
Artificial Intelligence (AI) for Investments 

Prof. Abhinava Tripathi 

Department of Industrial and Management Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture- 43 
 

Linear regression modeling is less effective in the case where dependent variable is binary  

and of the form like yes, no or 0, 1 kind of variable.  Such dependent variables are called 

limited dependent variables or binary choice variables.  A simple OLS, ordinary least square 

regression model approach is referred to as linear probability  modeling approach since the 

predicted variable is in the form of probabilities.  However, these linear probability models 

are inadequate to satisfactorily model limited  dependent variables such as 0, 1 or yes, no.  

These limited dependent variables are often modeled using logit probit class of models.  We 

will discuss the logit probit class of probability distribution functions that provide  theoretical 

underpinning to these classification algorithms. 

 

 
 

Moreover, the predicted probabilities from logit probit models require thresholding to  

convert them into ones and zeros that are comparable to the observed data.  We will also 

discuss a very important and comprehensive parameter of model performance  that is 

classification confusion matrix.  Also we will visualize the model performance under receiver 

operator characteristic curve  and compute the area under the curve to examine the model 

performance.  Lastly, we will interpret the parameters from the logit probit model estimation. 



 
 

In this video, we will introduce the classification problem with a background to discrete 

choice  variables or qualitative response variables.  Discrete choice variables or limited 

dependent variables or qualitative response variables  as they are called are like 1-0 or yes-no 

kind of variables.  It is very difficult to model these variables through linear regression 

models as we have  seen.  Let us examine the following questions.  Why do firms choose to 

list their stocks on NSC or BSC?  Or why do some stocks pay dividends while others do not?  

Or what factors affect large corporate borrowers to default or not default?  What factors 

affect choices of internal versus external financing?  Notice that in all these questions, the 

dependent variable, the fact that is predicted or determined  is in the form of yes-no or 1-0. 

 

That means there are two choices and these choices can be modeled in a regression model  

through yes-no or 1-0 kind of format.  For example, one can put the choice of listing a stock 

on NSC as 1 and BSC as 0 or paying  dividend as 1 not paying as 0 or default as 1, non-

default as 0.  So these choices can be modeled in a linear regression model mathematically by 

coding  them as 1 or 0.  Let us understand this through a simple example of a credit scoring 

problem in banking.  In banking, there are often loan applications that default or not default. 

 

If you want to know or judge the credit worthiness of a particular application, there are 

certain  attributes that you would like to examine.  For example, you would like to examine 

net worth of the borrower or his or her income.  Now suppose you want to train a credit 

default scoring algorithm or a classification algorithm,  you would like to have a label data, 

the data being labeled as defaulted.  In this case, the red, these red dots or circles, solid circles 

are defaulted, let us call them  defaulted and the blue ones are non-defaulted.  So you have 

the label data and you also have their features as net worth and income. 

 

Now using these labels and these features, you would like to train your algorithm.  There are 



different ways to do it.  For example, if you are given only net worth, you would have trained 

your algorithm at different  levels based on the level of net worth and tried to see which of 

these levels classifies  or categorizes the data best between red and blue observations.  

Similarly, if you are given only the income feature, then you would have tried different  

levels of income to classify data according to its labels and the most efficient way,  in the 

most efficient way possible.  You obviously would want to use both of these features and 

then classify. 

 

For example, in this case, this kind of algorithm appears to be more suitable and therefore  in 

future if some data is available to you, which where the point is here, then you would  like to 

classify it as defaulted.  And if it is available here, then you would classify it as non-

defaulted.  To summarize this question, we noted that the fundamental aspect behind the 

classification  problem is the presence of label data, where data is labeled into two or more 

categories.  For example, here we saw defaulted or non-defaulted.  So, data is labeled into 

two categories and you are given certain features of data. 

 

For example, in our case, net worth and income were some of the features.  Features can be 

demographic aspect of individuals, tastes, preferences, various kind of features  can be given 

to us along with their labels.  Now, a classification algorithm would be some kind of 

algorithm that using these features  would try to label the data accurately, higher the 

efficiency of the algorithm, that means  its ability to classify accurately the data into its labels 

correctly, the better its  efficiency.  In this video, we will introduce a simple approach to 

modeling discrete choice variables  or limited response variables, which is called linear 

probability modeling, LPM.  Recall that regarding such limited dependent variable modeling, 

we said that the dependent  variable is of the form of yes-no or one-zero kind of variable. 

 
 

We will start by modeling or introducing the simple linear regression approach to deal  with 

such models and this is the simple linear regression approach in this context is called  linear 

probability model.  This is the most simple approach to deal with the binary dependent 



variables.  But as we will see in the next video, it is fraught with its own issues.  But let us 

introduce this problem.  It is based on the assumption that the probability of an event Pi is 

linearly related to a set  of explanatory variables x1i, x2i and so on up till xi, xki. 

 

So the problem formulation would look something like this where Pi, the dependent variable  

is essentially the probability of an event happening yi equal to 1.  For example, if you are 

talking about bank default, default versus no default case that  we discussed in the previous 

video, we assume that let us say if default is happening, then  in that case the event is coded 

as 1.  So the probability that default happens or the variable y takes value of 1, this Pi of  yi 

being 1 is noted as Pi is modeled along the set of independent variables x2i, x3i  and so on 

and their coefficients which reflect the impact of these variables as beta 1, beta  2, beta 3 and 

so on in an identical manner as we would model the simple linear regression  problem.  

Please note that in such models, the actual probabilities cannot be observed.  So the estimates 

which essentially we model in the form of probabilities have to be converted  into 0s and 1s. 

𝑃𝑖 = 𝑝(𝑦𝑖 = 1) =  𝛽1 + 𝛽2𝑥2𝑖 +  𝛽3𝑥3𝑖 + ⋯ + 𝛽𝑘𝑖𝑥𝑘𝑖 + 𝑢𝑖 ,   𝑖 = 1, … , 𝑁 

 

 

So this is one problem that you do not observe probabilities, what you observe is the event  

happening which is 1 or not happening which is 0.  For example, consider the relationship 

between a company i and its ability to pay dividends.  So whether a company i pays 

dividends, let us call it event y equal to 1 if dividend  is paid and equal to 0 if it is not paid.  

Now let us model this event in the form of or its relationship with its market capitalization  

xi.  So xi is here is the market capitalization of the firm which is captured by its this  

relationship is captured by this coefficient beta 2. 

 

 
𝑌𝑖 =  𝛽1 + 𝛽2𝑋𝑖 + 𝑢𝑖 

Here essentially what we are modeling when we write yi equal to beta 1 plus beta 2 xi  plus 

mu i essentially we are modeling probabilities, but those probabilities will not be observed.  

What we observe is whether yi equal to 1 dividend has been paid or 0 which is dividend is 

not  paid.  Let us clarify this linear probability model in more detail.  So what we just saw 



that is yi equal to beta 1 plus beta 2 times xi plus error term is  basically here in this model 

what we will get in the form of beta 1 plus beta 2i is  the conditional expectation.  Recall our 

discussion on simple linear regression modeling. 

 

It is the conditional expectation of yi given xi that means expected value of yi given xi  and in 

this linear probability model case it can be interpreted that the event will  occur given xi that 

means conditioned upon xi the probability that event will occur is  given by this expression.  

So probability that event will occur what is that event yi equal to 1 that means dividend  is 

paid which is represented by y equal to 1 conditioned upon xi the probability this  is what we 

are estimating and in the simple linear regression or even multiple linear  regression if you 

remember we called it expected value of yi given xi which is this.  So here the probability 

that event will happen is nothing but simply the condition conditioned  upon xi the expected 

value of yi.  So we can also write this expression in this form expected value of we have 

already seen  this expression in the context of simple and multiple linear regression modeling 

that expected  value of yi given xi equal to beta 1 plus beta 2 times xi and here the 

assumption is  as we have seen earlier in this linear regression modeling case the expectation 

of error term  is 0.  To summarize this video we introduced the linear probability modeling 

approach to modeling  what we called binary response variable or discrete choice variable for 

example if yi  is whether a company will pay dividend that means yi equal to 1 or not pay 

dividend which  is y equal to 0 we model this kind of binary response variable we model this 

kind of binary  response variable or discrete choice variable with the help of simple linear 

probability  modeling by this kind of expression where we said that the probability whether yi 

equal  to 1 given xi xi here is our independent variable can be modeled in the form of 

following expression  beta 1 plus beta 2 times xi here we also drew parallels between this 

approach and simple  linear regression modeling approach where we said that the dependent 

variable is also  written in the form of expectation of yi given xi which is equal to beta 1 plus 

beta 2 times  xi where this expectation of yi is nothing but simply the event happening that 

means  the probability of event happening that means y equal to 1 the probability that this 

event  will happen so we are simply modeling probabilities in the form of linear regression 

model. 

