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 In this lesson, we will discuss the theoretical  underpinnings behind the regression algorithm.  

We will start the discussion with the background and motivation to regression modeling 

technique.  Next, we will discuss the types of data employed in the regression modeling.  We 

will also discuss in great detail the cost function that is ordinary least square method,  which 

is widely employed to fit the regression line.  Next, we will discuss the simple and multiple 

regression modeling techniques.  Next, we will examine the key assumptions behind the 

classical linear regression model  and implications if these assumptions are violated. 

 

We will also discuss the blue that is best linear unbiased estimator properties associated  with 

the OLS estimators.  Lastly, we will briefly cover the role of normal distribution in 

hypothesis testing  associated with regression modeling.  We will also discuss some non-

linear functional forms that can be suitably modified to linear  functional forms.  In this 

video, we will provide the background and motivation for the application of machine  

learning algorithms in business applications. 

 

 
 

Many times on Amazon and Netflix, we get recommendations for movies and TV series as  if 

some human person has examined and carefully vetted our history of TV or movie watching  

and provided these recommendations.  They are extremely accurate.  Also you would have 

observed the spam filtering application on your mobile text messages and  email applications.  

If you carefully examine these filtered messages, you would find almost 95% to 99% 



accurate  messages and emails that are like phishing emails or bulk emails which are targeted 

to  bulk audience and not very genuine emails or messages.  Also if you go to website like 

Google news, you will find news items clustered and put  together in groups as if somebody 

has carefully read these news items and put together similar  news items, putting together 

these news items for our ease of reading. 

 

To summarize this discussion, in modern day business applications, for example, Amazon  

and Netflix movie recommendations, filtering out spams, medical prognosis based on 

previous  health records, algorithmic trading, credit scoring models, these applications appear  

or are driven by computers without being explicitly programmed.  So here computers are 

learning without being explicitly programmed, for example, in recognizing  handwriting, 

natural language processing and so many applications in modern day to day  and business 

applications where computers are acting as if some human being is working  behind the 

curtains.  But obviously given the volume and nature of data, big data being handled, a 

human being  cannot do these things on their own.  And therefore we need or we clearly 

understand that these are computers working behind the  scenes without being explicitly 

programmed, they are made to learn through these machine  learning algorithms.  In this 

video, we will provide a brief background to machine learning algorithms employed in  

business applications and finance. 

 

 

Let us start with a very interesting supervised learning problem.  In supervised learning, we 

have a set of input features which are mapped to output  labels.  Now, please note the critical, 

the important keyword here is that output is labeled.  So a set of features, input features and 

output which is labeled, the algorithm is trained  using this input output data and once the 



algorithm is trained, it is employed in future  using these input variables or features to predict 

the output.  A very simple example to this is house price prediction problem where a set of 

data that  is size of house in square feet, which is one of the features and the label that is  

house price is given and using this data the algorithm is trained. 

 

 

 

 

 

This is called regression problem where we try to model this using regression.  We will 

discuss, in this lesson we will discuss the regression problem in great detail, but  as a simple 

example using this feature, which is the size and output label which is the  house price, the 

regression model or algorithm is developed, trained and for future when  the size of a house is 

given, the algorithm is employed to predict its price, let us say  some new points are given, 

then this algorithm will predict their price by fitting a regression  line which we will discuss 

in detail in this lesson.  Another interesting supervised learning problem is classification 

problem where a certain label data is given along with features and then algorithm is trained 

to classify the  new observations across these labels.  For example, credit default scoring 

problem where we try to classify observations such  as loan applications into defaulters, for 

example here defaulters are given in red and  non-defaulters or good credit borrowers are 

given in blue.  Now we have two features, the labels are defaulted and non-defaulters while 

features are net worth and income. 

 

Now using the given set of data, we train this algorithm, we train this algorithm and  once we 

have the algorithm trained, then as the new data comes in, for example new data  maybe here, 



here using this classification problem, we try to classify the new observations  into defaulter 

versus non-defaulter using this model, we try to predict that, we try  to classify or segregate 

defaulters vis-a-vis non-defaulters using the algorithm that has  been trained.  In the 

unsupervised learning, the key difference is that the data is not labeled, we have only  

features.  For example, you may have demographic variables such as taste, income, age and 

gender and  based on these features, you will try to segregate individuals into different groups  

and this is a very useful application in market segmentation by consulting firms who employ  

such data in creating target segments for targeting them for their products.  Such segments are 

based on this classification problem, clustering problem where we try to  cluster individuals 

based on certain features such as taste, income, gender and so on.  So this is a very interesting 

business problem, clustering problem of market segmentation. 

 

 
 

Another very interesting clustering problem that we already discussed is clustering of  news 

items depending upon their similarity.  So natural language processing and text processing, 

text analytics applications and algorithms  are employed to segregate news items into 

clusters, clusters that are similar based  on certain features maybe genre of news or similarity 

in terms of geography or the topic  of news, they are clustered together by unsupervised 

learning cluster algorithms that cluster the  news items together.  To summarize this video, 

we discussed supervised and unsupervised learning algorithms.  In the supervised learning 

algorithm, we have data which is labeled along with the features  and we try to develop the 

algorithm by mapping the relationship between input features and  labeled output.  

Subsequently, this trained algorithm is employed to predict future observations or future 

units. 

 

 



 
 

 

Using their features, we try to predict their output labels.  In contrast, in the unsupervised 

learning algorithm, in the unsupervised learning algorithm,  we have only features not labels 

and we try to map or cluster the observations or units  together based on similarity in features 

and one of the very important and interesting  application we saw was that of market 

segmentation.  In this video, we will discuss the types of data being employed with machine 

learning  algorithms to train and test the models in financial markets and finance domain in 

general.  In general, there are three broad types of data that are employed in finance domain.  

First is observations about multiple individuals or units collected over a single period. 

 

 
 

Second, observations about a single individual collected over multiple periods and lastly,  



observations about multiple individuals or units collected over various time periods.  We will 

examine this and visualize these types of data in subsequent discussion.  Have a look at this 

diagram here.  We have three cross sections C1 at time 1, C2 at time T2 and C3 at time T3.  

Notice if you collect only one individual data about one individual like A over all  the three 

cross sections that is 1, T1, T2 and T3, then this kind of data is called time  series data. 

 

 
 

You are collecting a time series of information about individual or unit A.  In contrast, if you 

have six individuals or more or less individuals like A, B, C, D,  E and F and you collect all 

these individuals over a particular time let us say T1, then  it is called cross sectional data 

because you are collecting all the information about  these units for a particular time T1.  So, 

it is a cross sectional data.  Lastly, if you combine the time series and cross sectional 

characteristics that is you  collect the information about all the units or individual of interest 

that is for example  A, B, C, D, E and F not only for one cross section but all the desired cross 

sections  like T equal to T1 for time T equal to T2 and time T equal to T3, then this becomes  

a panel or longitudinal data.  That means this panel and longitudinal data comprises or 

involves the characteristics  of time series as well as cross section. 

 

To summarize this video, we discussed three types of data.  First, time series data where we 

collected information about individual unit over a given  time series.  Next, we discussed 

cross sectional data where we collected and analyzed data about multiple  individuals or units 

like A, B, C, D, E, F over a particular cross section of time and  lastly, we discussed panel or 

longitudinal data wherein we combined the characteristics  of time series and cross section.  

We collected the information about all the units or individuals of interest over multiple  time 

periods and we call this panel or longitudinal data, panel or longitudinal data.  In this video, 

we will introduce simple linear regression model. 

