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In this lesson, we will discuss the application of regression algorithm with R 

programming  through a financial market case study.  This includes modeling security 

price data with single and multiple features.  First, we will train the algorithm using the 

training dataset and examine various goodness  of fit measures.  And next, we will test 

the algorithm on test dataset and examine its out of sample prediction  efficacy.  In this 

video, we will introduce ABC stock price case study which entails forecasting  stock 

prices using regression algorithm.  Please note that stock price prediction or stock return 

prediction is an attempt to determine  the future value of a company based on analysis of 

factors which impact its price movement. 

 

There are number of factors that help in predicting stock prices.  These can be 

macroeconomic factors like state of country's economy, growth rate, inflation  and so on.  

There are also other factors that are more specific to a stock like profit margin, debt  to 

equity ratio, sales and so on.  Let's examine the data provided in this case study. 

 

 
 

So we are given data for market prices of a company ABC along with Nifty and Sensex.  

These are market indices that represent broad market wide movement of securities and 

we  are also given data of dividend announcement and a sentiment index.  Let's discuss 



this data in more detail now.  Think of a portfolio manager who has to build a model for a 

particular stock which is ABC  in this question and under consideration.  The manager 

wants to predict the ABC stock price return for this stock using regression  model. 

 

The data provided to us starts from 2000 and goes till 2019.  So we have approximately 

19 years of data.  We can construct daily returns as provided here.  So we have daily 

returns of ABC.  These are provided in this column. 

 

And next let's call it column B. Next we have daily return on Sensex.  This is column C 

and daily return on Nifty in this column.  Please note that Sensex and Nifty are two main 

stock indices used in India.  They are the benchmark Indian stock market indices that 

represent the weighted average  of the largest Indian companies. 

 

So Sensex represents average of 30 largest and most actively traded Indian companies.  

Similarly, Nifty represents a weighted average of 50 largest Indian companies.  Another 

variable here is dividend announcement which is provided here in this column.  This is 1.  

This variable attains a value of 1 if the company has announced a dividend on a particular  

date and 0 otherwise. 

 

So for example, if the value is 1 on this given date of 10th January 2000 because the  

company ABC announced a dividend on this date and it is 0 for other days as we can see 

when  the company did not announce any dividend.  Please remember this is a dummy 

variable.  Lastly, we have sentiment variable in this column.  It is a sentiment score that 

quantifies how investors feel about ABC company.  It can be based upon news analysis 

or upon option market analysis or based on some survey  of investors. 

 

We would not go into details of the construction of this score here and take it as given.  A 

very high sentiment score represents bullish emotions of investors and vice versa.  To 

summarize this video, in this video we introduced ABC case study problem with respect  

to stock price forecasting.  We discussed the background of the case study, its relevance 

and implication for financial  markets.  We discussed the variables and data provided in 

the case study, the interpretation of each  of the variables and its implication for the 

regression modeling. 

 

 

In this video, we will introduce the problem statement with the ABC case study.  The 

problem statement will be demonstrated and implemented with the R programming.  In 

the first part of R problem implementation, we will start with the simple linear regression  

model.  We will start the study with data visualization.  We will plot the returns and 

cumulative returns for ABC stock and market indices like NIFTY  and Sensex. 



 

Then, we will segregate the data into test and train dataset.  We will train and build the 

model using the simple linear regression algorithm, using  market index as the 

independent variable and ABC returns as the dependent variable  using the training 

dataset.  So, we will train the model first.  Then we will evaluate the model with various 

goodness of fit measures and through visualization.  Thus, we will test the model and also 

as a part of testing the model, we will evaluate  the out of sample model performance on 

test dataset using various quantitative measures  and also with visualization. 

 

 
 

 
 

 

In the next set of implementation, we will employ multiple linear regression algorithm.  

We will start with training and building the model using multiple linear regression 

algorithm,  using market indices, sentiment, dividends among other variables with the 



training dataset.  Next, we will evaluate the model with various goodness of fit measures 

and through visualization.  There are several issues that we will deal with.  These include 

multicollinearity, heteroscedasticity and autocorrelation. 

 

We will examine these issues and we will try to find ways to resolve them.  We will 

answer the question how to resolve these issues in the estimation and then we  will 

evaluate out of sample performance on the test dataset using various quantitative  

measures and also with visualization.  To summarize this video, we discussed the 

problem statement that will be implemented  through R programming.  In this video, we 

will start with our implementation of ABC case study regression problem.  We start with 

the ABC case study problem. 

 

We will conduct the following steps.  First we will load the relevant packages.  In this 

case study, we are going to use read excel package.  This package will help us in reading 

excel files, data in the excel format.  We will make use of lubrided package which will 

help us in date time manipulation. 

 

Then we will use moments package for understanding various properties of data.  Then 

we will load car package.  Car package along with lmtest will help us in various 

regression related aspects.  And lastly we have sandwich package that will help us in 

handling the estimated estimation  related issues in the regression.  So with this now we 

have loaded all the relevant packages. 

 

As a next step, we will set our working directory.  Please remember, please remember it 

is always a best practice to set the working directory.  In order to set the working 

directory, we will go to this session button, set working  directory, go choose working 

directory.  And we have this particular file and folder if I keep put on open button.  

Notice a command appears on my console window. 

 

This command suggests that now that this command is run, appropriate working directory 

has  been set.  So for reference, I will just copy paste this command on my code.  So now 

that my working directory has been set, I can read the data file.  So data, I will use read 

excel command. 

 

The file name is abc.xlx.  You can save it with any name.  I have the file in with the name 

of abc.xlx.  So now the file is saved.  You can check a few initial elements of the data file 

by using head data command. 

 

Notice there is a date variable, there is a price variable, return variable abc, sensex  

returns, dividend announcement dummy variable 01, sentiment variable and nifty as we 



have  discussed during the case study problem statement discussion.  You can also check 

the dimensions of this data with this brim data command.  It has 5153 rows that means 

5153 daily observations for 7 variables just that we just saw.  One important issue to be 

noted, you can check the class of various elements.  For example, if I want to check the 

class of date variable, let us see. 

 

So I put dollar symbol which means I am accessing that variable inside data.  So it is 

already a date variable.  Also please note there is a time element which is spurious kind 

of, spurious in nature.  We need not handle this time element for now.  We only need date 

which means month, the year. 

 

So I want to remove this particular aspect.  I can do that very easily.  I can simply just run 

this date, data dollar date and I can change the convert type to  date.  Earlier it was in 

POSEXCT type of class which includes not only date but time element.  Since we are 

making use of only date element, I simply convert it to the date file. 

 

So now if I run this, notice the time element is eliminated, only date is there.  I can run 

this class command again.  So its class is date.  So now it is not anymore the POSEXCT 

element that it was earlier. 

 

Now it is only purely a date element.  So to summarize this video, we set the working 

directory.  We load the relevant packages and then we set the working directory.  We 

read the data file which is abc.lx in our data variable which is essentially a data  frame. 