 

 



𝐸(𝑌𝑖|𝑋𝑖) =  𝛽1 + 𝛽2𝑋𝑖  

In this video we will examine some of the issues with LPM that is linear probability  

modeling. Recall our discussion on non-normality and heterosidasticity on the video topics  

related to heterosidasticity and normality in linear regression modeling. There are two  

possibilities for the event yi that is our dependent variable either 0 or 1. Remember  we said 

that if yi equal to 1 as per our regression model it has a probability of pi basically  pi if you 

recall the discussion in the previous video pi was the probability that yi equal  to 1 and the 

remaining because probabilities have to sum up to 1, 1 minus pi is the probability  that yi 

equal to 0.  Let us calculate the expected value of yi given xi this is quite simple if you recall  

our calculation of expected value it is 0 with 1 minus pi probability and 1 with pi  probability 

and therefore the expected value should be equal to pi 0 into 1 minus pi plus  1 into pi which 

is equal to pi which is our conditional value of yi given xi. 

 

When your  dependent variable is of this nature this kind of model is fraught with several 

econometric  issues. To begin with notice when yi equal to 1 essentially your error term is of 

this  nature why because yi equal to beta 1 plus beta 2 in our simple model xi plus error term.  

So if yi equal to 1 this is the form of your error and if yi equal to 0 you can rearrange  and 

your error term will be like this. Now this kind of error this the nature of error  when formula 

is of this form and resulting form is this error is not normal anymore this  kind of jumping 

behavior from this to this so there are only two options for error either  this or this. So your 

error term is not exactly normal this should be clear looking at this  these values when yi 

equal to 1 error is of this form and yi equal to 0 error of this  form so there are two very 

distinct behavior of error terms. 

𝐸(𝑌𝑖|𝑋𝑖) =  0 ∗ (1 − 𝑃𝑖) + 1 ∗ (𝑃𝑖) =  𝑃𝑖 

 

 

 
 

However it is still not a  problem with large samples so if your sample is large this normal 

distribution of error  term is still not a problem. I request you to look for a term called CLT 



central limit  theorem which says that in large samples the normality of error term is ensured 

because  if you have sufficient amount of large sample then in repeated samples your sample 

estimate  sample estimates of beta 1 and beta 2 will be normally distributed even though your 

error  term may not be normally distributed but if you have large samples in repeated 

sampling  your estimates of beta 1 and beta 2 will be normally distributed this comes from 

the central  limit theorem and therefore central limit theorem or CLT ensures that mu i even if 

it  is not normally distributed if you have a large sample this is not an issue. However  at the 

same time notice mu i's are also heterosidastic recall our discussion on media topic on 

heterosidasticity  in linear regression. Here mu i's they vary with yi so either yi equal to 1 

then mu i  have a separate function and if yi equal to 0 then mu i has a separate function. It 

means  that mu i's are varying with yi which is clear cut violation of homosidasticity 

assumption  which means the errors or mu i's are heterosidastic and therefore this can create 

number of issues  with estimation of coefficients like beta 1 and beta 2. 

𝑢𝑖 =  𝑌𝑖 −  𝛽1 −  𝛽2𝑋𝑖 

 

 

 
 

Another very critical issue  that is getting validated here is the fact that expected value of yi 

which is nothing  but the probability Pi should be between 0 and 1 because this is probability 

and by nature  it should be between 0 and 1. However if the model in the linear probability 

model there  is nothing that stops this probability to be greater than 1 or less than 0. Let's look  

at an example here. So if we have yi as a function modeled like this let's say our estimated  

function is minus 0. 

𝑃𝑖(𝑌𝑖 = 1 / 𝑋𝑖 = 1) =  𝛽1 + 𝛽2𝑋𝑖 

 

 

3 plus 0.012 xi and recall in the previous video we noted that here xi  is the market cap and yi 

here is what we are modeling is the probability whether dividend  is paid or not. So if 

dividend is paid then yi equal to 1 if dividend is not paid then  yi equal to 0 and essentially 

we are modeling that probability of dividend being paid. In  this function if the resulting 



function of this form then every 1 million dollar increase  xi is in million dollar so every 1 

million dollar increase in the capitalization indicates  that the probability that form will pay 

dividend increases by 0. 

 

012 or 1.2 percent. In this  expression if x is less than 25 dollar then this value of the 

probability value that is  computed from this expression is less than 0 and if x is more than 88 

dollar then the  probability value Pi will be greater than 1. Now this is a very problematic 

case where  probabilities that are obtained or estimated from the regression are less than 0 or 

greater  than 1. Why so? Because a probability of less than 0 indicates that small size function  

this form for which this probability is coming out as less than 0 recall that number 25  million 

dollar that means these forms are rather small forms they will never be dividends  and 

similarly for all the large forms Pi greater than 1 indicates that they will always pay  

dividends why? Because as a solution you would rather as a simple solution to this problem  

of less than 0 and greater than 1 you would rather put all the observations less than  0 as equal 

to 0 and all the observations greater than 1 as equal to 1 which means you are a  essentially 

assuming that small forms with a certain market cap in this case 25 million  dollars less than 

25 million dollars will never pay dividend will be Pi equal to 0 and  greater than 88 million 

dollars will have will always pay dividend that means their  Pi is equal to 1. This is a very 

problematic assumption and understanding of the model.  Another very critical problem with 

this kind of modeling is the diminishing utility of  R square as a goodness of fit measure. 

𝑌𝑖 =  −0.3 + 0.012 𝑋𝑖 

 

 

 
 

Recall our discussion about linear regression model.  We said that R square measures how 

well the model explains the variation in the dependent  variable. Notice in this kind of setting 

the values of the dependent variable can be either  only 1 or 0 that means they will be at this 

or this and therefore any linear probability  modeling like what we are doing here LPM linear 

probability model which fits a line like this  will have extremely high the error terms will be 



very high and therefore because of such large  variation in error terms the R square will be 

very very low therefore R square is a goodness  of fit measure will give very poor 

performance because by nature of the fit of model all the  observations will be either Y equal 

to 1 or 0 and therefore such large errors will result  in extremely poor R square and therefore 

the conventional linear probability model is not  expected to fit well with the actual 

observations. Only for very few cases where observations are  very close to this point the 

fitted point here close to this point B and this point A will  probably give lower errors and 

therefore only few observations will have low magnitude of errors  for all the other 

observations the magnitude of errors is extremely large and very frenetic  jumping up and 

down. To summarize this video we noted that linear probability modeling approach  that is 

translating our simple linear regression modeling or multiple linear regression modeling  

approach to modeling discrete choice variables like 0 1 or yes no is fraught with issues to  

begin with the nature of error is non-normal and heterostastic by very nature of design of 

LPM  models. 

 

 
 

Second the utility of R square becomes very low as a goodness of fit measure R square  

doesn't work well with LPM linear probability models and third and also very important that  

the variable being modeled here is of 1 0 kind of form which is modeled in the form of 

probabilities  and probabilities are restricted between 1 and 0 and there is nothing in the linear 

probability  model which is an extension of simple linear regression that stops these 

probabilities  between 0 and 1. So, the probabilities can actually extend beyond 1 and less 

than 0 as  well which is also problematic. In this lesson in next series of videos we will 

discuss the  logit or logistic regression and probit approaches logit and probit models that are 

over to that  are able to overcome the limitation of linear probability modeling where it 

produces values  less than 0 and more than 1 and also account for other issues that we 

discussed that is  non-normality and heterostastic of error term and different goodness of fit 

measures in  the context of logit and probit approaches that overcome all these problems. In 

this  video we will introduce a very important classification algorithm which is often referred 

to as logistic  regression or logit modeling approach to model binary response or qualitative 



response variables  or what we call discrete choice variables such as 0 1 1 0. Recall one of the 

major problems  faced by LPM approach that it resulted in dependent variable which was 

beyond boundaries  of a probability that is less than 0 or greater than 1. 