 

Consider a simple linear regression model the way it is presented here, y equal to beta  naught 

plus beta 1 x plus mu.  This is often referred to as two variable linear regression model or 



bivariate regression  model because there are two variables y and x.  y here is the dependent 

variable or explained or response or predicted or regression variable  while x here is the 

independent explanatory predictor or regressor variable.  Notice there is an error term or also 

called mu which is error term or residual term or  disturbance term.  This mu represents the 

aggregation of those factors that are not explained by y. 

 

𝑌 =  𝛽0 +  𝛽1𝑋 +  𝑢 

 

 
 

So, in this model, we are trying to explain the effect of this part, this part on y.  Those factors 

for which we cannot explain or are not part of this model are aggregated  or considered to be 

part of this error term.  These are unobserved factors that reflect variables or factors other 

than x that affect  y.  This mu here is also a random or stochastic variable.  It is considered 

that it has some kind of probabilistic distribution. 

 

Often normal distribution is employed to model this error term mu.  But the idea here is that 

this is random in nature and it assumes its values assume some  kind of probabilistic 

distribution.  Beta naught here is the constant term while beta 1 is called the slope term.  This 

is so because this relationship, this model can be represented on a two-dimensional  space xy 

space where this model is basically a straight line with this intercept or constant  term as beta 

naught and slope of this line is represented as beta 1.  So, this line represents in visual terms 

this model. 

 



 
 

So, this is visualization of this model.  This simple model aims to study the dependence of y 

on x that means how x affects y.  Now, please note here that regression deals with the 

dependence of one variable over another.  It does not imply simply causation.  The idea is 

that it only establishes the statistical strength of the relation. 

 

 
 

The causation has to be established a priori by theory.  For example, if instead of y like this 

the dependence on y you replace an x with y and  you put it like this, even then the regression 

model, the mathematical modeling will give  you some kind of statistical relationship which 

obviously may be spurious in nature.  Take for example crop and rain.  Now a priori we 

already know that rain affects crop.  This is established by our common understanding, 

common sense. 



 

Even if you put or replace rain with crop and you try to find some kind of mathematical  

relationship from crop to rain, the regression model, the mathematical model will give you  

that relationship which is obviously spurious in nature and therefore a priori theoretical  

considerations are needed to imply the causation.  Now in regression analysis the dependent 

variable which is y is considered random or stochastic  in nature that means it assumes some 

kind of probability distribution.  The reason is that it also incorporates the effect of all those 

unexplained or not considered  factor which are aggregated in the error term mu which was 

stochastic in nature.  So those effects or influences will also be incorporated in y and 

therefore y is random  or stochastic in nature.  In contrast, the explanatory variable which is x 

is assumed to have fixed value that means  it is considered to be coming from outside. 

 

While y is part of this model and therefore it is random in nature, x is fixed and taken  from 

outside.  So the x values are fixed and taken from outside in the model.  A closely associated 

concept here is of correlation.  Correlation here establishes the degree of linear relationship 

between the two variables  let us say x1 and x2.  In correlation analysis both variables are 

treated in a similar manner and considered  to be random that means no causality from one to 

other is implied. 

 

Let us say for example if variable x1 moves by 1% then x2 moves y in the same direction  by 

let us say 0.5% then there is a 50% correlation between these two variables.  However we do 

not employ any, we do not employ any causality here.  To summarize in this video, we 

examined a simple linear regression model, bivariate  model where there are only two 

variables the dependent variable y, a constant term, independent  variable x and a slope or 

coefficient term beta1 along with the error term.  y here is the dependent variable which 

reflects the impact of our model which is beta0 plus  beta1x while those effects or influences 

which are not accounted for by this model  are considered to be aggregated into this error 

term. 

 

Now please note by definition of this model y here is random and stochastic in nature  

because it also incorporates the effect of these mu or unexplained part of the model.  The 

explained or modeled part this here the variable x is considered to be fixed in nature  and 

taken from outside while y is getting affected by this model itself which includes  the effect 

of mu and mu being random stochastic in nature while y is also random and stochastic  in 

nature.  This relationship while it is mathematical in nature and statistical significance is  



established through mathematics the theoretical underpinnings or causality from x to y has  to 

be established a priori from theory not the mathematics.  In this video we will discuss the rule 

of expectations operator in the context of random  probabilistic variable.  Any random 

probabilistic variable is often represented through expectations operator. 

 

 
 

This random variable can be the error term or the dependent variable like y.  Since these 

variables attain multiple values for example let's take an example of coin  tossing game where 

there are two possible values and if the coin is fair then there  is a 50% chance or odds for 

any of the outcome whether it is head or tail.  Similarly in regression any random variable 

like the dependent variable y if it is assumed  to be probabilistic in nature its expected value 

is represented as Ey.  For example if there are n probabilities that an event has an outcome of 

y1, y2, y3, yn  with possibilities p1, p2 these are probabilities p1, p2 and so on up till pn then 

the expectation  of this variable y is defined as p1, y1, p2, y2 and so on that is sigma py.  P is 

probability y is possible outcome pi, vr, i equal to 1 to n where n are the possibilities  in the 

event. 

 

𝐸(𝑦) =  𝑝1 ∗ 𝑦1 +  𝑝2 ∗ 𝑦2 +  𝑝3 ∗ 𝑦3 + ⋯ + 𝑝4 ∗ 𝑦4 

𝑝1 = 𝑝2 = ⋯ = 𝑝𝑛 =
1

𝑛
 

𝐸(𝑦) =
1

𝑛
(𝑦1 + 𝑦2 +  𝑦3 + ⋯ + 𝑦𝑛) 

 



 

 

This is also called probability weighted mean.  If all the probabilities are assumed to be equal 

that means many times we do not have  any a priori knowledge about possible probabilities.  

So if all the probabilities are assumed to be equal then p1 equal to pn so on equal to  1 upon 

n.  In that case the expectation is nothing but the simple average of all the possible outcomes  

of y's.  To summarize in this video we discussed the role of expectation operator for random 

probabilistic  variables or stochastic variables like error term or dependent variable. 

 

We noted that expectation are nothing but simple probability weighted mean of variables.  In 

case we do not have any a priori probability assigned to these outcomes yi's then in  that case 

the expected value is nothing but simple average of y.  In this video we will understand the 

basics of simple linear regression algorithm with  a simple example.  Consider a table shown 

here where family income and consumption expenditures are provided.  Here a population of 

60 families is divided into 10 income groups for example 80, 80 to  100, 100 to 120 and so on 

up till 260. 

 



 
 

So there are 10 groups and their consumption weekly family consumption expenditure the  

y's are also shown.  For each level of income x we try to compute the conditional mean that is 

expected y given  x which is 65. E(Y|X) = 65.   Let us see how this is computed.  For 

example consider an income level of 80.  Corresponding to this income level a set of family 

weekly consumption expenditure that  means y's are provided. 

 

So for this given level of x the corresponding y's are provided.  The summation of these y's is 

25 and their mean is 65.  Now this 65 is the conditional mean of y conditioned upon a given 

value of x which is 80 and that  is why it is called conditional mean of y expected value of y 

given x.  Recall that in the previous video we said that if we do not have any a priori 

probabilities  of any set of values we take simple average to compute the expected value and 

the same  thing we did here by taking the average of these values which is 65 for x equal to 

80. 

 

Now the average of all these values is 121.2 and since this value which is the average  of all 

the values is not conditioned upon any specific x value this will be called expected  value of y 

which is unconditional mean or unconditional value of y because it is not  conditioned on any 

x value it is unconditioned expected value of y.  Please note that such unconditional value 

does not account for any income level that  means any value of x and it is the prediction or 

expected value of y or the prediction of  y when there is no knowledge of x.  However one 

would like to improve upon the value of y by knowing the value of x if one  believes that x 

affects y.  So if x indeed affects y then the knowledge of x would definitely improve the 

prediction  of y.  So if you have the knowledge of x you can improve your prediction by 

computing the conditional  mean of y which is this expected value of y given x and that 



prediction will be more  accurate for example the conditional mean of y given x equal to 260 

will be 173 which  is different from conditional mean of y when x was 80. 