 

We can check that also.  For example, you can type the class command and check the 

data frame, it is a data frame.  Then we check the dimensions of this data.  We converted 

our date variable from POSEXCT date time object to purely a date object.  From the next 

video, we will try to visualize the data with its relevant properties.  In this video, we will 

conduct the visualization of data. 

 

We will visualize the data.  We will examine key variables, we will conduct the 

visualization of key variables including  returns on abc and the market variable that is 

nifty.  So, first let us plot the abc returns.  So, we will use the plot command.  On the x 

axis, we will have the date variable. 

 

On the y axis, we have the return variable.  We will give the x axis name using xlab 

command as date.  So this will give us the x axis as date and then y axis label as, we will 

keep the y axis  label empty but we will give them central heading.  We will use central 

heading or main heading as abc returns.  So, we will plot the abc returns along with 

prices and we would like to see the plotting  format in the line form. 



 

So we will put type as L. Now, as soon as I run this command, we will notice that a  plot 

will appear on the plot window here.  We can zoom it, you can see the plot.  You can see 

there are some extreme falls here around 2005 and 2008 and 10, extreme down  

movements, increase in volatility.  If you want, you can export this plot to save as image.  

You can use different image formats to save this plot. 

 

 
 

For example, you have png, you have jpeg, tiff, various formats available to save.  Also 

you can export it in the form of pdf, you can save it as pdf or you can copy it  to 

clipboard and then paste it on word document and PowerPoint presentation and so on.  

So, this is the return variable, abc returns.  I would like to plot the cumulative returns on 

abc.  So how to compute cumulative returns?  Let's name this variable as cumret. 

 

So we would like to plot this cumulative return variable.  The simple way to compute 

cumulative returns are use data dollar price.  This will use the price and divide it by the 

beginning price, opening price.  So any price divided by opening, its opening value will 

give us the cumulative returns  here.  So I need to use the first value of price and then I 

subtract it from 1 to reflect the  return aspect. 

 



 
 

So this will compute the cumulative return in my data dollar cumulative return variable.  

Now I need to simply plot it.  So I can use the plot.  Again, I can simply copy paste the 

command that I used earlier, the same command, only  that now instead of writing as abc, 

I can use this new variable, cumret, cumulative  return variable.  I can use that and then 

name the plot as cumulative returns. 

 

And if I run this, the cumulative returns, you can see the cumulative returns provided  

here.  So it looks like this.  There is a sharp fall around here, 2005.  These are cumulative 

returns. 

 

Now we will plot the market returns.  So we will plot the nifty returns, market or nifty 

returns.  Very simple.  I do not have to do any extensive coding for that.  I will simply 

use my plot command that I created earlier, I wrote earlier. 

 

 



 

And instead of using abc, I will do a minor change here.  I will write nifty.  So this will 

give me the market return nifty, other things remain the same.  I will use the instead of 

abc, I will change the central heading to market returns.  And now if I run this command, 

notice these are my market returns. 

 

So these are simple market returns.  Next we will plot the cumulative market returns, 

cumulative market returns.  I have to just write a very simple command, which is data 

dollar cumulative.  This time around we are computing nifty cumulative.  So I will use 

this and the very simple cumsum command, cumulative sum command to compute  the 

cumulative nifty returns. 

 

 
 

This will provide me with the cumulative nifty returns.  And I will not write the 

command again.  So I will just simply use the same command that I used earlier.  And I 

will just change here cumulative return instead of cumulative return, I will use 

cumulative  nifty returns.  And in the central heading, I will change the name to 

cumulative market returns.  So here I can see the behavior of cumulative market returns 

easily. 

 

This is the behavior of cumulative market returns.  To summarize this video, in this 

video, we conducted basic visualization of return variables.  This included abc returns 

and nifty returns.  We also plotted the cumulative returns.  In the next video, we will 

conduct the summarization of data, we will provide some summary measures.  We will 

also have a look at the normality, skewness and kurtosis of the data and stationarity  of 

the data as well. 



 

In this video, we will discuss the basic properties of our data.  We start with a very basic 

summary measure.  So we will start by summarizing the data.  For that we will use 

summary command, simply summary command.  And for summary command for abc 

returns, we can see how abc returns are distributed, the  minimum value which is quite 

high and the maximum value and first quantile which is  25 percent, median value which 

segregates the data between two halves, the mean of the  distribution and 75 percentile of 

the data. 

 

 
 

So these values are provided.  Similarly, I can examine the summary of nifty market 

index which is this.  So here also we can see extreme return which is minus 14 percent, 

maximum is around 15.97  which is 16 percent and same matrix that is first quantile, 

median, mean and third quantile.  In the next step, we will conduct a very important 

operation. 

 

We will try to see the probability density of our data.  In R, the same can be implemented 

with this plot command and then density, data dollar  abc.  So this will plot that simply 

the density of abc but we want some aesthetic aspects  also.  So we will type main as, 

then we will type here as density.  This is a density graph. 

 

So we will type density graph and then we will name the x and y axis.  So x axis we will 

just name simply the data.  Also we would like to, since we are plotting the density for 

both market and abc, we will  try to give them different colors.  First we will plot the 

density of stock abc return, density in red.  Let us give the line width of 2 so it will plot a 

slightly more solid line, line type  as 1 so a more solid line will be there.  And we 



probably will, if you do not specify the limits can be extremely large so we will  restrict 

the limits of x axis to minus 0. 

 

6 to 0.6.  Although these are, these will change depending upon your final result.  You 

may modify and tinker with that a little bit here and there to improve the aesthetics.  With 

this lines command, I do not want to plot a new graph.  On the same graph, I want to plot 

nifty returns so I am using lines command nifty. 

 

Then I would like to specify the color.  Earlier I have used the red color to plot the abc 

returns so I am using the blue color  to plot the nifty returns and line width again I will 

use the line width of 2.  So this will be plotting the density of nifty and then I would like 

to add a nice legend  on the, on one side.  So in order to check this, let me plot the, okay 

so this is my plot of abc return then  my density plot blue, in blue we have nifty.  So now 

there is some empty space on probably the top left so I will use that space to put  my 

legend here.  So top left and I will use c abc then I will name the next legend as nifty 

because of this  sequence since abc is in red so I will use the red here and nifty is in blue 

so I will  use the blue here and now I will run the legend. 

 

So if I run this legend a very nice legend will be added.  Use fill equal to color and now 

the legend is added.  Let us enlarge this plot a little bit.  So notice on this plot abc is 

plotted in left and notice the behavior of abc it is extremely  left skewed you can see the 

extreme left tail of abc while nifty is rather more balanced  and symmetric in blue nifty 

returns are more symmetric over the sample period while abc  which is in red are 

extremely skewed towards the left that means there are extreme negative  returns which 

we also saw in the summary measures so it is sort of confirmation of that.  To summarize 

this video we first summarize the nifty and abc returns using summary command  and 

then we plotted their density distribution to understand the basic characteristics of  our 

return data for abc stock and nifty. 