 

 
 

These logit and also the probit approaches  they try to overcome this problem or the 

limitations of the linear regression model  by transforming the model to a function that is 

bounded by 0 and 1. And therefore, the  fitted function as per the logit approach and also later 

on as we will see with the  probit approach looks like a S shaped curve here which is bounded 

on the left side by  0 and on the right side by 1. And the precise function in the case of logit 

model the precise  function is f z i function of z i is e to the power z i upon 1 plus e to the 

power z  i. We can also rewrite this equation as by dividing it with e to the power z i and it  

will result in 1 upon 1 plus e to the power minus z i.  Let us examine this function in slightly 

more detail. 

 

 



𝐹(𝑧𝑖) =  
(𝑒𝑧𝑖)

(1 + 𝑒𝑧𝑖)
=  

1

(1 + 𝑒−𝑧𝑖)
 

Here, this function f z i is nothing  f z i is nothing but a cumulative logistic distribution what 

we call cumulative logistic  distribution where z i is equal to beta 1 plus beta 2 times x 2 i and 

so on up till  beta n times x n i plus error term. This is a familiar expression to us. This is 

same  expression as we saw in the case of linear probability modeling. Only now that we 

have  transformed this into the cumulative logistic distribution or logit function which is 

probability  of y i equal to 1 is equal to 1 upon 1 plus e to the power minus z i where z i is this  

expression. So, this is sort of non-linear transformation of the original probability  linear 

probability model. 

𝑃𝑖  (𝑦𝑖 = 1) =  
1

(1 + 𝑒−(𝛽1+𝛽2𝑥2𝑖+𝛽3𝑥3𝑖+⋯+𝛽𝑘𝑥𝑘𝑖+𝑢𝑖))
 

 
 

Let us discuss the sum of the properties of this logit function which is p i is y equal  to 1 that 

is probability of y i being 1 in this expression where this part is z i. So,  it is 1 upon 1 plus e 

to the power minus z i. Now, if z i let us look at the asymptotic  values when z i tends to plus 

infinity and tends to minus infinity. If it is tending  to plus infinity, this value will become 0 

and the overall function the cumulative logistic  function distribution function will approach a 

value of 1.  So, it will tend to 1 wherever z is approaching infinity and if it is approaching 

minus infinity,  then this value will approach to infinity and overall expression will approach 

to 0. 



 

𝑃𝑖  (𝑦𝑖 = 1) =  
1

(1 + 𝑒−(𝛽1+𝛽2𝑥2𝑖+𝛽3𝑥3𝑖+⋯+𝛽𝑘𝑥𝑘𝑖+𝑢𝑖))
 

 

So, the limiting cases of 0 and 1 are achieved and therefore, whatever the value of this  

expression z i which is z i is represented by this expression the linear function in  variables 

whatever irrespective of these values, the limiting cases of probability will remain  between 0 

and 1.  However, we can easily see here that now the model is not linear in parameters. So, 

this  is not a linear model and hence it is not amenable to OLS estimation. At the end of  this 

lesson, we will discuss an approach called maximum likelihood approach. At the  end of this 

discussion, we will discuss an approach called maximum likelihood approach  or MLE, 

maximum likelihood approach, which is employed to model and estimate such models,  but 

important here to note that these are not model using OLS estimation because these  are not 

linear models, not linear parameters. 

 

 



𝑃𝑖  (𝑦𝑖 = 1) =  
1

(1 + 𝑒−(𝛽1+𝛽2𝑥2𝑖+𝛽3𝑥3𝑖+⋯+𝛽𝑘𝑥𝑘𝑖+𝑢𝑖))
 

𝑃(𝑦 = 1), 𝑡ℎ𝑒𝑛 𝑃(𝑦 = 0) =  1 − 𝑃(𝑦 = 1) 

 

Importantly for us, this model will predict the probability that y i equal to 1. For example,  we 

can take an example where the bank loan default let us say default is y equal to 1,  where y i 

is our dependent variable which is the probability of default. So, this model  would predict 

the probability that y i takes a value of 1.  So, now that we have said that probability of y 

equal to 1 is the probability of interest  that is let us say probability of default and so on. 

Probability of non-default can  be easily estimated as 1 minus probability of default. 

 

Here, the dependent variables  x 2, x 3 and x k and so on, these are our dependent variables. 

And essentially, this  is a non-linear transformation of the model to produce probability 

consistent result.  So, that means we are transforming our model, which was originally the 

linear probability  model into a slight, into a non-linear model, which provides us with the 

probability consistent  results.  To summarize this video, we introduce the logit model or 

logistic regression model,  wherein we transformed our original function into cumulative 

logistic distribution function,  which appeared something like this, where z i here, this z i is of 

that similar to that  linear probability model, which was of this form beta 1 plus beta 2, x 2 y 

and so on up  till beta n x n i plus the error term.  The key desirable properties of this function 

included that this expression when z i tends  to infinity, this expression tends to go to 1 and 

when z i tends to minus infinity, this  expression tends to go to 0, which means now these 

values are probability consistent. 

 

In this video, we will improve our understanding of logit function and relate it with the odds  

ratio, which is very familiar with the concept of probability.  Let us re-examine our logistic 

function, logit function here, which is simply probability  of y i being 1, which is the event of 

interest as 1 upon 1 plus e to the power minus z i,  where this expression represents the z i, 

the linear part of the model.  Now, recall, if the values of z i, which is this expression, that is 

this one is extremely  low and negative.  So, if the values of z i extremely low and negative, 

then that would indicate the probability  of no dividend, recall our example where no 

dividend case was probability of y i equal  to 0.  So, extremely low values of this expression 

would suggest probability of no dividend or  another example probability of non-default 

cases with a higher probability. 

1

(1 + 𝑒−𝑧𝑖)
 

 

 



 
 

𝑃𝑖  (𝑦𝑖 = 1) =  
1

(1 + 𝑒−(𝛽1+𝛽2𝑥2𝑖+𝛽3𝑥3𝑖+⋯+𝛽𝑘𝑥𝑘𝑖+𝑢𝑖))
 

So, higher chances of no dividend or non-default if this value is very low or negative because  

remember 1 plus e to the power minus z i, if this value is very low negative minus it  tending 

to minus infinity, this expression will become, tend to very large, tend to infinity  and overall 

value will be 0.  Similarly, extremely high and positive values of this expression, extremely 

high and positive  values of this expression which is z i, which means if z i is tending to 

positive infinity,  then this expression, this value will tend to 0 and overall value will tend to 

1, which  indicate a high probability of dividend payment or default cases which is of high 

interest.  So, remember in our examples, the cases of interest were defaulters with y, which 

we  classified as even y equal to 1 or payment of dividend which we classified as even y  

equal to 1.  So, a high probability of these events if the value of z i or this expression is very  

large.  Now, let us develop this understanding in the terms of our very familiar odds ratio. 

 

 
 



𝑃𝑖  (𝑦𝑖 = 1) =  
1

(1 + 𝑒−(𝛽1+𝛽2𝑥2𝑖+𝛽3𝑥3𝑖+⋯+𝛽𝑘𝑥𝑘𝑖+𝑢𝑖))
 

Odds ratio is nothing but the ratio of let us say there are two possible events, in this  case 

default, non-default or payment of dividend and non-payment of dividend, then the event  of 

interest on the numerator and event of not interest, opposite to that interest in  denominator 

will give us the odds ratio which is probability of y equal to 1 divided by  probability of y 

equal to 0.  Now, if this odds ratio is greater than 1, then it is obvious that y equal to 1 event  

which is either default or payment of dividend is more likely, while if odds ratio is less  than 

1 that means event which is coded as y equal to 0 that means either non-default  or in some 

other example, non-payment of dividend is more likely.  So, this is how we define our odds 

ratio.  So, now let us substitute our logit function in the odds ratio then remember what was 

our  odds function, e to the power minus zi, this was our function of interest.  So, we put this 

in numerator, this was for py equal to 1 and for py equal to 0, what  should be the relevant 

expression that should be 1 minus 1 upon 1 plus e to the power minus  zi. 

 

So, if you simplify this expression, eventually it will work out to e to the power zi.  So, you 

can, it is a very simple computation, numerator divided by denominator, recall this  function, 

this function, numerator divided by denominator we get this expression e to  the power zi 

which is and where zi is this expression.  So, if you simplify the odds ratio, if you simplify 

the odds ratio by putting the values  for p equal probability of y equal to 1, we have 1 upon 1 

plus e to the power minus zi  and p y equal to 0 which is nothing but 1 minus p of y equal to 

1.  So, if we put these expression, we get e to the power zi and therefore odds ratio is nothing  

but e to the power zi or if you take the natural log on both sides, we get ln odds equal to  this 

expression.  Natural log we have taken on both sides, left lh and rh, so we get natural log of 

odds as  this expression. 