 

 
 

Now if one asks what is the best prediction or mean value of weekly expenditure for an  

income of x equal to 140 then you would tell him that looking at this table you will tell  him a 

value of 101 that means the knowledge of income level that is values of x enables  us to 

better predict the mean value of consumption.  So our prediction of y which is the mean 

improves as compared to the situation when we do not  have that knowledge.  So this is the 

essence of regression modeling.  So what we are saying here that for each level of x we have 

set of y values and the mean  of these y values are joined together these means of y values for 

each level of x we have  expected value of y given x and all these conditional means are 

joined to get the regression  line.  So this regression line is nothing but the conditional means 

conditioned upon these x  values are joined together to get this fitted line. 

 



 
 

So for example if you have the weekly incomes given on x axis and for each set of income  

you have a distribution of y values this is the distribution of y values and we know that  for 

any distribution if a variable is hazard distribution it is stochastic in nature we  can compute 

its expected value as we have already seen using the probabilities we can  get the conditional 

means for each given x we can compute the expected value of y that  is expected value of y 

for each given xi where xi can be 8090 in this case 8090 and so on  and once we have those 

conditional means we can join them to get the regression line and  then in that case our 

estimate of y would be conditioned upon xi for any value of xi  we can predict the value of y. 

   

 

To summarize in this video we said that any regression model of this type y equal to b0  plus 

b1 x yi equal to b0 plus b1 xi assumes that some variable xi has some explanatory  power 

over variable yi and therefore one can improve the prediction of yi the prediction  value of yi 

which is yi hat can be improved by using the knowledge of xi.  Thus regression modeling 

improves the prediction of yi by taking a set of values of xi for  example if we have the 

knowledge of xi the corresponding values of y can be averaged  and this average value of yi 

for a given i is a better estimate of y.  Since this estimate of yi that is yi bar is for a given 

value which is xi and therefore  often such estimate is called conditional mean of yi that 

means conditional value of  yi given x and this is called conditional mean of y.  Another type 

of expectation of yi which is unconditional mean which ignores the value  of x which does 

not consider and assumes that we have no knowledge of x is expected value  of y which is the 

average of all the values of y in respect to values of x. 

𝑌𝑖 =  𝑏𝑜 +  𝑏1𝑋𝑖 

 

It is often considered as per regression modeling that this conditional mean is an improved  

estimate of y as compared to the estimate of y when we have no knowledge of xi.  In this 



video, we will introduce the concept of population and sample regression functions  in the 

context of regression modeling.  Recall, in the previous video we said that if we join the 

conditional means of y given  x these were the conditional means of y given x if we join these 

values then we obtain what  we call is a population regression line.  So, we join them for each 

value of xi, x1, x2, x3 and so on we had a set of values on  y and we join the mean of these 

values what we call conditional mean rather for given  xi what is the mean of y when we join 

these conditional means what we obtained is called  population regression line which is 

essentially the regression of y on x.  Now, a population regression curve is simply the locus 

of these conditional means of the  dependent variable which is y for the fixed or given values 

of explanatory variable which  is x here. 

 

So, this is the basic concept of population regression function.  The population regression 

function discussed here can be denoted by this expected value  which we have already seen 

expectation of y given xi this is often referred to as population  regression function f xi.  Here 

f xi is a linear function of x which is called a population regression function  when we say it 

is a linear function it this linearity means linearity in parameters and  this can be more simply 

written as expected value of y given xi equal to beta0 plus beta1  into xi where beta0 and 

beta1 are population parameters.  These are population parameters because they are for the 

entire population assuming the  population is known which is a more hypothetical construct 

you never have the entire population  but assuming you know the population then these are 

the population parameters or the  true values of beta0 and beta1 which reflect the relationship 

between y and x.  Now, when we say this is the linearity in parameters that means for 

example if this  kind of expression is there where the population regression function is beta0 

plus beta1 square  xi this model is non-linear in parameters and will not be estimated with 

linear regression  modeling that we are discussing here. 

 

 
 



 

𝐸 (
𝑌

𝑋𝑖
) =  𝑓(𝑋𝑖) 

 

However a model like expected value of y given xi which is equal to beta0 plus beta1 xi 

square  this model is by non-linear in variables it is linear in parameters beta0 and beta1 so  

population parameters are linear and therefore it can be handled under linear regression  

models.  However in real life we do not have the luxury of population we often work with 

much smaller  set of data which is called sample and therefore what we estimate is not the 

population regression  function but what we get is the sample regression function and it is 

denoted by adding a hat  symbol this hat indicates that we are working with samples and 

therefore the estimated values  of y is yi hat.  So yi hat is the estimate of population value 

which is yi so yi is the population this yi  hat is the estimate of y which is given with this 

regression sample regression function  where beta0 hat and beta1 hat are sample parameters 

unlike the beta0 which was the population  beta0 and beta1 which were population 

parameters beta0 hat and beta1 are the sample parameters  or the estimators of population 

parameter which is beta0 or beta1.  So beta0 hat here is the estimator of beta0 we will discuss 

some of these estimators beta1  hat is the estimator of beta1 and these estimators are applied 

on a given sample to estimate  or proxy the population parameters using these beta0 hat and 

beta1 hat what we get is yi  hat which is the estimate of y which is the estimator of population 

values based on our  sample regression function.  So SRF which is the sample regression 

function is only an estimate of population regression  function based on a given sample or the 

sample that is available to us. 

 

𝐸 (
𝑌

𝑋𝑖
) =  𝛽𝑜 + 𝛽1𝑋𝑖  

𝐸 (
𝑌

𝑋𝑖
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Remember we do not work with population we do not have the luxury of population.  Now 

since this is only an estimate therefore sample regression function can overestimate  or 

underestimate the population regression function or population regression function  values.  

For example if you are estimating yi hat and you get this kind of estimators beta0 hat  and 

beta1 hat your sample regression function line may look like this.  This is one example where 

actual population regression function is this.  So from this point onwards you overestimate 

the population values of y and behind this  below this point A before that you underestimate 

the population values. 

 

So your estimate is overestimating here underestimating here.  To summarize in this video we 

discussed the concept of population regression function  which was nothing but the values of 

y using population parameters beta0 plus beta1 into x.  Now beta0 and beta1 here are the 

population parameters.  Please note in real life we do not have the luxury of working with 

population and therefore  this is not observed.  This is not observed.  So the set of population 

is not observed and we only try to map this population or estimate  using a much smaller 

sample which is called sample. 

 

So you work with samples in real life through which you try to make estimates or hypothesis  

or various predictions about the population which is much larger in size.  When you work 

with sample you denote this with a hat symbol y hat.  You do not have actual yi's and xi's you 

have yi hat's which are the predicted values beta0  hat plus beta1 hat into xi.  Please note this 

yi hat is the prediction of y.  This beta0 is the estimator of population parameter which was 

beta0. 

 

Beta1 hat is the estimator of beta1 which was the population parameter and this is called  

SRF sample regression function because it is estimated on the sample which is available  at 

hand and it tries to estimate the population values, population parameters and population  yi's.  

However please note this yi hat is often not very accurate and it may over predict or under  



predict the actual values.  In this video we will discuss a very important class of estimators 

called ordinary least  square estimators.  Recall the sample regression function which we 

discussed was yi equal to beta0 hat plus  beta1 hat xi plus mu hat.  Here we have removed the 

hat because now we have also included the error term. 