 

In this video we will examine the normality and stationarity of the data.  Now first as a 

part of normality examination we will start with the skewness of the data  we will write 

skewness data dollar here so we will compute the skewness which is very  highly 

negative as we already saw in the diagram the skewness of abc is extremely it is 

extremely  left skewed then we will examine the skewness of nifty returns.  So the nifty is 

also negatively skewed but the skew is not very high but we want a slightly  more solid 

evidence for that so we will conduct basic against you know test of skewness so  we will 

type data dollar abc and this will provide a more statistical measure and notice  it 

provides you with a p value which suggests that the skewness is statistically significant  

in fact very significant for abc returns.  Similarly we can compute the skewness of nifty 

returns so here we will write skewness data  we computed the skewness of nifty returns 



this is also in terms of magnitude not very  high minus 0.177 but its significance is quite 

high so this is also slightly negatively skewed  and low in terms of magnitude but 

reasonably higher in terms of statistical significance.  Now skewness is a measure of 

asymmetry on the left side or right side and the remaining  part we will discuss the 

kurtosis measure so we also examine kurtosis measure. 

 

Kurtosis is a measure of piggness and tail so how peak or less peaked as compared to  

normal distribution and how tailed it is whether tails are fat or not. So first we will 

compute  the kurtosis of abc returns.  The kurtosis is quite high we will also measure the 

kurtosis of probably this can be accounted  to the extremely fat tails of abc and peak 

nature as we saw in the density distribution.  Nifty also has a very high kurtosis so we can 

see that it also has a very high kurtosis  normal distribution has a kurtosis of 3 so as 

compared to normal distribution the kurtosis  levels are very high. Now we would like to 

again have a slightly more statistically significant  evidence so we will use the Anscombi 

test. 

 

First we will compute it for abc returns $abc for abc so the kurtosis is not equal to in  fact 

very significantly different from 3 for abc which we expected we will also see the  

kurtosis. Kurtosis is the measure of piggness and tail how fat tails are or how peak the  

distribution is as compared to normal distribution so the tails are fat and the piggness is 

very  different from normal distribution. Here also kurtosis is very significantly different 

from  normal distribution.  As a final test we already know although that skewness and 

kurtosis are very different and  as a combination skewness and kurtosis decide whether 

data is similar to a normal distribution  the bell shaped curve that we discussed. As a final 

test we would like to have Harker  Bearer test or it is called Harker Bearer test or Harker 

test which will give us a sense  of its normality although we already know that data is not 

normal but it is still combined  measure of normality which is very very high which is 

much greater so data is non-normal  as you can see this is a combination of extreme 

skewness and peak nature of abc although in  case of nifty this skewed nature was less it 

was not as skewed but still as compared  to normal distribution it was skewed and the 

tails were fatter on both side as compared  to normal distribution. 

 

Same for nifty as well nifty we can see it was symmetric but still it is non-normal,  

normality is high we will see while working with the regression model we will see how  

to deal with these issues but we have seen the summary measures. Now just to summarize  

this video we computed the skewness, kurtosis and normality of the overall normality of  

the data. We found that abc was extremely left skewed and both of the distributions  have 

fattailed as compared to normal distribution and higher peaks. This was statistically 

examined  using Agastino's test and Anscombi test and using Harker Bearer test we also 

examined  the overall normality of the data we found that both the series abc, return 



series and  NFT return series are non-normal in nature and the result is statistically 

significant  as well.  In this video we will discuss a very important property that is 

stationarity of the data. 

 

Stationarity of the data refers to the fact that the mean and standard deviation or variance  

as we have already discussed the concepts these are changing with time and if these  

parameters such as mean and variance are changing with time estimation is fraught with 

various  econometric issues. So, before estimating or estimating any kind of relationship 

it  is important to know whether your data is stationary or not.  There are three very 

useful tests for that and these are Augmented Decay Fuller test,  Phillips Perot test and 

KPSS test for that these tests we need to load a very important  package which is URCA 

unit root test. So, we will load this package and now we will  start with our first we will 

conduct the Augmented Decay Fuller or often called ADF  test.  The command is quite 

simple we will write summary and ur dot df for Augmented Decay  Fuller df data dollar 

abc is our price series. 

 

So, we will use abc and notice the null hypothesis  of this particular Augmented Decay 

Fuller test is the data is non-stationary. Since  notice the test statistic it is minus 51.7 

which is much lower and much higher in terms  of magnitude as compared to 1%, 5% 

and 10%. Therefore, with a lot of confidence we reject  the null and we say that data is 

stationary. Please note this is a non-stationarity test  that means null hypothesis of this is 

that data is non-stationary. 

 

Very similar syntax we will use to check the stationarity of the NIFTY returns. If  the 

returns were non-stationary any model such as regression algorithm will be difficult  to 

estimate properly. So, we will check the NIFTY returns also. NIFTY returns also notice  

that we reject the null of non-stationarity with a lot of confidence. So, again the data  is 

stationary. 

 

But while testing a stationarity it is very useful to test through a number  of tests. So, for 

example, Augmented Decay Fuller test were test of non-stationarity.  Here we will be 

using test such as PP test also. Look at the test such as ur dot pp and  notice here again 

this is also a test of non-stationarity and we reject. Notice the test statistic which  is very 

very large in magnitude very negative as compared to the standard statistic. 

 

Using the large test statistic we can reject the null and again say that data is stationary.  

So, here also the null was of stationarity. So, we reject the null and we say that data  is 

stationary. It is very high tested statistic. So, we are again and again saying that data  is 

stationary. 

 



 Another very interesting test and generally it is required to test for stationarity  test also. 

So, earlier both the tests earlier that we did Philips Perron Augmented Decay  Fuller they 

were test of non-stationarity. Now, we will make use of KPSS test which is  the test of 

stationarity. So, first we will run the KPSS for ABC returns and notice the  test statistic is 

much lower than 1 percent, 5 percent and 10 percent level. 

 

So, data is  again we are not able to reject the null of stationarity. So, data is stationarity. 

Similar  test we conduct for NIFTY returns also. KPSS test and here also we find the data 

is stationary.  So, we have conducted the stationarity test. To summarize this video, we 

conducted test  of stationarity and non-stationarity. Here Augmented Decay Fuller and 

Philips Perron  test were test of non-stationarity where null hypothesis was of non-

stationarity and rejection  of null indicated stationarity while KPSS test was of 

stationarity and we failure to  reject the null, we fail to reject the null which indicated 

again the stationarity of  the data. 

 

In the next set of videos, we will start with training and testing of regression  algorithm 

and prediction of stock returns. In this video, we will segregate our main  data which is 

ABC stock return data into training and rest data. Training data will be employed  to train 

the linear regression algorithm while test data is employed to test the out of sample  

forecasting efficiency of the algorithm. So, we will start the analysis by segregating  the 

data into training and test data. As a first step, we will create our train data  segment 

which is equal to main data and we will tell R that the date should be less than  equal to. 

 

Now, we will filter the date with 2017 less than 2017 December. So, first December  

2017 is our cut off point and this is the maximum and it should be great. Let us say  we 

also filter observations before 2006. So, let us say we also want do not want to go  too 

early. So, we filter those observations that are for which the year is greater than  2006. 