 

Now, notice the higher this value, the higher this expression or natural log of odds, the  

higher the probability that the event likely event is y equal to 1.  So, the higher the value of 

this expression, the higher the odds in favor of event y equal  to 1 and vice versa that means 

lower extreme low negative values of this expression, lower  the odds in this expression, this 

probability and more odds are in more favor of this event.  And this is what we said earlier as 

well.  To summarize in this video, we discussed the logit function in greater detail, we 

transformed  the logit function and related it to the familiar odds ratio.  We already know that 

odds ratio is the ratio of two events where the numerator is the event  of interest and 

denominator is the opposite event. 

𝑃𝑖  (𝑦𝑖 = 1) =  
1

(1 + 𝑒−(𝛽1+𝛽2𝑥2𝑖+𝛽3𝑥3𝑖+⋯+𝛽𝑘𝑥𝑘𝑖+𝑢𝑖))
 

 



 
 

𝑂𝑑𝑑𝑠 =
𝑃(𝑦 = 1)

𝑃(𝑦 = 0)
 

We found that natural log of odds is nothing but the same linear function, which is zi.  So, zi, 

the expression corresponding to zi is nothing but the natural log of odds and  therefore we 

simply and very intuitively understood that higher value of zi, extremely high value  of zi, 

positive high value of zi would increase the odds in favor of the event of interest  which is y 

equal to 1 and extremely low and negative values would favor the odds corresponding  to 

probability y equal to 0.  In this video, we will discuss the concept of thresholding in the 

context of logistic  regression.  In the case of logistic regression or discrete choice or limited 

dependent variable models,  essentially the outcome of the model is probability.  For 

example, remember our dependent variable where we estimated essentially what we 

estimated  was probability that event of our interest will happen, that is, that was the 

probability  that we wanted to estimate, probability that yi equal to 1. 

 

For example, if you remember, recall our bank loan default that we have continued in this  

lesson we said that if the application defaults, then that case which is yi equal to 1, if  yi takes 

value of 1, we estimate the probability from our regression model which is the logit,  which 

we estimated using logit function of the following form, e to the power minus zi.  Now, in 

real life, you would not only want to make prediction about probabilities, but  actually what 

you observe is 1s and 0s.  For example, 1 may be a defaulter and 0 may be a non-defaulter.  

So, you would like to convert your estimated probabilities using logit or even if it is  a probit 

or any such model and convert them into cases of 1s and 0s. 

1

(1 + 𝑒−𝑧𝑖)
 

 

 



 
 

𝑃𝑖  (𝑦𝑖 = 1) =  
1

(1 + 𝑒−(𝛽1+𝛽2𝑥2𝑖+𝛽3𝑥3𝑖+⋯+𝛽𝑘𝑥𝑘𝑖+𝑢𝑖))
 

This requires some kind of threshold value t.  This t value is needed to convert your 

probability predictions into binary predictions of 1s  and 0s that is for example default or no 

default.  A simple example to build the intuition would be let us say you select a value of 

threshold  tau, if this tau is, if the value that you obtain the probability value that yi equal  to 

1 is greater than tau, greater than equal to tau, then you say that it is a default  or the event 

that is of interest, you can change it also default or non-default.  And in case if it is less than t, 

if the value, the probability value is less than t, then  you predict as a case of yi equal to 0 that 

means you predict it as a non-default case  if the probability is less than t.  Now, an 

interesting question here is what should be the appropriate value of tau? 

 

 
 



What kind of error would you want to prefer?  Please notice given a t value, there is a 

possibility of making two types of error.  One, whether the actual outcome is of non-default 

but you still predict it as default which  can be considered as false positive. 

 

 
  

You consider it falsely as a case of yi equal to 1 that is default while it is actually  a non-

default case.  And the second kind of error is you predict non-default which is actually a 

default.  So it is actually a yi equal to 1 case but you predict it as yi equal to 0, you predict  

non-default. 

 

 
 

So, this is false negative.  Let us try to visualize this.  So for example, consider there are, this 

is your tau value and you have some, these are  all your non-defaults.  Let us call these xs as 

non-defaults.  And let us consider on the higher side these are defaulters in 0s, these are 

defaulters.  See I am putting visually them on the higher side because they have a higher tau 



value,  a higher probability of default I am associating with them on the higher side.  Now 

suppose you select a very large threshold, suppose you select a very large threshold  of let us 

take an extreme threshold of 0. 

 

` 

 

8.  So let us say you pick a very high value of t, let tau or threshold let us say a very  high 

value like 0.8 and since it is a very high value you will classify a very small  fraction as 

defaulters.  So now in this case, what about these default cases?  Because you have taken a 

very high value of tau while you would select certain number  of cases which are defaulters, 

there are number of default cases 0s here which will be classified  as non, incorrectly 

classified as non-defaulters.  So a large number of defaulters will be incorrectly classified as 

non-defaulters.  That means with the large probability you will classify large number of 

default cases  as non-defaulters. 

 

So a number of false negatives will be occurring.  So this is a challenge.  However, the 

positive point about taking a high tau value is that a sizable, most of  the non-defaulters, these 

non-defaulters will be classified as non-defaulters only.  That means your false positives will 

be very very less.  So your false positives are very less but your false negatives are very high 

if you  are taking a very high value of tau or thresholding. 

 

Let's take another example where you take a very low value of threshold.  Let's say tau value 

of 0.01, this kind of small value or sorry 0.1.  You will, your cut-off will be from here.  Now 

notice in this case all the default cases, default cases you will correctly and most  of them you 

will accurately classify them as defaulters only. 

 

So most of the defaulters are accurately classified as defaulters.  So the error on this side, the 

false negative error would be very less because most of the,  all the defaulters where actual 

outcome is default are being classified as default only.  But what about these cases which are 

non-defaulters?  It seems that many of these non-default cases now are being considered as 

default.  That means false positives.  So now we are high on the side of positive error. 



 

So our positive, false positive is high while false negative is low.  So as we can see there is a 

trade-off.  As we increase the value of tau or threshold, we make one kind of error while 

being good  on the other side and vice versa for the positive case.  That means if we take a 

very high value of tau, our false negatives are higher but false  positives are lower.  But when 

we take a very low value, our false negatives are lower but false positives are  higher. 

 

So that is a trade-off.  Now let us try to answer the question which kind of bank would select 

what kind of value  or how this value would be selected.  So let us take two examples.  One a 

very conservative bank that want to give loans only to very creditworthy borrowers  and a 

very aggressive bank which wants some kind of expansion, make some new relationships  

and therefore want to loan out in large volumes.  So these two, let us consider two cases.  A 

very conservative bank would like to select only and only very niche, very small number  of 

borrowers and therefore it would like to classify even a small risk borrower as defaulter. 

 

And therefore it would set a very small threshold.  So in that matrix, in the diagram it will set 

a very small threshold.  So a large number of cases would be classified as defaulters.  And 

therefore those that are selected, a very small population of loan applications  will be 

selected, small proportion will be selected and definitely these would be very  creditworthy 

borrowers.  That means this bank, this bank is taking a chance in order to select only most 

creditworthy  borrowers, it is taking a chance and classifying even the relatively safer ones 

into the defaulter  category.  The advantage is aligned to its objective that means it will get 

only and only those  applications as non-defaulter that are very safe. 

 

Contrast this to an aggressive bank strategy.  That bank would like to give loan to most loan 

applications and therefore it would like  to reject only and only high risky borrowers.  So it 

will select a higher threshold, probably on the higher side here maybe, so that those  that are 

rejected, it is very sure that these are definitely not the good ones.  However in this process, it 

is taking a chance that while some of the good ones, most of  the good ones are getting 

selected but there are some of the bad borrowers, not so good  creditworthy borrowers are 

also falling in that list because of this high threshold value  it has put which is rejecting only 

some of the extremely bad borrowers.  So some of the good borrowers are also, or not so 

good borrowers are also falling inside  and get their loans accepted or approved.  However 

please remember this, the value of tau changes its interpretation if your case  of Y equal to 1 

and Y equal to 0 changes. 