 

𝑌̂𝑖 =  𝛽̂𝑜 +  𝛽̂1𝑋𝑖  

 

 

 
 

Earlier we saw this yi hat equal to beta0 hat plus beta1 hat into x hat which is nothing  but the 

prediction of yi hat, the predicted value of y hat.  Once we add the error term in the prediction 

it becomes the actual y hat.  Now the error term this mu i hat or often also referred to as mu i 

is important here  because this error term which is yi minus yi hat or yi minus beta0 hat 

minus beta1 hat  xi this error term is a very important cost function and any regression fit or 

any estimator  should minimize some function of this error.  In this particular case the OLS, 

ordinary least square procedure as the name suggests  tries to minimize the square of this 

function and therefore the best cost function to minimize  this can be shown as follows.  This 

is the appropriate cost function which is the sum of squares of error term which  is yi minus 

yi hat raised to the power 2 summation. 

 



 
 

𝑌̂𝑖 =  𝛽̂𝑜 +  𝛽̂1𝑋𝑖  

 

This is our cost function which is minimized here.  Now we can also replace this yi hat using 

this expression here so we get yi minus beta0  hat minus beta1 hat into xi raised to the power 

2 summation is our sum of squares.  Now we minimize these squared residuals.  One is why 

not minimize just the residuals or absolute residuals.  Now talking about simple residuals it 

fails to recognize the fact that large positive  and negative errors for example plus 6 and 

minus 6 will tend to cancel each other out.  So if there are large deviations large error terms 

mu1, i and muj which are very large  but on the summation they tend to cancel each other out 

simple summation of residuals will  ignore that. 

 

If we are minimizing the absolute residuals to an extent that is an improvement because  it 

will recognize that plus 6 and minus 6 or positive and negative residuals should  not cancel 

each other and therefore large errors whether positive or negative they are  penalized.  

However in case of squared residuals it penalizes large errors more strongly so the penalty  

on large errors is much more stringent in case of squares as compared to simple absolute  

residuals.  To further illustrate and visualize this argument let us have a look at set of 

observations  plotted on this x-y diagram.  These are the actual values that we have rather not 

population but a sample that we have obtained.  Now we try to fit a sample regression 

function or sample regression the line corresponding  to sample regression function which is 

represented as yi hat equal to beta1 hat plus beta2 hat. 

 

Now obviously because we are working with samples these are estimators since these are  

OLS estimators we try to minimize the sum of these squared residuals.  The difference 

between the actual values and this fitted line so this is our sample regression  function the line 



corresponding to sample regression function this distance is my error  in prediction.  Now this 

error the larger this error the problematic it is for me and therefore a function which  

minimizes the square of these errors gives higher penalty to large errors as compared  to 

small errors.  If I would have added simply the absolute residuals it would have definitely 

penalized  errors but a square of residuals penalizes large errors much more than simple 

absolute  summation.  Now in this scheme our final function our final function or squared 

residual summation  is this which we can also write as summation of my square is a function 

obviously a function  of beta0 hat and beta1 because it is written like this so it must be a 

function of beta0  hat and beta1 hat which are the key parameters or estimators of 

importance. 

 

 
 

So these are sample parameters that we are interested in knowing.  Now a very regular 

sample scheme to minimize this we want to minimize the squared residuals  we can set the 

differential of this partial differential with respect to our betas equal  to 0 we can set this 

differential with respect to parameters different parameter estimates  beta0 hat and beta1 hat 

equal to 0 and then set the condition of the double differential  to positive for minima 

condition to obtain the estimates of beta0 and beta1 hat as we  will shortly see and this is the 

reason why these estimators are called least square estimators  because we minimize the 

square residuals and such scheme or regression model obtained from  such scheme is also 

called Gaussian standard or classical linear regression model by minimizing  these least 

square errors.  Now if you recall we said that my square can be written as this function which 

is yi minus  beta0 hat minus beta1 hat xi square summation we can take the partial 

differential with  respect to beta0 which is since it is square term this is minus 2 times this 

term which  is same and then differential of beta0 is nothing but a minus sign so we get this 

minus  2 times mu i hat why because this term itself is yi hat and yi minus yi hat is nothing 

but  mu i hat or often referred to as mu i itself the error we are interchangeably using mu  i 

hat or mu i here so this is nothing but minus 2 times mu i which is the partial differential  

with respect to beta0 hat similarly we can take partial differential with respect to  beta1 hat 

which will be very similar only that now because beta1 hat has a multiple  of xi we have an 

extra xi here so we have minus 2 times mu i hat into xi summation this  is the partial 

differential with respect to beta1 hat.  Now we need to set this differential equal to 0 and 

solve the equation a closed form  solution can be obtained which is shown here this closed 



form solution can be obtained  only if certain assumptions are met now in this lesson in a set 

of series of videos we  will discuss some of these assumptions that are needed and if these 

assumptions are met  then we can obtain a closed form solution like this that means we can 

precisely estimate  the values of beta1 hat and beta0 hat so we can obtain these beta1 hat and 

beta0 hat  estimators and these estimators are often referred to as OLS ordinary least square 

estimators  because of the minimization of these residual square scheme these are called 

ordinary least  square estimators beta0 hat and beta1 hat and once applied to a given sample 

we obtain  the estimates of population parameter so what the estimates that we obtain the 

beta0 hat  and beta1 hat based on these formulas these are the estimates from the sample.  To 

summarize in this video we discussed a very important class of estimators called  ordinary 

least square estimators the ordinary least square estimators are obtained by minimizing  the 

sum of squares of residuals shown by a formula here to visualize this scheme we plotted  all 

the observations from our sample like this then we try to fit a line which we often  called the 

line corresponding to the sample regression function because we are working  with samples 

so the sample regression function line can be written as yi hat because these  are only 

estimate not the population values beta1 hat plus beta2 hat xi and then we compute  these 

error terms that means the difference from these observed values to the predicted  values 

which is yi minus yi hat this is the gap which is called mu i or we are referring  to as mu i hat 

or mu i interchangeably and then the square of these mu i's are minimized  to obtain the 

estimators beta1 hat and beta2 hat which are called the OLS estimators. 
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In this video we will introduce multiple linear regression algorithm.  Recall the simple linear 

regression problem where there was only one dependent and one  independent variable which 

was of the following form b0 plus b1 into x plus error term here  there was only one 

independent and one dependent variable x and y now all the discussion that  we had about the 

simple two variable bivariate linear regression model we can extend this  to a multiple linear 

regression very simply as shown here where y equal to beta0 plus  beta1 x1 plus beta2 x2 and 

so on up till beta1 xn plus there are term.  Here xi's represent the explanatory or independent 

variables and their coefficients beta1 beta2  beta2 or called partial regression coefficients all 

that we discussed about the simple bivariate  linear regression problem apply to this model as 

well.  All the discussion and properties of simple linear regression model and various other  

aspects of the regression remain the same including the properties of error term that  is this 

error term is the random stochastic variable with the probability distribution.  Now there are 

some very important properties of this error term that we need to recall  first and foremost the 

expectation of this error term conditioned upon all the independent  variables xi equal to 0 

that means the mean of this error term given all the xi's is equal  to 0 for all the i's.  For 

example if you remember for our income and expenditure example where given xi there  

were a number of y values the corresponding error terms all the mu i's here this mean  of this 

mu i the mean of this mu i that is expectation of this mu i and since it is for  given xi the 

condition upon xi is equal to 0. 

 



 
 

𝑌 =  𝛽0 + 𝛽1𝑋1 +  𝛽2𝑋2 +  … +  𝛽𝑛𝑛 + 𝑢  

 

 
 

𝐸 (𝑢𝑖|𝑋1𝑖 , 𝑋2𝑖 , … , 𝑋𝑛𝑖  ) = 0 

 

Similarly for all the xi's x1 x2 xn i the conditional mean of error term is assumed to be 0.  

