In this video we will discuss a very 

important model which is part of the multi-index model family. This is 3-Factor Fama-

French Model. 
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To begin with, one very important model needs a special mention here, which is Fama-

French 3-Factor Model. In addition to market, which is this factor R M minus R f, R M 

bar is the market factor. Fama-French found that the size which is proxied by market 

capitalization and ratio of book to market have explanatory power on the cross section 

of expected returns for common stocks. 

 



They documented that cross section of expected returns are negatively related to size 

and positively related to book to market. So this small -b is this second factor which is 

size that is small stocks have higher returns as compared to large stocks and high minus 

low, high minus low book to market value. So here first factor is R M minus R f which 

is the market index indicating the excess return over this period. 

 

The second factor is R bar SMB, which is small minus b indicates the excess return on 

a portfolio of small stocks or large stocks. The excess returns by small stocks capture 

the fact that they are riskier than large stocks. So that is R bar SMB and then R bar 

HML high minus low book to market ratio, which indicates the excess return of 

portfolio of high book to market stocks or that of low book to market stocks. 

𝑅𝑖̅ =  𝑎𝑖 + 𝑏𝑖𝑀(𝑅̅̅ ̅
𝑀 −  𝑅𝑓)̅̅ ̅̅̅ + 𝑏𝑖𝑆𝑀𝐵𝑅̅𝑆𝑀𝐵 + 𝑏𝑖𝐻𝑀𝐿𝑅̅𝐻𝑀𝐿 

 

That is generally these high book to market stocks are also referred to as value stocks 

and low book to market stocks are referred to as growth stocks. So they also, the value 

stocks offer higher return as compared to growth stocks. Now, the idea is that for 

example, in the context of size factors, SMB factor, it appears that these indices the size 

as well as HML, they represent some sort of risk factor that is small firms are argued to 

be riskier than large firms. 

𝑅𝑖̅ −  𝑅𝑓
̅̅ ̅ =  𝑎𝑖

∗ + 𝑏𝑖𝑀(𝑅̅̅ ̅
𝑀 −  𝑅𝑓)̅̅ ̅̅̅ + 𝑏𝑖𝑆𝑀𝐵𝑅̅𝑆𝑀𝐵 + 𝑏𝑖𝐻𝑀𝐿𝑅̅𝐻𝑀𝐿 

 

Also firms with high book to market ratio are considered to be undervalued or value 

stocks like we discussed. Maybe market is more cautious about these value firms and 

prices are repressed could be due to some significant changes happening in the 

organization. In contrast, firms with low book to market values are valued by market at 

a premium. For example, tech firms like Google, Microsoft, they often traded a 

premium as market is upbeat about them. 

 

Therefore, on average over long horizons high book to market firm offer higher returns 

as compared to low book to market firms. To construct the size factor analyst compute 

the difference between small and large firms based on market capitalization. So that is 

our R bar SMB small minus big factor. 

 



The second variable defined as high minus low is constructed using the difference in 

returns between the high and low book to market firms, which is value versus growth 

factor. To summarize this lesson, introduction of single and multi-index models, 

considerably simplifies security analysis. In particular, the complex correlation 

structure between two securities is replaced by the common influence of the index on 

each of the security. 

 

With the application of these index models, portfolio analysis is considerably 

simplified. Portfolio βs are often less noisy and more informationally efficient than βs 

of individual securities. Construction of multi-index models broadly employ similar 

theoretical underpinnings except that they employ multiple indices. Construction of 

these index models requires certain assumptions, some of which are held by the 

assumption, design or definition of the respective model. 

 

Some of these key assumptions in these index models are as follows. First, idiosyncratic 

error terms are not correlated with indices that are more systematic influences that is 

expected value of c i into ij minus ij bar equal to zero. Next, these indices are not 

correlated across each other. That means expected value of ij minus ij bar into ik minus 

ik bar equal to zero. The error terms are not correlated with each other that means 

expected value of c i into c ij equal to zero. 

  