 

For example, all our discussions we are considering Y equal to 1 as the case which is default  

and 0 not default.  As soon as you change this interpretation, you take Y equal to 1 as not 

default and 0  as default, then the entire interpretation changes to the opposite side.  So we 

said that if the bank was more aggressive, it wants to accept most of the applications,  expand 

business, then it will take a higher threshold.  A conservative bank may choose a very low 

threshold value. 

 

So this is the in a nutshell what we understood.  To summarize, in this video we discussed the 



concept of thresholding.  We noted that while the model, the logit and similar class of models 

on discrete choice  variables or limited dependent variables model and give dependent 

variable in the form of  probabilities, we need to convert those probabilities into binary 

outcomes or something like 1,  0, just, no's and so on.  We took an example of bank loan 

default and non-default application to explain the case.  However, in order to convert these 

probabilities into 1's and 0's, we need a thresholding  or number, a cut-off range above which 

the values can be classified if probability lies  above in from that we can classify it to 1 and if 

it is low then 0. 

 

So we need a threshold number which can be used to classify.  We also noted with the 

example of bank that there is a trade-off.  Depending upon the value of tau, you have a 

certain probability of making error called  false positives that incorrectly classifying as 1's 

and false negatives that means incorrectly  classifying as 0's and there is a trade-off between 

them which depends upon your selection  of tau value.  As a general rule, in the absence of 

any guidance, t equal to 0.5 is a good threshold, usually  considered a reasonable threshold. 

 

In this video, we will discuss the concept of classification matrix.  Classification matrix is a 

very important concept employed to examine the efficiency  of a classification algorithm 

such as logistic regression.  Recap, in the previous video, we introduced the concepts of or 

the errors known as false  negatives and false positives.  Let us elaborate in more detail now.  

We noted that there are cases and we will carry with our example of default and non-default. 

 

 
 

 

Remember, we classified y equal to 0 as cases of non-default.  Now cases where your 

regression algorithm like a logistic regression or classification  algorithm like logistic 

regression, those cases that are actually non-defaulters and  correctly predicted as non-

defaulters are considered as true negatives.  Similarly, those cases which are actually non-

defaulters that means 0's but incorrectly  classified as defaulters or 1's, they are considered as 



false positives.  Similarly, those cases that are actually defaulters or 1's but incorrectly 

classified as non-defaulters  of 0, they will be called false negatives.  And conversely, those 

that are actually 1's but predicted and also predicted as 1's that  means defaulters, correctly 

predicted as defaulters are considered as true positives.  Now, this matrix is often referred to 

as classification matrix or confusion matrix and various efficiency  measures, various 

efficiency or accuracy measures to understand the accuracy of a classification  algorithm like 

logit model is derived from this matrix. 

 

Let us look at two very important parameters that are derived out of this matrix.  First is 

sensitivity.  Sensitivity is nothing but the ability of our model to correctly classify true 

positives  out of total positive cases.  So for example, total positive cases are true positives 

plus false negatives.  Actual ones are true positive, false negatives plus true positives which 

are here in denominator  and in numerator we have true positives. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 𝑇𝑃 𝑟𝑎𝑡𝑒 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
= 𝑇𝑁 𝑟𝑎𝑡𝑒 

 

So this is called true positive T-rate.  Similarly, we have another measure defined as 

specificity.  Specificity is nothing but overall true negativity rate which is true negatives on 

the numerator  divided by true negative plus false positive.  Now, as you would have 

understood now by our discussion of thresholding, there is a tradeoff  between sensitivity and 

specificity depending upon our value of threshold.  Recall that diagram of tau thresholding 

discussion where we said that let us say these 0's are  our defaulters, these 0's are our 

defaulters and these crosses are non-default cases.  And remember, remember we said that a 

high value of t, if you pick a very high value  of t, let us say 0. 

 

 



 

8 like this, there is a possibility, a high possibility that some  of the default cases or y equal to 

1's will be incorrectly classified as y equal to 0's.  That means a high false negative rate, false 

negative.  This means because your false negatives are larger, your sensitivity will be low.  

What about specificity?  Once you have taken a very high value of t or tau, possibility that 

you will incorrectly  classify non-defaulters as defaulters is very low. 

 

That means your false positives are very low and you score high on specificity.  So you score 

high on specificity but low on sensitivity if you choose a high t.  Vice versa discussion 

applies for a lower t.  That means if you pick a very low t, low value of tau or t thresholding, 

we are interchangeably  referring to this t or tau.  And in that case, remember most of the 

default, most of the default, in fact all of the default  chances are you will classify correctly as 

defaulters. 

 

So your false negative will be very less and your sensitivity will be high.  However at the 

same time, if we are talking about specificity, there is a chance that  some of the non-default 

cases may be classified as defaulters.  That means a high false positive number and therefore 

your specificity will be low.  So if your tau or thresholding t value is low, then you may score 

high on sensitivity  but low on specificity.  So depending upon your selection of tau, your 

sensitivity and specificity measures will  vary.  There are some other important measures of 

efficiency or accuracy of model prediction  that are also computed. 

 

You have not looked at one measure but you look at number of measures.  For example, there 

is a measure of overall accuracy which sees how many true negatives  and true positives.  

That means how many zeros you collect, true negatives are the zeros that you actually  

classified as zeros and true positives are the ones that you correctly classified as  one, divided 

by total number of observations.  So this is your overall accuracy.  Similarly, overall error 

rate.  So false positives, those are zeros that are incorrectly classified as ones and false 

negatives,  those are ones that are actually classified as zeros. 

 



 
 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑁 + 𝑇𝑃)

𝑁
, 𝑤ℎ𝑒𝑟𝑒 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
(𝐹𝑃 + 𝐹𝑁)

𝑁
 

𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
𝐹𝑁

(𝑇𝑃 + 𝐹𝑁)
 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
𝐹𝑃

(𝑇𝑁 + 𝐹𝑃)
 

 

So both are inaccurate classification divided by total number of observations.  So this is our 

overall error rate.  Another measure is false negative rate.  That means overall, what is the 

incorrect classification for the actual y equal to ones  in this case, the falters that is incorrectly 

classified ones so that those that are ones  incorrectly classified as zeros divided by total 

number of ones.  How do we arrive at total number of ones?  That is true positives, ones that 

are classified as ones and false negatives, ones that are  incorrectly classified as zeros. 

 

So the denominator is total number of ones and numerator is only those ones that are  

classified as zeros.  Similarly, we have false positive rate.  False positive rate is theoretically 

those that are zeros incorrectly classified as ones.  So numerator we have zeros incorrectly 

classified as ones and they are divided by, denominator  by total number of zeros.  That 

means true negatives, zeros that are classified as zeros plus false positives that  means zeros 

that are classified as ones. 

 

So this is false positive error rate.  To summarize this video, we discussed a very important 

measure of model accuracy, which  is confusion or classification matrix.  Based on confusion 

classification matrix, we derived two important measures of sensitivity  and specificity.  We 

noted that selection of thresholding value, a very important concept we discussed in the  

previous video is a trade-off between these sensitivity and specificity.  We also derived a 



number of very important measures of overall accuracy of the model  prediction, overall error 

rate, false negative rate and false positive rate.  Essentially these, all these measures are 

derived out of confusion and or what we call  classification matrix as we discussed in this 

video in detail. 

 

 
 

In this video, we will discuss receiver operator characteristic curve, which is a very important  

visual measure of the accuracy of classification algorithm.  Recall our discussion on true 

positives and false positives.  Remember, true positives are same as sensitivity measure and 

false positives are 1 minus specificity  measure.  We discussed these formulas in the previous 

video. 

 

Now let us plot true positive and false positive rates on the y and x axis respectively.  True 

positives are essentially the proportion of default cases, that means ones correctly  classified 

as ones or sensitivity.  False positives are non-default cases, incorrect or that means zeros in 

our case, incorrectly  predicted as default cases or ones, which is 1 minus specificity also.  On 

x axis, we have false positives and y axis we have true positives.  So x also sensitivity on y 

axis or 1 minus specificity on x axis.  Now a curve like this indicates the model performance, 

how these rates of sensitivity  and 1 minus specificity vary depending upon different 

threshold values. 

 



 
 

Let us discuss this in more detail, but this behavior, this movement is essentially what  we 

call as ROC or receiver operator characteristic curve.  Let us start with the case of 

thresholding value of tau or t equal to 1.  In that case, our true positives will be 0.  t equal to 1 

is an extreme case where all the cases will be considered as non-default. 