Next no serial correlation or covariance between mu i's that means for xi a set of mu i's are  

there then for xj a set of mu j's are there then the correlation between mu i and mu j's  equal to 

0 that means these mu i and mu j's are not correlated that is second very important  

assumption here and the third the variance of mu i's that is sigma square is assumed  to be 

constant that means whatever the variance for this mu i mu j or if there was x1 2 and  so on 

xk's the error terms are mu k's the variance of these mu i mu j or mu k is same  as sigma 

square that is the third assumption.  Next another very important assumption is that mu i is 

independent of x's that means  all these independent variable x1 x2 and xn and so on these are 

not correlated with  error terms that means correlation or covariance between mu i xi mu i x2 

and so on mu i xn  equal to 0.  And please also note the assumption is that model is correctly 

specified that means all  the relevant influences that is independent variables xi's are 

incorporated in the model  there is no important or variable or factor that is influencing y is 

left out.  Just one caveat correlation and covariance represent similar property the normalized  

version of covariance is correlation itself. 

 

 



If you compute the correlation if you want to compute the correlation between two variables  

to compute their covariance let us say covariance of x1 and covariance of x2 if you divide 

them  by standard deviation of x1 and standard deviation of x2 you get the correlation 

between x1 and  x2 so this is just a simple information.  Another very important condition for 

this model to work is of collinearity that is all  these xi's let us take in together x1 x2 and so 

on xn none of xi's can be explained by  remaining independent variables for example if I take 

xi the remaining ones x1 to xi-1  and xi plus 2 to xn they cannot explain this xi completely 

that means there cannot be any  function which is of this form alpha 1 x1 alpha 2 x2 and so 

on till alpha n xn which  is equal to 0 that means any one of these variable cannot be 

expressed linearly as a  linear combination of other independent variables.  If that were to 

happen this is called perfect multicollinearity that means if there is a  solution to this problem 

this equation this represents multicollinearity that means one  of these xi's can be explained 

by the remaining independent variables and in that case of  perfect multicollinearity the 

model will not run that is the equation this equation will  become inter-terminate it cannot be 

determined there is no solution.  Let us look at the example of collinearity visually so in this 

diagram notice that the  independent variables x2 and x3 they have some relationship with y 

which is represented  by these common areas but there is no common area between x2 and x3 

that means there is  no collinearity.  However, if there were to exist some common area 

between x2 and x3 it represents low collinearity. 

 

𝑐𝑜𝑣(𝑢𝑖, 𝑋1) =  𝑐𝑜𝑣(𝑢𝑖, 𝑋2) =  𝑐𝑜𝑣(𝑢𝑖, 𝑋𝑛𝑖) = 0    

 



 
 

 
 

Depending upon this common area if it increases a lot like here or here or here this represents  

very high levels of collinearity and this is not good for the estimation.  Particularly the fact 

that if the multicollinearity is not perfect the previous case that we just  discussed but high 

then model will run the model is not inter-terminable the model can  be determined it is not 

indeterminate.  However then the problem is that the estimators for example beta0 estimator 

beta1 estimator  these will have very large variances or what we call standard errors of 

estimate.  Also recall that the significance of these betas is calculated in the form of t 

statistics  and the corresponding p values the t values are simply calculated as coefficient 

divided  by the standard error of estimate which is basically variance of these estimators and  

if these standard error of estimates are very high which go into denominator this value  is 

very low that means your resulting t values are very low.  This means your t values are very 

low and therefore the lower the t value the lower  is the are the corresponding p values which 



increases the chances of failure to reject  the null hypothesis that means you will have rather 

poor confidence interval more wider  confidence interval you need and therefore even though 

your r square may be high which  indicates very good fit in the regression but still the power 

of your test will be low  and because of low t values and you will be failing to reject the null 

that means even  the coefficient may be significant it may be significant but still you will not 

be able  to say that by rejecting the null. 

 

 
 

 
 

 

 

To summarize in this video we discussed an induced multiple linear regression model we  

noted that all the properties of simple linear regression model apply to this multiple linear  

regression as well we also highlighted some important properties of this multiple linear  



regression model for example the conditional mean of error term is 0 which is expectation  of 

mu i given or conditioned upon all the xi 0 we also noted that this should be no  correlation 

between mu i's and mu j's or set of error terms we also noted that the variance  of these error 

terms should be constant which is a very important property called homoscedasticity  we also 

said that there should be no correlation or covariance between the error term and independent  

variables that is xi's and it should be equal to 0 the model should be correctly specified  that 

means all the xi's that are there in the model there should be no important influence  or factor 

should be left out lastly we also noted the property of multicollinearity that  means none of 

the independent variables should be explained completely by the remaining independent  

variable or all the linear all the independent variable should not be expressed as a linear  

combination which is equal to 0 this leads to perfect multicollinearity and it makes  the model 

indeterminate in this video we will understand the interpretation of various aspects  of 

multiple linear regression algorithm similar to our understanding of two variable or bivariate  

regression model this expression here represents the conditional mean or expected value of y 

given  the values of x1 x2 and xn and so on so this is very similar to the expression that we 

saw  here expected value of y given x here instead of single independent variable we are 

considering  all the independent variables from x1 to x1 and therefore this represents the 

expected value of  yi given all the xi's this is called the conditional mean or expected value of 

y given the fixed values  of xi or conditioned upon the fixed values of xi notice the 

coefficients beta 1 beta 2 and so on  up till beta n here these are called partial coefficients for 

example this beta 1 is the  partial coefficient and it measures the effect of x1 on this variable 

y net of any effect from any  other explanatory variables that is xi or in other words keeping 

all the other xi's constant  if all the xi's are held constant except x1 then beta 1 will represent 

the impact of x1 on y  let us introduce a very important parameter which is r square this r 

square represents  the part of variation of variable y which is explained by this model I repeat 

this r square  represents the variation or variance in the variable y which is the dependent 

variable  which can be explained by the model this all the xi's and coefficients to put together  

the computation is very simple basically this is explained sum of squares divided by total sum 

of  square which is equal to 1 minus residual sum of squares upon total sum of squares  let me 

give you a little bit background on this recall that the values of y  on xy axis are provided like 

this and this is your fitted line so this is the total let us say  this is yi then this is the total gap 

sum of squares of these total yi's will be total sum  of squares however this much part is 

explained this much part is explained part so this squares  of these distances would be 

explained sum of squares and this is unexplained part these are  the error terms so this is 

unexplained or residual sum of squares so here explained sum of squares  that means these 

sum of squares divide by total sum of squares which are these total term  total sum of squares 

is the explained part ratio of explained part this can also be computed as 1  minus residual 

sum of squares upon total sum of squares where the sum of squares of these  distances is 

called residuals. This remains same whether we are talking about bivariate regression  or 

multivariate regression as we are seeing here a more improved version is also computed in 

the  form of adjusted R square where a small adjustment is made here instead of using RSS 

and TSS we divide  these residual sum of squares and total sum squares by their respective 

degrees of freedom.  For RSS the degrees of freedom are n minus k here n is the total number 

of variables  here n is the total number of observations in the sample k is the number of 



coefficients  excluding beta naught so all the beta 1 to beta n all the coefficients excluding 

beta naught  divide by n minus 1 n minus 1 is the degrees of freedom for TSS so I repeat RSS 

upon n minus k  where residual sum of squares has n minus k degrees of freedom where n is 

the  total number of observations in the sample and k is the coefficients from beta 1 to beta n  

and TSS divide by n minus 1 degrees of freedom where n is the total observations.  This is 

often referred to as mean sum of squares of RSS mean sum of squares of RSS that is residual  

sum of squares and mean sum of square of TSS that is total sum of squares. 