 

So, we are filtering from 2007 to almost 2017. We are filtering all the observations.  So, 

this is our train data and let us check this. So, we will check the head of train  data head 

of train that that starts from 2007 as we can see here. Let us check the tail  of the train 

data. It ends with 2017. As you can see here in the date segment, we can see  on the 

console window it ends with 2017 and if you look at the dimension of the train  data, it 

has 2850 observations. 

 

Similarly, we will select our test data. Our test data  is again in a similar manner. We will 

filter it. Data, dollar date should be greater than  and now this time around we will use the 

exact same date criteria which is greater  than as.date and we will precisely select the date 

that we selected earlier. We will  select the same date in fact. So, all the observations with 

higher date number will  be taken here. 



So, now this test data will contain the remaining observations that are  above 1st of 

December 2017. Let us examine this. So, the head of the test data is starts  from 2017. In 

fact, 4th of December and look at the probably 2nd and 3rd are holidays and  if you look 

at the tail of this, tail of the test data, the tail it ends with 2019  and if I examine the 

dimension of test data, so I have around 478 observations to test  the algorithm. So, to 

summarize, in this video, we segregated our data into two segments.  First the training 

data which starts from year 2007 and ends at 1st of December 2017  while the test data 

contains the remaining observations starting from 4th of December  2017 up till 2nd of 

October 2019. 

 

In this video, we will train our simple linear regression  model by regressing the ABC 

returns on NFT returns. So, we will model simple linear regression  model by examining 

the ABC returns and NFT returns relationship. So, in R, this relationship  examination is 

done with a very simple lm command. So, we will run this lm command which  indicates 

some kind of linear model, linear regression model is about to take place and  where we 

are regressing ABC returns. Here this notation suggests that ABC is the dependent  return 

variable, ABC returns and the independent variable is NFT. Our data is, train data we  are 

using to train this linear regression model and the output of this linear regression  model, 

the train model output, the coefficients will be stored in SLR object, simple linear  

regression. 

 

Let us see the summary of this object. We will assign, in fact, we will assign  the 

summary to the model object, summary SLR. Let us have a look at the summary variable.  

I can simply extract this by printing model. 

 

Notice the console window. On the console,  we can see the printed output. In the output, 

the following objects to be noted. First,  note the coefficient of NFT which is 0.397. This 

is also the measure of beta that we have  discussed. Recall the discussion on beta that beta 

represents the sensitivity of ABC returns  here that means if market moves by 1%, ABC 

stock returns move by 0. 

 

39%. Notice, also  notice the t value of the coefficient which is heavily significant. 

Remember, this t value  is computed as the ratio between estimate which is the 

coefficient that is 0.397 here  divided by the standard error. 

 

Now, this t value 18.67 is very significant. The three  star suggests that it is even 

significant at 1% level. Recall our discussion on the  significance levels. Null hypothesis 

here is that this coefficient NFT has a value of  0 which means NFT does not affect, the 

movement in NFT does not affect, do not affect the  returns of ABC stock. However, 

given this result, the significance, the very high significance  of this result at 1%, we can 



say definitely there is a positive impact of NFT that is  market movement on ABC 

returns. 

 

Here it appears if market moves by 1%, ABC stock moves by  0.39%. And this 

relationship is statistically significant at 1% level. So, we are very confident.  In fact, we 

are more than 99% confident that there is a relationship between NFT returns  and ABC 

stock returns. Moreover, notice this adjusted R square here and the multiple R  square. 

 

In fact, we will focus on adjusted R square which is a more improved version.  It is 

10.87%. This suggests that out of the total variation, out of the total variation  in ABC 

return, 10.87% variation is explained by NFT which means and recall our discussion  on 

the market risk and systematic risk that almost 10.87% part of the overall risk, total  risk, 

total risk is 100%, 10.87% part of the risk is market risk or systematic risk driven  by the 

market movements. 

 

In this case, market is proxied here by NFT. The remaining approximately  89%, 89.21%, 

around 89% is the idiosyncratic risk which is specific to ABC stock. The remaining  

10.87% is driven by market and explained by market. So, this is our interpretation of  the 

overall regression. To summarize this video, we examined the relationship between  ABC 

returns and NFT returns by regressing ABC returns on NFT returns. 

 

We also examined  the output of this regression model. We discussed the coefficient, its 

significance, the idiosyncratic  and systematic part of the risk associated with ABC stock 

return. And we have now trained  our linear regression algorithm. In fact, this is a simple 

linear regression algorithm  because we are using only one variable which is NFT. So, 

now that we have trained our simple  linear regression algorithm on the training dataset, 

now we will examine, we will examine  the efficiency of this model in subsequent 

videos. 

 

We will examine some of the econometric  issues that this model may face and how to 

deal with them.  In this video, we start with the residual diagnostics of the model. First, 

we look at  the density plot of the error terms. So, we will use density plot. Recall that we 

have  already stored our trained model in the model variable or model object. 

 



 
 

So, we will simply  use the model residuals. So, we will plot the density of this. Let us 

examine the density  plot of residuals. Notice that while the shape of this density is 

relatively similar to normal  distribution, however, its left tail is extremely long, which 

suggests that it is extremely  skewed. We can also corroborate this by plotting the density 

plot of studentized residuals.  For that, the command is simple. We can just write the 

same density plot and we type rstudent. 

 

But this time, we will pass on the original model as LSR object, which is the model 

object  that we created. So, again, it is also very similar. So, the density plot of residuals  

and as well as studentized residuals is extremely left skewed. Studentized, student's 

distribution  is essentially t-distribution. 

 

So, these are standardized errors. And as we can see, it  is extremely left skewed. Another 

test to examine the behavior of the model and its  residual is qqplot, which checks the 

normality. Let us examine the qqplot. So, we pass on  the fitted object SLR, which we 

already fitted. We also would like to know some of the extreme  observations that may 

create problems for us. 

 



 
 

So, we will give the number as n equal  to 10. So, this will identify 10 extreme 

observations for us. Let us see. So, we will run the qqplot  here. Also, we would like to 

see some of the extreme observations. So, I type id equal  to list n equal to 10. 

 

So, we would like to highlight 10 extreme observations. I run this  command and the 

model is plotted here. So, we can see the quantile wise distribution  of studentized 

residuals. So, the residuals are plotted. And we can see this number of  observations that 

are extreme, observation number 72, 152 and 2544. 

 

These are some of  the extreme observations that depart from the normality. On the fitted 

model, these  observations are plotted. Along the fitted model, we can see the observation 

numbers.  The studentized residuals are plotted here. We can see some of the 

observations plotted  here. So, this is, we can see that most of the time, the observations, 

the residuals  are along the normal line, the straight line indicates the normal line, the 

observations  that deviate from the straight line indicate deviation from normality. And 

we can see some  of the fitted observations on the extreme left and right end, these some 

observations  deviate from the normal distribution. 

 

Normal distribution here is represented by the straight  blue line.  Lastly, we can also 

conduct the outlier test. Now, there is a basic outlier test and it  will also adjust for 

Bonferroni values, adjusted p values. Let us see them. So, if I run this,  notice, unadjusted 

p, there are lot of very significant unadjusted p values, but one,  once there is Bonferroni 

correction, one can see the significance is lit, but still we  have, there are six extreme 

values and these are appear to be, these appear to be very  similar to the earlier ones. So, 

these are our extreme values. If you want to know more  about these functions and their 

theoretical underpinnings, you can simply type question  mark, qqplot and see the 

background, the entire background of these commands. 