 

So all the loan applications or what we call as whether they are zeros or ones, they will  be 

considered as zeros.  That means none of the cases will be classified as ones, even the ones, 

all the ones will  be classified as zeros and therefore true positive rate is zero.  So on the true 

positive rate or sensitivity of the model is here zero.  But at the same times, because we are 

not classifying any case as one, even those that  are zeros, all the zeros are collectively 

classified as zeros.  So none of the zeros are also classified as ones.  So this is one, one can 

say a sort of positive from this model that none of the zeros will  be classified as ones and 

therefore false positives will be zero. 

 



 
 

So this point will be here as well.  So for t equal to 1, irrespective of the logit regression or a 

classification regarding the  model, its coordinate will be 0, 0 for t equal to 1.  This is 

irrespective of the model, it is all it will always be 0, 0 here.  Now think of another extreme 

case where t equal to 0.  In this case, if t equal to 0, all the whether it is zeros, defaulters or 

one zeros or non-defaulters  or one or defaulters, all of them will be classified as defaulters 

that is ones. 

 

That means all the defaulter cases ones are of course classified as ones.  So our true positivity 

rate is one, our sensitivity is one, true positivity and sensitivity are  same.  So we are standing 

here.  But at the same times, our zeros are also getting classified as ones that means false  

positive rate is also one. 

 

All the zeros are classified as ones or specificity or false positives is also one.  So we have 

this coordinates.  Again, this is irrespective of the model, whatever model you choose the for 

t equal  to 0, this point will always be 1, 1.  However, for all the other cases, different models 

will show different behaviour except  these two points, all the models will show different 

points, different behaviour.  So as we move from t equal to 1 to 0, we will move on some 

curve like this.  And one can judge the accuracy of model as per area under this curve. 

 

For example, whatever area under this curve as a percentage of overall area will reflect  the 

accuracy of this model.  Let us discuss this in more detail.  Here this ROC curve, the 

behaviour of this ROC curve captures the complete threshold  behaviour of our classification 

algorithm.  For example, at different threshold values, this model will have high or low 

specificity  and sensitivity.  For example, if you have high threshold value like t equal to 1, 

this model will have very  high specificity that means low 1 minus specificity, it will here 

somewhere here and low on sensitivity.  At the same time, if you have very low threshold 



value the model the point is somewhere here,  that means low on specificity but high on 

sensitivity. 

 

So there is a trade-off between the cost in failing to detect cases versus incorrectly  

considering non-default cases as defaulter.  So there is always a depending upon threshold 

value there is a trade-off and this trade-off  is very nicely captured by this ROC curve.  For 

example, if I move from initially if I increase the threshold value in this region  notice how 

sharply because the curve is very steep in a slope, how sharply my true positive  rate or 

sensitivity of the model increases that means my ability to classify correctly  once into once 

increases very sharply.  At the same time, the fall in specificity here because we are plotting 1 

minus specificity  so the rather the fall from 1 to these lower values is very small.  So notice 

in this region my sensitivity gain is very high as I increase my thresholding  value but my loss 

of specificity is very less. 

 

 
 

At the same time as I move in this region please notice my gain in sensitivity is very  small 

because now the curve has become flatter but my loss is in specificity very high.  So I would 

rather be somewhere here this may be one of the optimum points but again it  is subjective 

depends on individual objectives of the entity which is doing the modeling  but still it seems 

to be a good place to be here because here we have lot of gain in sensitivity  and the loss in 

specificity is very small.  Finally an ideal but a more of a theoretical case would be 100 

percent score that means  all the observations are correctly classified and in that case your 

movement that kind of  model if that were to exist although it will not but if there is a model 

that completely  and accurately classifies with 100 percent accuracy all the observations it 

will move  like this and therefore the area under the curve for this kind of curvature which is  

moving like this is 100 percent it captures everything.  That means all the observations are 

correctly classified so true positivity rate is 1 all  the time and false positivity rate is 0 for all 

the thresholding values but this is more  of a theoretical discussion.  Let us take a random 

model where there is a 50 percent probability which indicates almost  like a random guessing 



a coin tossing a fair coin toss where 50 percent probability you  can get a head or 50 percent 

probability you can get a tail. 

 

In this kind of model you have for all the times your true positives is 0.5 and false  positive is 

also 0.5.  So on this behavior which is like a 50-50 model your movement will be reflected by 

this  kind of curve so it is always 50-50 and therefore area under the curve will be 50 percent 

of  the overall area.  This is like a coin tossing game and this model is no good than a coin 

toss random guessing.  For more practical models they will lie somewhere in between that is 

from 50 percent to 100  percent they will be somewhere in between and therefore the 

accuracy of the model can  be very nicely measured as the percentage of area under this curve 

this ROC curve.  To summarize this video we discussed the ROC receiver operator 

characteristic curve. 

 

In this curve essentially provides a visual examination of the efficiency of the classification  

algorithm.  Here on the y-axis we have true positive or sensitivity rate on the x-axis we have 

1 minus  specificity rate or what we call false positives.  We noted that there are two 

extremes to this model one those models are purely theoretical  models which classify every 

observation correctly and therefore the area under the curve of  such model is 100 percent 

while then there are cases where 50-50 accuracy is there for  them like this kind of 45 degree 

straight line area under the curve would be 50 percent.  This ROC curve essentially captures 

the behavior of any classification algorithm depending  upon different threshold values.  So it 

captures the thresholding behavior at different thresholding levels for a given  classification 

algorithm and the accuracy of any classification algorithm can be measured  as area under its 

curve and we noted this area in normal practical cases should lie  between 50 percent to 100 

percent where these two 50 percent and 100 percent are two extreme  cases and it lies 

somewhere in between.  We also noted that for all the models two points two extreme points 

that is thresholding  value of t equal to 1 and t equal to 0 are the same. 

 

In this video we will talk about parameter interpretation of logic class of models.  Recall our 

discussion about simple linear regression model of this form where we said  yi equal to alpha 

naught plus alpha 1 into xi plus the error term mu i.  We said that here the interpretation of 

parameter alpha 1 goes like this if xi and yi are absolute  form then one unit change in xi will 

result in alpha 1 unit change in yi.  If xi and yi are in log-log form then percentage change in 

xi, 1 percentage change in xi will  reflect in alpha i percentage change in yi.  And if we were 

to plot this it would appear like this x, y on xy axis this would appear  like a straight line 

where alpha naught and the slope of this slope of this line will  reflect alpha 1. 

𝑌𝑖 =  𝛼0 + 𝛼1𝑥𝑖 + 𝑢𝑖 

 

So, this is our OLS fitted line.  However the interpretation is not as simple in the logic class 

of models because essentially  these are non-linear in parameters.  Why this is important is 

because remember our logic function which essentially the probability  that yi equal to 1 is 

reflected as 1 plus 1 upon e to the power minus zi where zi was  a linear function of xi's this 

is a vector of various x's.  So, it will be something like beta naught plus beta naught plus beta 



1 x1 plus beta  2 x2 and so on up till beta n xn plus the error term.  So, recall this is the form 

of function which was non-linear in nature and its behavior  on xy axis is captured like this. 

 

Like a s-curve where the limiting cases are 1 and 0.  So, on the left side the limiting case is 0 

and on the right side the limiting case  is 1.  Now such behavior which is non-linear in nature 

it requires high school mathematics to understand  that the impact of this zi impact of this zi 

on yi varies.  Here this x essentially it captures the dynamics of zi which is this function.  So, 

here the impact of zi on yi varies depending upon where you are on this zi.  For example, if 

you are here the if you want to compute the impact here recall our high  school mathematics 

that the slope of yi that means the slope of this function dp let's  call this function as pi dpi 

upon dzi this slope which is affected by the slope here  on this curve measures the impact on 

yi at this particular point. 

 

𝑃(𝑌𝑖 = 1) =
1

(1 + 𝑒−𝑧𝑖)
 

𝑍𝑖 = 𝑓(𝑥𝑖) =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ +  𝛽𝑛𝑥𝑛 + 𝜇𝑖 

 

 

Similarly, if you want to measure impact on at any specific point you need to compute  the 

slope.  So let's say you want to compute the impact of a particular variable x2i on zi the most  

appropriate way to find that impact is the differential with respect to that particular  variable 

and this is what we call as marginal effect.  So, to put things in perspective in a in this kind of 

model it is not correct to say that  one unit increase in x2i will cause beta 2 percentage 

increase in the probability of  yi which we said in the LPM model.  Remember in linear 

probability models LPM models we simply said that beta 2 the coefficient  of that model yi 

equal to beta 0 plus beta 1 x.  In case of linear probability modeling we said that this beta 1 is 

nothing but one unit  increase in xi will result in beta 1 into 100 percentage increase rather I 

should write  this as beta 2 and this as beta 1. 