 

𝐸(𝑌|𝑋1 … . 𝑋𝑛) =  𝛽0 + 𝛽1𝑋1 +  𝛽2𝑋2 +  … +  𝛽𝑛𝑋𝑛   
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Now these n minus k and  n minus 1 are called degrees of freedom. Please notice this 

adjusted R square is very interesting  entity here. If we rearrange the expression for R square 

and just R square we get something like  this. Please notice in R square in this expression we 

are putting a certain additional penalty in the  form of these n minus 1 upon n minus k that 

means the more the number of variables the more the  number of these k's or variables in the 

model this R square is penalized in the computation  of adjusted R square that means the 

more the number of k's the lower the value of adjusted  R square so there is certain penalty 

that this expression puts on R square and therefore this  adjusted R square which is after 

adjusting for these degrees of freedom it puts a certain  penalty for addition of variables. The 

reason being the normal R square can be easily inflated  just by adding the number of 

variables, variables small small variables where the contribution to  the explanatory power is 

so low that they are not very important but still if their numbers are too  large the R square 



value is inflated. So this penal term this penalty is inflicted on this  computation so that there 

is a tradeoff of for adding more variables which in the form of  explanatory power to the 

model as well as this penalty and therefore the resulting expression  adjusted R square would 

identify whether the addition of variable is important or not.’ 

 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 − 𝑅2 = 1 − (1 − 𝑅2) ∗ (𝑛 − 1)/(𝑛 − 𝑘) 

 

 

 

Lastly another very important aspect of this model is the coefficients or estimates of the  

coefficients beta 0 hat and beta 1 hat these are simply the estimates of the coefficients  using 

OLS estimators based on OLS estimators these estimates are made these estimates have  

some variance so in repeated samples these estimates have variances and the square root  of 

the variance of these estimated parameters indicates the error in estimation or standard  error 

of the estimate. So if you have repeated samples these beta 0 will have a distribution  

estimates of beta 0 will have a distribution and higher this the standard error of this estimate 

or  the variance of the estimate over the estimator. Remember we said that t statistic which 

was very  important is coefficient upon standard error of estimate the higher the standard 

error of  estimate the lower its t value and lower its significance in the regression model.  So 

for us the better model or better estimator where SE is lower standard is lower given certain  

assumptions that we made earlier about heterosoxicity, autocorrelation,  multicollinearity and 

so on OLS estimators are supposedly the best in class estimators available  with us and that is 



why we discussed OLS estimators in great detail. To summarize in this  video we discussed 

the interpretation of multiple linear regression we noted that the expression  such as 

conditional expectation of the dependent variable remains similar as bivariate regression  

model. 

 

The interpretation of coefficient is also very simple these are simply partial  coefficients 

which reflect the impact of a corresponding variable on the dependent variable  keeping all 

the variables or all the variables constant. We also discussed the computation of  R square 

measure and adjusted R square measure. We noted that adjusted R square measure provides  

slightly improved version of R square where we adjust for addition of more variables and  

therefore it recognizes the fact that addition of more variables simply just to increase  

explanatory power is not desirable and therefore it puts a penalty or a penalizing term 

penalizing  adjustment to reflect that variables should contribute significantly and not just in 

small  small explanatory power. We also noted that it is desirable that the estimators of the  

coefficient like beta naught hat and beta 1 hat these estimators should have lower variance 

that  means their standard error of the estimate should be lower which increases the power of 

the estimate  or power of the regression so that the t values and therefore the ability to reject 

the null and  bring out its impact on the model more efficiently. 

 

So, for that we need estimators with lower standard  errors. In this backdrop OLS estimators 

are considered to be the best estimators  as they offer the lowest variance in the entire class of 

linear estimators. In this video we will  briefly review the key assumptions behind the CLRM 

that is classical linear regression model.  The Gaussian standard or classical linear regression 

model as it is called  makes 10 very important assumptions. The first assumption is that the  

linear regression model is linear in the sense it is linear in parameters. 

 

 
 

For example, let us look at these three diagrams. This one y equal to beta 1 plus beta 2x plus 

beta  3x square is linear in parameters but non-linear in variables which is x squared term 



however it  can be estimated with the CLRM because it is linear in parameters. On the 

contrary this one  y equal to e to the power beta 1 plus beta 2x is non-linear in parameters. 

Although there are  transformations as we will see that can make this expression linear but as 

of now it is non-linear  in parameters. Look at this expression earlier we had a quadratic 

expression where x squared  term was there here we have x cubed term but still it is linear in 

parameters and therefore  directly estimated it can be directly estimated through classical 

linear regression model.  Second assumption here is that the values of x in repeated samples 

are fixed that means they are not  stochastic and they do not have any random component so 

they are fixed in nature unlike y  or error term they are not stochastic they do not have any 

probabilistic distribution  they are fixed and estimated with certainty there is no stochastic 

aspects of x. 

 

 
 

 
 

Next and very important assumption is that zero conditional mean of the disturbance term ui.  

Or the expected value of disturbance term mu i or error term is zero conditioned upon each 

xi.  For example let us say we have x1 variable corresponding to which there are number of 

y's  and for all these y's error terms mu 1 i's would be estimated mu 1 all these mu i's if  we 

take the mean of these mu i's since it is for only x1 then mu i x1 equal to 0. Similarly for x2  

all the mu i's mu 1 i mu 1 2 mu 2 2 and so on all these mu i's will be zero.  So conditional 



mean of all these error terms for given xi should be equal to zero.  The next assumption, 

assumption number four is of homose elasticity or equal variance of these  error terms. 

 

 
 

 

𝑣𝑎𝑟 (
𝑢𝑖

𝑥𝑖
) =  𝐸 [𝑢𝑖 −  𝐸(𝑢𝑖|𝑋𝑖)]2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  𝜎2 

 

𝐻𝑒𝑡𝑒𝑟𝑜𝑠𝑐𝑒𝑑𝑎𝑠𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝑣𝑎𝑟 (
𝑢𝑖

𝑥𝑖
) =  𝜎2 

 

So like we said earlier for a given value of x the variance of mu i is same for all  the xi's that 

is conditional variances of mu i are identical that is expected value of mu i minus  expected 

value of mu i xi raised to the power 2 is constant and equal to sigma square. If they are  not 

constant that means they are varying with xi's for each xi the variance is sigma square then  

this is called heterostatic variance and it creates problems that means the solution that  we 

obtain for beta 0 hat the closed form solution that we obtain for beta 0 hat and beta 1 hat  and 

so on so forth for other coefficients will not remain valid.  Look at this diagram here, here 

with the assumption of homose elasticity the variance  of error term for each x are same. 

Notice for each xi the variance of error terms is same. However,  here the variances are 

different for different xi's and therefore it has heterostatic variance  of error term. 

 

In this particular case the solution the closed form solution for coefficients  beta i hat that we 

obtained earlier we saw earlier for the simple linear regression  will not remain valid. Another 

very important assumption, assumption number 5 is the no auto  correlation between the 

disturbances or error terms. So, for any two values of xi and xj where  i equal to 0 j there is 

the correlation between mu i's which are corresponding to xi and mu j's  which are 

corresponding to xj should be 0. In symbolic terms mu i and mu j the covariance  between mu 

i and mu j given xi xj which is also equal to expectations of this expression into  this 



expression whole square or expectation of mu i given xi into mu i mu j given xj because  this 

expectation is anyway 0 expectation of mu i 0 and mu j is also 0. So, this only  simplifies to 

mu i given xi and mu j given xj and this equal to 0 which is also a way of saying that  

correlation between mu i mu j given xi xj is 0. 