 

For example,  this is for quantile comparison plot to check the normality and the outlier 

test also, you  can check that the theory behind these commands by running the question 

mark, you can read  more and more about these commands.  Lastly, if you feel that these 

observations are vitiating, these extreme observations  are vitiating your estimation 

model, you can remove them from their model. You already  have the observation 

numbers, you can remove them from the model and then run the model  again to improve 

its estimates. 

 

To summarize this video, we created density plot of residuals. We also have examined 

the  studentized residuals on the density plot. Next, we check the deviations from 

normality  with the help of qqplot and we also conducted the outlier test to see some of 

the outlier  observations. We found that there are number of outlying, outlier observations 

that may  vitiate the estimation. As a future course of action, one can remove these 

observations  from the model. But please note, sometimes these extreme observations 

also carry useful  information probably that may help us model extreme values 

representing extreme events. 

 

So sometimes it is not advisable to remove these values. So a subjective judgment call  

may have to be taken here.  In this video, we will examine a very important issue that 

econometric issue that afflicts  estimation which is heterocyticity, which is the non-

constant variance. So as an intuition,  let me plot the fitted model SLR and I will plot the 

residuals with this plot command.  Notice the behavior of residuals with the fitted values. 

Notice the variance as we go  ahead with values fitted values. Notice the variance is not 

constant, sometimes it is  high, sometimes it is low and the way residuals are scattered 

around the fitted line, their  variance seems to be not constant, which indicates that model 

may be afflicted by the issue of  heterostasticity. 

 



 
 

To check it more formally, there is NCB test. If you want to know more  about it, you can 

type NCB test and all the details will be provided to you. However,  now for the non-

constant variance, error variance, we will simply run the command. So we will  type 

NCB test and this is part of car package, CR package that we installed earlier. We need  

to supply it with the model object that we created earlier. 

 

So model and first we will  try with the studentized, without studentized errors and let us 

see. So let us see the output  on the console. So I need to provide the fitted object 

actually. So instead of model,  I need to provide the fitted object. Notice the p-value is 

very significant, which indicates  and this and simple NCB test fits the values along the 

fitted values and it seems that  when fitted along the fitted value, the error variance is not 

constant. It is varying very  significantly which is indicated by this very high value of 

chi-square and a very high significance  level of p-value. 

 

So if you look at the p-value, it is quite high. We can also see if these  residuals, they are 

varying with the nifty values. So we will specify the formula. This  time around we do 

not want to see with fitted values, but we want to see with nifty. By  default it runs with 

fitted values. This time we will model it with the nifty which is the  nifty returns and 

along nifty returns also we can, we have similar evidence we can see,  we can see that 

there is a very significant variance, residual variance that is not constant. 

 

Another very interesting test of non-constant variance is BP test or Brouche-Pagrand test.  

If you want to know more about this, you can simply type question mark BP test and all  

the details are there. So this BP test is a very interesting test of where hydrostaticity,  it 

simply checks whether error variance is changing. So let us run the model BP test  and 



we will supply the model object. Here we are supplying the model object and we will  

decide whether we want this error terms to be studentized. 

 

So without studentized, again  a very significant p-value, very similar to one we have 

earlier which indicates a very  high level of hydrostaticity. If we studentize, let us see if 

we studentize the t-values,  error values, this time we are not able to reject the null of 

homosidasticity. So when  we are working with homosidastic, with studentized errors, 

probably it seems that the model  is not afflicted that much with hydrostaticity. However, 

when we are running this model, this  test, BP test, Brouche-Pagrand test without 

studentized error, then it gives us hydrostaticity.  So probably the issue is there, the issue 

of hydrostaticity is slightly moderate in  the sense that without student t-values, it is not 

affecting our estimation.  So just to summarize, we tried to visually examine the issue of 

heterosidasticity, there  appears to be, it appears to be the case that the residual variance 

is not constant. 

 

However,  when we conduct this using BP test with studentized errors, then our model 

seems to be not much  afflicted by the issue of heterosidasticity. So there is issue of 

heterosidasticity, but  it seems it is slightly moderate.  In this video, we will discuss the 

issue of autocorrelation. Often financial market  returns are severely correlated and that 

leads to issue of autocorrelation in error terms.  A very simple test is Durbin-Watson test, 

which is, you can see the more detail about  Durbin-Watson test with this dwtest? 

command as we have been doing earlier. 

 

You can read  more about it. Let us implement this dwtest command, Durbin-Watson 

test.  So while implementing dwtest command, we need to supply it with the fitted object, 

which  is SLR, we call the object SLR. If I run this command, notice that we get a true 

autocorrelation  p-value as very high p-value, which means it is not significant and 

dwstatistic is close  to 2. So we are not able to reject the null based on this p-value. 

That means, as per  this test, we have zero autocorrelation. Now please note, if dwvalue 

statistic is close  to 2, then there is no correlation. If it is close to 0, then there is a positive 

correlation.  If it is much more than 2, then there is a negative autocorrelation. Here it 

seems it  is very close to 2, which is also indicated by p-value. That means we are not 

able to  reject the null that there is no autocorrelation. 

 

However, there is another very interesting  test which is Brugge-Gottfried test, for which 

you can see more details here with the BG  test. So you can run the BG test and question 

mark and see all the details here. With Brugge-Gottfried  test, let us see the issue of 

autocorrelation and how it affects our model.  So we need to simply type bg test 

command and supply the model. By default, it will  consider only 1 lag of error. 



 

So with 1 lag notice, there is no autocorrelation as per  p-value that the BG test statistic, 

which is essentially the LM test and notice the  p-value is not significant. That means we 

are not able to reject the null. However,  please remember many times the correlation is 

not because of the first lag, it can be  also because of lags with the later periods, maybe 

second or third lag. To account for  that one can simply put the model with higher lag, lag 

terms. 

 

For example, I can specify  the order as 4 and see if the error term we have. So we are 

able to catch some serial  correlation with 4 lags. That means there is some 

autocorrelation or serial correlation  with higher order lag terms. To resolve this issue, 

one simple solution with the model  is to add lags of returns in such model when there is 

serial correlation, a very, in financial  markets a very simple and easily available solution 

is to add the lags of returns, in  this case maybe lags of market returns or lags of ABC 

returns and see whether then issue  of serial correlation is resolved.  To summarize, in 

this video, we conducted the Durbin-Watson test and BG test of autocorrelation.  It seems 

with DW test and first lag Bruges-Gortree-BG test, we are not able to find any serial  

correlation, but when we examine the higher order lags with BG test, we find some 

evidence  of serial autocorrelation. In practical situations to account for such serial 

autocorrelation,  one can add lag of returns such as ABC stock returns or maybe market 

nifty returns lags  to see the serial autocorrelation issue is resolved. 