𝑑𝑃𝑖

𝑑𝑥2𝑖
=  𝛽2𝐹(𝑥2𝑖)(1 − 𝐹(𝑥2𝑖)) 

 

 



 

So 100 into beta 2 times percentage increase in probability of yi equal to 1.  This kind of 

statement we cannot make in the logic class of models and like we discussed  in the just a few 

seconds ago in the previous slide this has to be calculated in this form  dpi upon d of x2i 

which is nothing but the slope remember we computed at any point we  computed this slope.  

This slope represents for a variable x2 this would represent dpi upon x2 dx2 where on y  axis 

we have pi on x axis we have x2i variable.  Now for logic class of models if one computes 

using that function 1 plus e to the power  minus zi where zi was the linear function of 

variables x1i x2i and so on this works  out to beta 2 times f of x2i where this is f of x2i and 1 

minus f of x2i for the logic  model.  So, a one unit increase in x2i will result in the probability 

of yi equal to 1 by beta  2 times f of x2 into 1 minus f x2i where f of xi is the logic 

cumulative logic distribution  function which we have discussed in previous series of videos 

in the lesson and these are  called marginal or incremental impacts evaluated and these are 

often evaluated at mean values  of these variables like x1i and x2i as we will see through a 

simple numerical example.  So, have a look at this function of probability function logic 

function logic class of function  where the value of zi is reflected with this expression this is 

essentially 1 plus e to  the power minus zi where zi is captured by this expression. 

 

 

𝐹(𝑍𝑖) =  𝑃̂𝑖 =
1

(1 + 𝑒−(0.1+0.3𝑥2𝑖−0.6𝑥3𝑖+0.9𝑥4𝑖)
 

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑥2𝑖 =  𝛽2𝐹(𝑥2𝑖)(1 − 𝐹(𝑥2𝑖) 

 

Now here the variable the parameters of beta 1 beta 2 and so on are already estimated here  

we can see them beta 1 is 0.1 beta 2 is 0.3 and so on.  Now here if you are asked what is the 

value of f zi it is very easy to calculate we will  calculate them at the mean values of variable 

let us say the mean values of x2 bar x3 bar  x4 bar it is customary to compute the marginal 

effects at mean variable although you can  compute at any given values.  So at these mean 

values we will compute the value of f zi first and if you are asked to  compute the marginal 



effect let us say marginal effect of x2i then you will compute using  this formula beta 2 into f 

of x2i into 1 minus f of x2i.  So first we will compute the value of f zi at the mean values it 

works out to mean values  that is x2i bar x3i bar and x4i bar at the mean values we will fill 

the mean values as  we saw in the previous slide these mean values are available to us using 

these mean values  we will compute the value of f zi which works out to 0.63. 

 

 
 

𝐹(𝑍𝑖) =  𝑃̂𝑖 =
1

(1 + 𝑒−(0.1+0.3𝑥2𝑖−0.6𝑥3𝑖+0.9𝑥4𝑖)
=

1

(1 + 𝑒−0.55)
= 0.63 

 

1 𝑢𝑛𝑖𝑡 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑥2𝑖  𝑤𝑖𝑙𝑙 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑡𝑦 𝑜𝑓 𝑦𝑖  𝑏𝑦 0.3 ∗ 0.63 ∗ (1 − 0.63)

= 0.07, 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑓𝑜𝑟 𝑥3 = 0.3 ∗ 0.63 ∗ 91 − 0.63) = 0.07, 𝑒𝑡𝑐 …   

 

Now that we have mean values we can simply compute this expression beta 2 times f of  x2i 

into 1 minus f of x2i which works out to beta 2 which is 0.3 into f of x2i this  essentially 

works out to same as f of zi which is 0. 

 

63 into 1 minus 0.63 so this number.  Similarly for x3i we will multiply it with beta 3 other 

values will remain same 0.63  into 1 minus 0.63 for x4i it will be 0.9 into 0.63 into 1 minus 

0.63.  These are these what we are calling as dpi upon dx2i or dpi upon dx3i these are often  

referred to as marginal effects or incremental effects or the impact of coefficients one  unit 

change in the coefficient the impact on percentage change in probability this can  also be 

interpreted like that. 

 

To summarize in this video we noted that unlike linear probability models or simple linear  

regression models the impact of individual variables like x2i, x3i and so on cannot be  simply 

measured in the form of their respective betas like beta 2, beta 3 and so on.  In the case of 

these logic class of models one needs to calculate the differential impact  or what we call 

marginal effects or incremental effect in the form of this expression dpi  upon dxi and the 

value for logic class of model works out to simply for a coefficient  xi as beta i into 1 minus f 

of xi into f of xi and these marginal effects are nothing  but simply the slope remember the 

behavior of this s curve the logic model s curve this  is nothing but the slope of the curve at 



any given xi at any given xi the slope where  y axis is pi the slope is the marginal effect 

which is computed with this formula in the  specific case of logarithm function.  In this video 

we will briefly summarize three important topics which is probit model, maximum  

likelihood estimation MLE and goodness of fit measures. 

 

 
𝑧𝑖 =  𝛽1 + 𝛽2𝑥2𝑖 +  𝛽3𝑥3𝑖 + ⋯ + 𝛽𝑘𝑖𝑥𝑘𝑖 + 𝑢𝑖,   𝑖 = 1, … , 𝑁 

 

The mathematics can be ugly and out of the scope of discussion only a brief summary is  

warranted here.  First let us quickly summarize the probit model.  The probit modeling 

approach is very similar to logit model in fact it is almost identical  with the only difference 

that the cumulative the function the distribution function is  changed to normal distribution.  

So now our f zi which was the logit cumulative logistic distribution function earlier it  is now 

cumulative normal distribution function.  Remember the normal distribution function 

appeared somewhere like this starting it appeared  like this and its cumulative this is the 

normal probability density function its cumulative  function would appear something like s 

curve slightly different than the logit curve but  still like s curve starting from 0 lower cut off 

is 0 and upper cut off is 1 because it  is a probability density function.  So the cumulative 

function would of course start from 0 and cut off at 1. 

 

In functional form this appears like this f zi is equal to this complex looking function.  

However we need not remember that formula there are computer programs and as we will  

work on or it will be automatically clear.  Now the properties are exactly same as logit 

function as z tends remember that z if z tends  to minus infinity this function approaches to 0 

and if z tends to plus infinity it approaches  1.  So this is a very desirable property for this 

kind of modeling.  Second the marginal impact the interpretation of marginal impact of xi on 

the probability  function remains identical only when we derive this formula of marginal 

impact that is dpi  upon xi the resulting formula is this one which is slightly different it is beta 

2 times  f zi where beta 2 is the parameter attached to x2i and remember what was here zi? zi 

was  beta 1 plus beta 2 plus x into x2i plus beta 3 into x3 and so on. 



 

Next we will summarize the maximum likelihood estimation of logit probit models.  Recall 

that these are non-linear models in parameters and hence cannot be estimated with  a simple 

OLS method.  They are estimated with the help of MLE and in MLE parameters are chosen 

to maximize the  log likelihood function as we will see and this log likelihood function 

obtains the population  parameter estimates that maximize the joint probability of observed 

sample or sample parameter  estimates.  Let us discuss this in more detail what exactly this is 

and recall our discussion that essentially  what we have is a set of population parameters that 

means we have a set of population regression  function which maps the observed yi from a 

given set of variable x2, x3, x4 these are  our variables which map to population regression 

function where parameters may be beta 1,  beta 2, beta 3 and so on.  However, we do not 

have the luxury of working with population but we work population which  is a very large 

sample of data which maps from xi's to yi.  We work with a rather small sample and we 

estimate what is called sample regression  function SRF which tries to map these variables 

x1, x2, x3 and so on with our variable of  interest yi as dependent variable. 