 

𝐶𝑜𝑣 (𝑢𝑖, 𝑢𝑗|𝑋𝑖 , 𝑋𝑗) =  𝐸 [[𝑢𝑖 − 𝐸(𝑢𝑖)|𝑋𝑖][𝑢𝑗 −  𝐸(𝑢𝑗)|𝑋𝑗]]
2

= 𝐸[(𝑢𝑗|𝑋𝑖)(𝑢𝑗|𝑋𝑗)] =  0 

 

 
 

So, this can also be said because correlation  is nothing but normalized or standardized form 

of covariance. So, we can say that covariance between  mu i mu j is 0 given xi xj or 

correlation between mu i mu j is 0 given xi xj. If there is some  correlation then that can also 

be examined visually before going to the mathematics of it.  For example, if there is no auto 

correlation then the error terms will be plotted randomly without  any pattern. If there is 

positive auto correlation then error terms will plot like this with each  other it indicates 

positive correlation and if it is plotted like this then it indicates a negative  correlation 

between error terms that is mu i and mu j. 

 



 
 

 Assumption number 6 another very important  assumption is that mu i the error terms and xi 

are not correlated. This is very intuitive assumption  because we said xi is fixed it is not 

stochastic it is taken from outside and is not getting  affected by the process. So, mu i which 

if the model is correctly specified all the relevance  influences are taken with xi's mu i should 

not be correlated with xi which is to suggest that  covariance between mu and xi which is 

represented as this term expected value of mu into expected  mu i and xi minus expected 

value of xi this should be equal to 0. Notice here we already know that  the expected value of 

mu i this is 0 already. So, this expression simply becomes covariance of mu i  xi simply 

becomes expectations of mu xi which is this term which is 0 which in simple terms says  that 

correlation between mu i and xi is 0 because like we said earlier correlation is nothing but  

standardized form of covariance. 

 

𝐶𝑜𝑣(𝑢𝑖, 𝑋𝑖) =  𝐸[(𝑢𝑖 − 𝐸(𝑢𝑖))(𝑋𝑖 − 𝐸(𝑋𝑖)] 

 

 



 

So, mu i and xi are not correlated which is our assumption 6.  Then the remaining 

assumptions are quite intuitive as well. These remaining four assumptions are  assumption 7, 

8, 9, 10. The 7th being the number of observations must be greater than the number of  

parameters to be estimated. In fact, for a better estimation the number of observations should 

be  much much larger than the parameters to be estimated. A good thumb rule should be that  

number of observations should be at least five times the number of parameters. 

 

 
 

The x values  the dependent variable must have some finite variance. For example, if the 

variance is very  low or if all the x values are almost same then the model cannot be 

estimated or even if  estimated the estimates are very poor. The regression model is correctly 

specified which  means all the relevant influences that is the x signs are taken in the model 

and those that are  left or not considered should be very small that even if they are mixed with 

the error term because  we are not accounting for them specifically in the model they should 

not create any trouble  in estimation. Lastly, there is no perfect multicollinearity that means 

there should be  no perfect relationship between the independent variables of this form.  So, 

they if it is of this form this indicates that one of the independent variables can be perfectly  

explained by the remaining variable and in this case the model will be indeterminable,  it 

cannot be determined.  To summarize in this video we reviewed and examined all the key 10 

very important assumptions  of classical linear regression model. 

 

In this video we will introduce blue properties of OLS  estimators. OLS estimators are often 

considered to be as best linear, unbiased and efficient  estimators. These are called blue 

properties. We already know that OLS estimators are linear  in parameters. In addition, there 

are two very important properties that is unbiased and  efficient. 

 

 

 



 
 

 Let us start with the unbiased estimators. Any estimator that has its expected  value same as 

the true population parameter for example if we are trying to estimate  beta1 using some 

estimator beta1 hat like OLS estimator and if the expected value of this beta1  hat in large 

samples in large repeated samples if in repeated samples the expected value of beta1  hat is 

same as the true population then it is called unbiased estimator. However,  if the expected 

value is different for example this curve notice this if the beta  distribution the distribution of 

the coefficient here and expected value is somewhere here which  is different from the true 

beta then this is unbiased estimator. In contrast, the blue one  this one is called unbiased 

because its expected value is somewhere around true beta and such  estimators are often 

called unbiased estimators. It is considered that if certain assumptions that  we discussed 

regarding multicolinearity, autocorrelation, heteroscedasticity the 10  classical assumptions if 

they are held then OLS estimators are considered as unbiased estimators. 

 



 
 

Next, we have efficient versus inefficient estimators.  Estimators with very low variance or 

standard error, standard is nothing but the variance of  estimator. So, if the variance of 

estimator is low it is called relatively efficient. In this  figure this estimator has a lower 

variance lower standard error as compared to the dotted one,  the solid blue line has lower 

variance as compared to dotted one and therefore it would be considered  as more efficient as 

compared to this. Across different classes of estimators OLS estimators  are said to be best in 

terms of their efficiency that means they have the lowest standard error  of the estimate. If 

these two properties of unbiased and efficiency are combined  it is said that for OLS 

estimators in large samples they are more their expected value  converges closer and closer to 

the true beta and they become more and more efficient that means  their variance becomes 

lower and lower and therefore the combined property of efficiency  and unbiasedness is often 

referred to as consistency. 

 

What is consistency? Here consistency  is that in large samples the expected value and the 

very expected value and variance  converge to true beta that means the estimate converges to 

true beta its expected value becomes  closer to true beta and its variance comes lower and 

lower so essentially it converges to true  beta in large samples which is called the 

consistency. Combining these properties OLS  estimators are best in class and therefore they 

are often referred to as best linear unbiased and  efficient estimates. To summarize in this 

video we discussed the blue property of OLS estimators  we noted that across all the samples 

across all the estimators OLS estimators are best linear  and biased estimators and combining 

the property of unbiasedness and efficiency they are consistent  estimators as well that is in 

large samples the sample estimates converge to population parameters.  Classical linear 

regression model CNLRM and hypothesis testing part 1. In this video we  will introduce the 



normal distribution and its application in classical linear regression model  for hypothesis 

testing and estimating the significance of coefficients or parameter  estimates. 

 

 
 

 Recall the discussion on normal distribution. A simple normal distribution on  returns have 

daily price changes or returns on the x-axis here on the horizontal x-axis  and on y-axis we 

may have frequency of days or percentage of days.  A fitted normal distribution would look 

something like this green bell shaped curve while the bars  are actual returns the continuous 

shape normal distribution can be superimposed on this.  The important aspect of normal 

distribution is that it can be simply defined by two parameters  one is the mean which is mu 

and its variance sigma square where sigma is the standard deviation.  Using just these two 

parameters we can define a normal distribution and as we will see in this  video the 

application of normal distribution considerably improves the quality of analysis  or regression 

analysis with hypothesis testing and estimation of significance of parameter  estimates. 

 



 
 

A version of normal distribution which is most often employed is called standard normal  

distribution. Most of the properties of normal distribution in fact all the properties remain  

similar except that on x-axis instead of the actual values say returns we use the scaled or  

normalized or standardized return that is x which is the value of return minus mean upon  

standard deviation so it is normalized so that its mean is 0 mean of 0 this distribution will  

have a mean of 0 and standard deviation of 1 because of this transformation.  On the y-axis 

instead of frequency or percentage frequency we use something called probabilities  or rather 

probability densities. So, for example, each point will represent a particular standardized  

return in z form and on y-axis we will have the corresponding probability which is essentially  

a probability density the probability corresponding to this point which is  essentially nothing 

but probability density so it would make more sense to have a segment of  strip on the x-axis 

so the area will represent the probability of observing return in this window  which is 

represented by a z interval from x1 to x2 where x1 and x2 can be mapped to certain return.  

For example, from z or minus 1 to plus 1 that is in terms of standard deviation this essentially  

represents the standard deviation form of returns so minus 1 to plus 1 standard deviation we 

have  68. 