 

In this video, we will discuss the application of robust standard errors. Recall our 

previous  discussion on heterosid-stg and autocorrelation. These issues afflict standard 

errors and standard  errors go into the model t values with coefficient divided by standard 

errors which result in  t values under or over, so under or overvalued standard errors can 

affect the estimation  by resulting in lower or higher t values.  One solution that has been 

developed is to create robust standard errors that account  for issues such as heterosid-stg 

and autocorrelation. Now, with R, there are various flavors of  these robust standard 

errors. We will discuss the four most prominent ones often employed  in computation of 

standard error, the routines that are often employed. And please note,  it will not affect 

the coefficient estimate, but it will provide us with the robust standard  errors that will go 

into the computation of t values that are arguably robust against  issues such as heterosid-

stg and autocorrelation. 

 

So one way to compute is to use HCCM. So we will simply use our fitted object SLR and  

then we will supply with the variance covariance matrix, which is HCCM. If you want to 

know  what HCCM is, you can type question mark HCCM and it provides you with the 

heterosid-stg  corrected covariance matrices. So if you run this, you will find the 

coefficients, coefficient  will remain same, but the standard errors will be changed and 



they will correct the  t values for heterosid-stg corrected covariances.  Similarly, we can 

also correct for heterosid-stg and autocorrelation correction through VCOVHAC. 

 

This is for heterosid-stg and autocorrelation. These are part of sandwich matrix. So you  

will generate another coefficient matrix with its t values and p values. You can also 

correct  simply for heterosid-stg depending upon the nature of whichever issue is 

affecting the  model more, you can choose that. 

 

So VCOVHC. This will correct for heterosid-stg only.  And then there is new V wide 

correction. So lastly, we have new west wide correction.  We simply type new west wide 

correction and if you run this, you will find the new west  covariance matrix estimation, 

all the discussion is here. But for implementation, we will simply,  we will use the same 

notation, only that instead of VCOVHAC, we will supply with the new west  new west 

correction. And there we can obtain the corrected standard errors and the resulting t  

values. 

 

So with this, in this manner, we can apply the robust standard errors. There are various  

flavors available. We can check more about them with this coeftest command, coeftest.  

We can check more about them, different variants, different flavors, how to apply all the,  

all the flavors are available. We can read more about this. The four most prominent we 

have  discussed, hCCM, heterosid-stg corrected, various heterosid-stg and autocorrelation 

corrected,  new west correction and so on. So we can apply them to observe if there are 

significant changes  in t values from our original values. 

 

It seems still applying all the  robust standard errors, our coefficient is still very, very 

significant.  To summarize, in this video, we discussed the application of robust standard 

errors in  correcting for issues such as heterosid-stg and autocorrelation. We discussed 

four very prominent  flavors of variance covariance matrices that is hCCM, VCOVHAC, 

VCOVHC and new west routines for  correcting the standard errors in the model. Now 

that we have trained our simple linear regression  algorithm and tested it for various 

econometric issues, we will try to do some prediction using  the test data. So we will do 

some prediction using the test data.  As a first step, we will create a prediction object, let 

us call it predict,  P-R-E-D and we will assign the predicted values, predicted values, we 

will use our fitted object  SLR and we will supply the new data which is test data and 

assign the values to our predict object. 

 



 
 

As a first step, let us visualize this along with the actual test data. So we will plot,  along 

with the date, we will plot our  actual returns that are there in the test data. So this is test 

data, ABC returns, we will be  plotting them. So on x axis, we have date and on y axis, 

we will have ABC returns. 

 

Or rather let us call returns.  We'll use central object as predicted returns versus actual 

returns.  Now we would like to restrict our graph for y  limit. We would like to visualize 

from minus 0.2 to plus 0.2, which is a reasonable limit  to visualize daily data. 

 

You would not expect returns to vary too much from 20 percent,  more than 20 percent. 

Then  PCH 20 will ensure that our objects are plotted as solid dots. We want them to plot 

in red colors.  Also, let us specify the type as line L, type L. So there will be a solid line 

in fact.  Now, along with BC returns, we would also like to have  our predicted object 

plotted along the date. 

 

So again, on the x axis, we have date.  And on y axis, we would like our predict object 

line width of one.  Let us specify the line width of one here also.  Although it's not 

necessarily needed, but just for information, you can change it  to two or any other 

number if you want it more or different the width to be higher or something.  So first, let 

us plot this. 

 

Let us plot using this command. Let's see if we are given a  let us plot using this 

command. Let's see if we are getting the object right or we are getting  some error. So, so 

this object has worked. So this is the currently the in red, we have the  actual returns in 

the test data. We'll add some lines, these lines. 



 

We had some lines with this command, so we will run this lines command and these 

green ones are  the predicted ones. This is our predict PRED object, predict object. Now, 

to make it more  aesthetically clear, I'll also add the legend here. 

 

So legend. Let's put the legend on the  top right, I see a lot of empty space, so I'll put the 

legend on the top right.  And notice, you can see that in our window, minus 0.2 to plus 

0.2 sufficient amount of  gap is there. So if I would have put it minus one to plus one or 

some higher number, it would have  looked not so aesthetically good. 

 

So right now it is decent. The windows decent. In fact, I can put  it as minus 0.1 also. 

That would be okay as well. So if I run it for minus 0.1 to 0.1, that also  looks better. 

Now I'll add the legend on the top right part of it. 

 

So we have actual return.  And we have predicted return. And we'd like to fill the, 

provide the fill. So here,  the actual return is in red, as we noted earlier, and predicted one 

is in green. So I'll add the  green here. And then we'll run our plot. And we have the 

complete diagram here. Let's examine the  full diagram. Notice, it seems that where the 

green one is reasonably capturing, not in terms  of amplitude, but in terms of fluctuation, 

where the fluctuations are higher in the red ones,  fluctuations are also higher in the green 

ones. 

 

So there is reasonable similarity in the movement.  However, we need more statistical 

evidence to conclude that. And for that, we will use our  correlation command, we'll use 

the core command to test whether our predicted returns and actually  we see this. 

 

So this is actually we see return. And this is our pre object. Let's examine the  correlation. 

And the correlation is reasonably high. So this is 0.43. That's almost 43.78%.  So we are 

able to capture the dynamics of the ABC returns to the extent of 43.78% using our  

regression simple linear regression algorithm. So to summarize this video, we created a 

predict  object, then we plotted this predicted object along with our actual returns 

contained in the  test data that we created. The dynamics appear to be reasonably similar, 

that means we are able to  capture a lot of dynamics of actual return in our predicted 

object. 

 

We statistically examined this  with our correlation measure, we check the correlation 

between actual return and predicted  returns, there's almost 43.8% correlation between 

these two entities. So it seems that our prediction  algorithm has done a reasonably good 

job. In daily data context, this is a very high level of  prediction efficiency. In this video, 

we'll discuss the computation and examination of  out of sample fit or accuracy of our 



prediction algorithm. Please note that you need some kind of  cost or error function, cost 

or error function to compare the model across to compare across various  competing 

models or algorithms. 