 

 
 

But here what we estimate is beta 1 hat, beta 2 hat and beta 3 hat and so on.  Now, please 

remember for each observation for each yi let us call it each yi observation  which is part of 

our sample a set of parameter estimates may be there.  So, each observation yi can be 

associated with the parameter estimates for all times  remember we do not have the 

population parameters, we have sample estimates and for each observation  a set of estimates 

may be there.  So, for example, y1i, y2i these are different observations of the yi which map 

from these  xi observations x1i, x2i and so on where a certain set of parameter estimates may 

be  more likely and so on.  Now for each observation yi we have a set of parameters let us 

call them the entire  parameter let us call them beta vector which is a vector of parameters, let 

us call it  beta k vector and for each observation y2 we have a different vector let us call it  

beta 1 for y2, beta 2 vector and y3 let us put it in capital V. 



 

So, b1, b2 these are  the these are vector of parameters for each observation.  Now what we 

are doing here we are trying to find the probability we are trying to find  the probability of 

observing this vector of parameter estimates and let us call it p1,  p2, p3 for a given set of 

original parameter which is b there is a certain probability  of observing this parameter 

estimate p1, p2 for this set of vector, p3 for this set  of vector and then ultimately if you want 

to jointly maximize this probability of observing  all this that is p1 what will be the joint 

probability of observing all these parameter  estimates p1 into p2 into p3 and so on up till pn 

if you have an observations then this  is the joint probability of having these observations and 

each observation maps to a particular  set of parameters.  Then essentially as a part of MLE 

what we are doing we are trying to find those population  parameters, those population 

parameter vector b which maximizes the joint probability of  observing the sample 

parameters.  I repeat just to summarize essentially as a part of MLE we are trying to find 

those  population parameters that maximize the joint probability of observing these sample 

observations  where each observation corresponds to a set of likely parameter estimates 

probably p1  with beta 1, p2 with beta 2 and so on and this population parameter which we 

estimate  from MLE method maximizes the probability joint probability of observing this 

sample  data.  In the last part of this video we will summarize the goodness of fit measure that 

are more  useful for logit probit class of model.  Remember that conventional R square and 

adjusted R square measures do not work well with the  logit and probit class of model for the 

simple reason that unlike OLS, ordinary least square  regression model, ordinary least squares 

where we minimize the residual sum of squares RSS  of the error terms residuals unlike that 

MLE aims to maximize the log likelihood function  that we just discussed which is the joint 

sort of joint probability maximization. 

 

 
 

And therefore, the conventional R square and adjusted R square measures do not work well.  

So, there are two very simple and very intuitive measures that are employed by logit probit  

functions.  One is the percentage of values that are correctly predicted.  This is often referred 

to as naive model problem where you try to find how many what percentage  of yi value you 



are correctly predicting.  So, there are total number of values that are correctly predict divide 

by aggregate  number of total number of observations.  The other way would be percentage 

of y equal to 1 that means positive cases that are correctly  predicted and percentage of y 

equal to 0 cases that are correctly predicted and that is your  accuracy of the model. 

 

You can take some sort of average of percentage of y equal to 1 correctly predicted and 

percentage  of y equal to 0 correctly predicted to reflect the accuracy of model.  Obviously, 

you can change the weights also for example, if you feel that y equal to 1  correctly 

prediction is more value, then you give a higher weight rather than 0. 

 

5, you  can give it 0.7 and so on and then 0.3 to this.  Similarly, if you feel this y equal to i 

equal to 0 is more desirable, then you give a higher  weight to this one maybe 0. 

 

 

𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅2 = 1 −
𝐿𝐿𝐹

𝐿𝐿𝐹0
 

 

7 or 0.8 and the remaining 1 minus w to this one.  So, if you assign 0.8 here then 0.2 here and 

so on so that w1 plus w2 the weights are 1.  Also there is a very interesting measure which is 

pseudo R square which is employed.  Pseudo R square formula is very simple 1 minus Llf on 

Lf0 where Lf is the maximized value  of log likelihood function that we discussed in work p1 

into p2 into p3 and so on up till  pn is the joint probability that we maximize with respect to 

parameter beta i we try to  maximize this function.  So, this is the joint probability 

maximization for logit and probit class of models and Llf0  is considered to be the restricted 

model where it is assumed that all parameters are relevant  that means beta to beta and jointly 

all these parameters are 0.  So, the restricted function assumes or calculates these this joint 

probability for a model where  all the parameters are assumed to be 0.  So, that is your 

restricted model and then you compute for the maximize value for those  parameters for those 

parameters beta 1, beta 2 and so on where this function this joint  probability function of 

observing the parameters estimates is maximized. 

 



So, Llf is the maximize value of log likelihood function and Llf0 is the likelihood function  

for a restricted model where all the parameters are assumed to be 0.  Now this expression has 

a very interesting property and that goes like this.  If your model is very poor, if your model 

is very useless that means all the beta 1  and beta 2 and beta 3 are not not contributing to the 

explanatory power in that case your  Llf value will almost be as close as Llf0 that means your 

maximize value with L will  be same as Llf0 because your parameters are not so useful.  So, 

that means even whether you have these parameters in the model or do not the explanatory  

power of your model is not so good and therefore your Llf maximize as well as Llf0 for 

restricted  model will be close to each other and therefore this value will turn out to be 0.  So, 

this is one limit. 

 

Another extreme case here is that your model is very well specified and this therefore  this 

Llf value is extremely extremely large as compared to Llf0.  In that case, please remember 

that this log likelihood essentially log this Llf is log  likelihood function that means it is log 

of some probability number where probability  is moved from 0 to 1.  So, if your model is 

very well specified, let us say it is a very very good model where  probability is almost 

inching towards 1 which is an ideal case where it is almost inching  towards 1 then this log of 

this value Llf will be closer to 0 because the likelihood  functions are probabilities and when 

probability is approaching 1 the log of likelihood this  is log likelihood function this will 

approach to 0.  However, because your Llf0 is very poor this value will be very very close to 

0 assuming  that relatively it is very poor it will be much closer to 0 and therefore essentially  

if you look at this number the log of this number will approach minus infinity.  If this value 

as Llf0 approaches 0 this value will approach minus infinity and therefore  the ratio will 

approach 0.  While these are limiting cases, but you can imagine this Llf0 as long as this ratio 

this  number inches this number the probability inside log of a number of probability which  

is relatively much higher as compared to the denominator this number will approach 0. 

 

The idea is that in the case where the model fits well the log of probability will approach  a 

reasonably large number while the denominator approaches to very large number and the 

magnitude  of this number inches to 0 and therefore the upper case the upper limit case of this 

function  becomes 1.  In this pseudo R square very similar manner to R conventional R 

square or registered R  square will range from 0 to 1.  So this is how we use goodness of fit 

measures for the logit probit class of model which  are slightly different from the 

conventional class of goodness of fit measures such as  R square and registered R square.  To 

summarize this lesson among supervised learning models classification algorithm is  a very 

important tool employed in the finance domain for applications such as grade scoring  of loan 

applications. 

 

Classification algorithms are often implemented through logit probit class of models these  

are very simple yet powerful models.  These models account for a number of shortcomings of 

linear probability models such as first  non-normality and heteros-dicity of error terms.  

Second the values of dependent variable or the probabilities cannot exceed the 0-1 range  and 

third the diminishing utility of conventional measures of goodness of fit such as R square  

measure.  The limited dependent variable models such as logit model employ cumulative 



probability  functions such as logistic function.  These models although non-linear are very 

useful for modeling limited dependent variables  that are probabilistic in nature. 

 

In the case of the logit model, the logit function is essentially the odds ratio.  Since the 

estimated variable is in the form of probabilities the thresholding process  is required to 

convert these probabilities into limited outcomes such as yes, no or 0-1.  The conventional 

measures of goodness of fit such as R square are not very useful for such  models.  These 

measures are evaluated on their ability to accurately classify observations correctly.  The 

receiver operator characteristic curve provides another useful tool to examine the  efficiency 

of these models and also facilitates the selection of thresholding values. 

 

Unlike simple linear models, the parameter estimates are interpreted in different manner  as 

we discussed in the form of marginal impact.  These marginal impact or marginal effects are 

computed to interpret the coefficients  and their relationship with the dependent variable.  

Other models such as probit model remain very identical in all other aspects to this logit  

model except that a different cumulative probability function is considered.  In case of probit 

model, normal distribution is employed.  Since the model is non-linear in nature, ordinary 

least square or OLS cannot be employed for  estimation and therefore maximum likelihood 

method is often employed to estimate these  models.  Thank you. 