 

Now there are various cost functions and error functions that  can be employed, starting 

from very simple models such as MSE or RMSE errors to more complex  functions. Now 

let us examine how to execute this in R and for that we need library matrix which  

provides us with a number of such error functions to compute.  For all, we'll start, let's 

start with this MSE. 

 

MSE computes  the average squared difference between two numeric vectors. So if you 

want to compute  MSE with matrix library, you can simply type MSE test $abc. So this is 

our actual return object.  And along with the predicted object and you can compute 

compute the MSE measure. Now on its own  on a standalone basis, it does not have any 

meaning you need some other competing model and  you would like to compare this 

MSE that is the average squared difference between the vectors  to compare. Another 

variant of this error could be RMSE.  RMSE computes the root mean squared error 

between two vectors like we have here two returns,  ABC return and actually BC returns 

in the test data and its predicted values. 

 

Also, if you want to read more or know more about these measures, you have to simply 

type  question mark RMSE and you'll get most of the information here. You can check on 

the internet  also, but most of the information relevant here can be obtained from the help 

window.  Now to implement that RMSE in R you simply need to type RMSE and then 

test $abc.  And then you have predicted object you can compute this measure and then 

you can compare  this measure with other competing algorithms or models. If you have 

you may have various other  competing models, maybe multiple linear regression or 

some other variables you want to test and then  you can put it against this value of 

RMSE. 

 

Then another important measure you have RAE.  RAE computes the relative absolute 

error between two numeric vectors.  So again, to compute the RAE you have to just type 

RAE. And please remember these are cost or error  functions that help you understand the 

out of sample fit. Why we are saying out of sample?  Because we are using it on test data, 

not on the data where we print the algorithm.  So again, we'll type test $abc, which is our 

actual data along with the predicted object,  and we can compute this measure of error as 

well. 

 

On their own standalone basis, they do not make  much sense. You need to have a 

competing model or competing algorithm to compare with. Then you have  MAE error 



also. MAE computes the average absolute difference between two numeric vectors. 

Again,  the computation method is same. The implementation is same. We use test $abc 

along with the predicted  object and you get the number here in the output in the console 

window. 

 

Similarly, you have MAPE,  another very important and famous measure of error, which 

is MAPE computes the average  absolute percent difference between two numeric 

vectors. If you want to compute the MAPE,  you can simply type MAPE test $abc and 

you have predict object. 

 

Thus, you can compute MAPE also.  Then there are a number of measures. For example, 

you have S-MAPE.  S-MAPE is basically, it computes the symmetric mean absolute 

percentage error between two  vectors. So you can compute S-MAPE for test $abc data 

with predict data, you get that number. 

 

In a similar manner, there are other measures. We can compute them. For example, you 

have MSLE,  MSLE computes the average of squared log error between two numeric 

vectors.  The computation method remains the same. Then you have RMSLE.  RMSLE 

computes the root mean squared log error between two vectors. 

 

Similarly, you have bias measure. Bias measure computes the average amount that is 

actual  greater than predicted. You can compute bias in the percentage form also. You 

have RSC measure.  RSC measure computes relative squared error between two vectors. 

For example,  you can simply type RSC test $abc along with predict object. 

 

The syntax remains the same  and you can get the RSC object. You can also have RRC, 

which is the root relative squared  between the two vectors and so on. There are many 

measures. These were the most important ones.  You can pick a number of measures and 

then compare this matrix along with other metrics.  You can create more complex 

objects. For example, you can give different weights to these different  errors and then 

create a new object as per your requirement or some more complex expression. 

 

 You  can create out of all these error objects and create a more complex error object to 

compare  against computing models. So there are different flavors to it available with 

you. You can use them  to check the out of sample accuracy of your model. To 

summarize this video, we discussed a number of  error or cost measures to examine the 

out of sample forecasting or prediction accuracy of our  trained algorithm. We also saw 

their implementation in R and we noted that we can create more complex  forms of error 

or cost functions by assigning weights or some complex expressions to these  readymade 

readily available error or cost functions. 



 

In this video, we will start with multiple linear regression model.  Most of the syntax to 

implement and execute the model will remain same. So let us call it MLR,  multiple 

linear regression model. And as we did with the simple linear regression model,  we will 

use LM object, ABC returns and let us add sensex returns,  basis sensex, sentiment 

measure since this is a multiple linear regression model.  We will be using a number of 

variables on the dependent side, nifty, dividend announce, dividend  and we will use our 

train data. 

 

Set to train the model.  So now that we have put the expression, we have provided the 

expression, let us run it.  Our object, MLR object saves the entire output. So let us print 

the output summary object MLR.  Let us call it model.  Again, we are using the same 

naming convention. Let us see this output.  Let us examine the output of this model. 

 

Notice the coefficient of sensex and nifty,  both are broad market indices while sensex is 

heavily significant at three star that is  significant even at 1% level. Nifty is turning out to 

be negative. Now this is slightly surprising  for us because we already saw that nifty on 

with simple linear regression model that nifty also has  a positive impact. Now this and 

here nifty is not significant. This suggests that there is some  possibility of issue of 

multicollinearity as we will examine in the next video because sensex and  nifty both are 

market wide variable. 

 

So this provides us intuition of multicollinearity issue  that because of that the coefficient 

and significance estimation of nifty is getting  affected. We will examine that later. Also 

notice that sentiment variable is turning out to be a  very significant, very very significant 

even at 1% level that means 99% confidence.  Dividend announced is also significant. It 

is turning out to be at 95% confidence or 5%  significance level as we can see here 

significance quotes. 

 

So dividend announced is also very  significant. Notice that just a dash square, the power 

of model is very high as compared to the  around 10% that we saw with the simple linear 

regression model. This is for the fact that there  are number of significant variables that 

have been added. So the overall power of model to  explain the variation in returns is 

increased considerably to around 27. 

 

84%. However, we still  need to observe the issue of multicollinearity here to resolve 

that. To summarize in this video,  we trained our multiple linear regression algorithm 

using the train data. We summarized  the output and briefly reviewed the output. In the 

next video, we will jump to the resolving  multicollinearity issue as we discussed in this 

video. We will skip residual diagnostic,  issue of heterostasticity, autocorrelation and 



robust standard errors because they are exactly  identical to what we have already seen in 

the simple linear regression model. 

 

Same commands  with same notations will be employed and the examination will be 

done in an identical manner.  So in the interest of time and brevity, we will skip that part. 

We can directly apply the same  codes here, same exactly identical codes can be applied 

for the multiple linear regression model  to obtain and examine the residual diagnostic, 

heterostasticity, autocorrelation and robust  standard errors related discussion. For more 

detail, we can directly look to the video topics  on heterostasticity, autocorrelation, 

residual diagnostics and robust standard errors video  topics to get more information on 

this. In continuation with our last video, we noted  that the issue of multicollinearity may 

afflict our estimation process and therefore in this  video, we will examine the issue of 

multicollinearity in more detail. Please recall, we said that  there are, there is a possibility 

that independent, some of the independent variables may be  correlated and therefore that 

may give rise to the issue of multicollinearity. 

 

So as a preliminary  evidence or examination, we will try and compute the correlation in 

the train dataset  for the independent variables. Our independent variables include ABC,  

returns, sensex and we will see which of these variables are heavily correlated.  These are 

all independent variables that we employed in the multiple regression  model. 

 

These are the main variables. We are not, we are leaving the dividend nouns variable,  

which is a dummy variable. So chances of this variable being correlated are very low. 

This is,  dividend nouns are just ones and zeros. So notice the correlation matrix that we 

have produced here  in console and notice the very high correlation. So between nifty and 

sensex, the correlation is  almost 80%, which is a clear indication that there is a 

possibility of multicollinearity  because of this high correlation between sensex and nifty. 

All the other variables are though  correlated, but the levels are even lower than 50%, 

much lower than 50%. 

 

So they may not have much  multicollinearity related effect. So let's  also recall that we 

created our model object MLR in which we trained algorithm. So we'll use this,  what is 

called VIF, variance inflation factor, what we call variance inflation factor VIF,  which 

measures the extent of multicollinearity in a model. So we'll use VIF and MLR.  If this 

number and it indicates variance inflation factor for different variables in the model,  if 

the number is around one, then multicollinearity is almost negligible. 

 

If it is higher than two, then it is moderate. If it is higher than five, then it is really,  really 

high. Notice the multicollinearity with sensex and nifty variable and both of them are  

heavily correlated is 2.9, which is on the higher side, which indicates that we have to 



drop one  variable to remove the multicollinearity issue in the model. Now that we have 

seen our model  contains the show multicollinearity because of the variable market 

variables sensex and nifty,  we would like to remove one of these variables to improve 

our estimation. 

 

And in the interest of  that we'll again run train our model on the train data. But this time 

we'll remove one of the market  variables and run our regression ABC on sensex. So we 

are removing the nifty. So we are only  running on sensex sentiment plus dividend 

announced and we'll again use our train data.  Let us run this model. And let's summarize 

this into a model object. 

 

So we'll create a model  object in which we'll put our summary of the model, we'll print 

this model object. And again,  the adjusted R square numbers are same, but notice the 

sensex has much higher significance  as compared to earlier. 

 

The beta which is the coefficient of sensex is around 0.55.  Sentiment variable is also 

very significant. And dividend announced is very significant.  To interpret the sensex 

variable, for example, 1% increase in market or sensex leads to 0.55%  increase in the 

ABC returns. Also, notice the dividend announced variable to interpret since  it is a 

dummy variable. 

 

On average, there is a difference in return when the dividends are now  there is increase 

in return of about 0.0038% on that dividend announcement date. And the model  is able 

to explain around 27.85% of the variation in the ABC returns. So we have improved our 

model  and accounted for the issue of multicollinearity. To summarize this video, we 

noted that when we  computed the correlation matrix, we found that the two market 

variables that is nifty and sensex  were heavily correlated with a correlation number of 

almost 80% and indicated the presence of  chances of multicollinearity which we further 

examined with our variance inflation factor,  which is VIF. And VIF suggested that 

indeed sensex and nifty variables are  affected by the issue of multicollinearity. So we 

removed the nifty variable and then  again trained our model and the model output is 

reviewed in the discussion. 

 

In the next video, we will create a predict object and we will compare the predicted and 

actual test  value and we try to visualize them to see our out of sample forecasting 

efficiency.  In this video, we will create a prediction object using our test data with our 

trained algorithm,  multiple linear regression algorithm. 

 

 

 So we will create a prediction object  with test data. The procedure is very similar to 



what we did with simple linear regression model.  We will create a predict object. We 

will assign the values that are  predicted using MLR. This is MLR object that we have 

trained, already trained and in the new data  we will assign the test data set. So we are 

assigning the prediction object,  creating a prediction object with the test data. Now that 

we have created this object,  we will try and compute the correlation between this 

predicted object and our actual ABC returns. 

 

  So we will use this predict object and we will compute the correlation between  predict 

and test and there is a 57 percent correlation. Let us also try and visualize,  make a 

comparison using visualization. So we will first plot our actual returns. We have already  

seen these commands with the simple linear regression model, but still we will run them  

again. 

 

 So test$date, test$abc. So with this xlab again, the same syntax date,  ylab as returns, we 

will be plotting actual and predicted returns. So the central heading again  here is actual 

versus predicted returns. Again, we would like to see the ylim here. 

 

So we would  like to set the y limits from minus 20 percent, which is a reasonable limit to 

plus 0.20. We would  like to plot red color line as actual ABC returns in the test data and 

type as line.  So this is our line type. We'll run this later with the complete thing.  Next, 

we would like to have lines command with this, with the help of lines command, we'll 

add  our predicted object. 

 

So let's call it predicted object that we have just created  and color will give it green. 

Again, the type will assign a type of line. So we are using line type.  Other option is to 

plot in terms of points for this kind of graph. 

 

Line type is more preferable  to make a better comparison. Again, we'll add legend. So 

like we did last time, we'll use  legend on the top right side. On the top right side, we 

have legend and we have  actual returns. First, then we have predicted return. 

 

We'll assign colors. So fill equal to we have red as actual and green as predicted, as we 

have noted.  So now let's do some plotting here. So I'll enlarge the plotting window for 

better visualization. 

 

First, I'll run the main plot command. So these are my actual returns in red. Then I'll add 

the  lines. So lines command, I'll add the predicted returns. Then I'll add the lines 

command.  And then I'll add the legend. Now let's zoom this graph and notice very nicely 

our object is  capturing as we also saw in the correlation, there was a very high 



correlation and the same is  reflected here. Our predicted object in green is very nicely 

capturing the fluctuations in red  actual returns, ABC returns. 

 

 
 

So that means our multiple linear regression algorithm has done a  very nice job of 

predicting the returns. And that is that was also reflected in our very heavy  correlation of 

57.7% between actual and predicted returns. To summarize, in this video, we created a  

predict object using our test data. In this predicted object, we computed the correlation  

with the actual test data, the correlation is 57.7%, which was very high. We also plotted 

and  visualize the actual return and superimpose them with the predicted returns, which 

again confirmed  that our prediction has been, the algorithm has been very efficient in 

predicting the objects. 

 

Now, here we are not doing the out of sample forecasting errors that we did for simple  

linear regression model. We can go and review the video on out of sample regression 

forecasting  video topic. In that video topic on out of sample error forecasting, we have 

discussed in great  detail the R implementation and the interpretation of error functions. 

So, in the interest of time  and brevity, we will not repeat there. 

 

 The command, execution and discussion remains identical. So,  we can refer to that 

video topic on out of sample forecasting. To summarize this lesson,  we model ABC 

stock prices using simple regression problem with market index variable. The model is  

trained using trained dataset and various goodness of fit measures are examined. The 

fitted model is  examined visually as well. The model is tested using test dataset and 

various measures of out  of sample fit are also examined. 



 

Next, a multiple linear regression model is trained using trained  dataset on multiple 

variables. The fitted model is visually examined and also various goodness  of fit 

measures are examined as well. The model is evaluated on various issues related to  

multicollinearity, heterosoxicity and autocorrelation. Lastly, the model is examined  on 

various parameters for its out of sample fit performance.  Thank you. 