 



 
 

26 percent of return plus minus 2 standard deviation area that is 95.44 percent of the  

probability will lap within plus minus 2 standard deviation and within plus minus 3 standard  

deviation we have 99.74 percent and this is a respective of different returns because this is  

now in standardized form so we can simply say that within plus if it follows normal 

distribution  then as per standard normal distribution irrespective of mean the mean and 

standard  deviation can be anything if it follows normal distribution then for standard normal 

distribution  these properties will be held no matter what are the mean and standard deviation 

that means within  plus minus 3 standard deviation you have 99.74 percent of the probability 

within plus minus 2  percent you have 95.44 percent probability and within plus minus 1 

percent there is 60. 

 

286 percent  probability that observations will lie within this. Now with this introduction of 

normal  distribution we can apply the hypothesis testing concept on our parameter estimates 

beta naught  hat and beta 1 hat because hypothesis testing and inference inferential statistics 

are required for  sample parameters we need to draw inferences about population parameters 

using these sample estimates  of beta naught hat and beta 1 hat and more clearly to be more 

precise we would like the estimated  parameters these beta naught hat and beta 1 hat to be as 

close as possible to the population  parameters that is beta 1 beta naught. Now please 

remember why these beta naught hat and beta 1 hat  are different from beta naught beta 1 

because in repeated samples these beta naught hat and beta 1  hat will be different because 

there is certain randomness introduced because this error term.  So, this error term introduces 

randomness in the model and because of that the estimates are not  same as population 

parameters every time you change the sample you will obtain certain  different beta naught 

hat and beta 1 hat and other population parameters. Please note because this  randomness is 

introduced by this error term the sample coefficient estimates that is beta naught  hat and beta 

1 hat will also have a probability distribution and this probability distribution  will be similar 

to the error term because this randomness is introduced by this error term itself  and therefore 



every time you change the sample you will obtain different estimates of beta naught  hat and 

beta 1 hat and therefore if you want to make any inference about beta naught hat and beta  1 

hat you need to know their distribution which is essentially the distribution of the error term  

itself because this is the one causes causing randomness in beta naught hat and beta 1.  So, we 

assume we make the following assumption about the error term in the model remember  the 

simple model y equal to beta this model which we extended to multiple linear regression 

where  this mu was the error term. 

 

 
 

𝑀𝑒𝑎𝑛 = 𝐸(𝑢𝑖) = 0 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝐸[𝑢𝑖 − 𝐸(𝑢𝑖)]2 =  𝐸(𝑢𝑖)
2 =  𝜎2 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝐸 [[𝑢𝑖 − 𝐸(𝑢𝑖)][𝑢𝑗 −  𝐸(𝑢𝑗)]] =  𝐸(𝑢𝑖, 𝑢𝑗) = 0 

 

So, the following assumptions are made about this error term first  the expectations of this 

error term or the mean of this error term is 0 first. Second we assume  that the variance that is 

expected value of mu i minus expected mu i square or this because this  is 0 is same as sigma 

square. So, this is homoscedasticity the variance of error term is  constant. Second the 

covariance or correlation between mu i and mu j because this is 0 it  converges to this 

expression is also 0 that means mu i and mu j across observations i and j are not  correlated. 

Combined the assumption can be written as in this form that is mu i is distributed  normally 

with a mean of 0 and variance of sigma square with the 0 autocorrelation. 

 

Please note that normal distributions like we said are very easily defined just by two 

parameters one  is the mean mu and variance sigma square. Now, as we have made the 

normality assumption  and previous other classical linear regression model assumptions that 

we discussed 10 assumptions  plus normality. OLS estimates are blue estimates that is their 

best linear unbiased efficient and  consistent estimates as we discussed in the previous video 

and these are therefore since  they are consistent these estimates converge to their true 



population values as sample size  increases. The model as we have already seen y i equal to 

beta naught hat plus beta 1 hat x i  plus mu i hat here the predicted values of y i are written as 

y i hat which is beta naught hat  plus beta 1 hat into x i. Now, please note the mean of it is 

assumed that the mean of beta 1 hat  or expected value of beta 1 hat is same as the population 

parameter because if these assumptions  are held then this expected value of beta 1 hat is 

same as beta 1 and variance of beta 1 is sigma  beta 1 square and to summarize these two 

definitions we have beta 1 hat distributed normally. 

 

𝑌𝑖 =  𝛽̂0 + 𝛽̂1𝑋𝑖  +  𝜇̂𝑖; 𝑤ℎ𝑒𝑟𝑒 𝑌𝑖̂ =  𝛽̂0 + 𝛽̂1𝑋𝑖   

𝑀𝑒𝑎𝑛: 𝐸(𝛽̂1) =  𝛽1; 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑣𝑎𝑟(𝛽̂1) =  𝜎𝛽̂1

2   

 

 
 

So, this represents that beta 1 hat is distributed normally and its mean is beta 1 and its 

variance  is sigma square beta 1 hat. So, this is the combined expression for the assumptions.  

Now, we can also translate these assumptions that we discussed in the previous slide in the  

standard normal distribution format. Recall that this z or the standard normal version  is the 

value itself beta 1 hat minus its mean which is the estimate of population this is  expected to 

be same as population parameter. So, beta 1 hat minus its mean divided by standard  

deviation of beta 1 is the standardized version which is z and like we said this z is distributed  

normally with the 0 mean or expected value and a variance which is 1 because it is the 

standardized  version. So, it is normally distributed with a mean of 0 and standard deviation 

of 1 and it  helps us in doing any kind of hypothesis testing and inferential statistics. 

 



 

𝑍 =
𝛽̂1 −  𝛽1

𝜎𝛽̂1

 

 

To summarize in this video we introduced the normality assumption with error term  since 

the error terms are the ones introducing randomness in the population parameter estimates  or 

sample estimates. Therefore, the sample estimate itself is normally distributed  the beta 1 hat 

beta 0 hat sample estimates. Normal distribution because normal distributions  are very easily 

defined with just two parameters that is mean and variance and if the assumptions  are held 

then the expected value of beta 1 hat is same as beta 1 which is the population parameter.  So, 

the sample estimate converges to population parameter estimate if the assumptions are held  

as we discussed the classical normal linear regression model assumptions are held.  Its 

variance is variance of beta 1 hat which we called as sigma square beta 1 hat  and which is 

this sigma square beta 1 hat and therefore we said that beta 1 hat is normally  distributed with 

the mean of beta 1 and variance of sigma square beta 1 hat. 

𝑀𝑒𝑎𝑛: 𝐸(𝛽̂1) =  𝛽1; 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑣𝑎𝑟(𝛽̂1) =  𝜎𝛽̂1

2  

 



 

We also saw that in standardized form this is represented by the statistic Tz which is  

standardized with this formula it has a mean of 0 and a variance of 1 and distributed 

normally.  In the next video we will see the application of this normal distribution  and 

conclude its role in hypothesis testing and making inferences about the coefficient.  In this 

video we will conclude our discussion on hypothesis testing with classical normal linear  

regression model. Please remember in repeated sampling the point estimate that is beta 1 hat  

converges to population parameter which is beta 1. 

 

This is to suggest that if you have number of  samples the mean of beta 1 hat will converge to 

two population parameter beta 1. However,  we do not have the luxury of working with many 

samples and often we are left with one sample  even that is a very small sample as compared 

to the overall population and therefore the accuracy  of this point estimate of this beta 1 hat is 

important. How reliable is this estimate?  Because this single estimate definitely differs from 

the true population parameter  and therefore the reliability of this estimate is measured by 

standard error.  Please recall that in OLS estimation of regression model each parameter 

estimate that is for example  beta 0 hat or beta 1 hat is estimated with some error. The square 

root of the variance  of this estimated parameter indicates that error in estimation or 

essentially the precision of that  estimate. So the variance of this parameter estimate we take 

the square root of that which  we take the square root of that which becomes the standard 

error of this estimate. 

 

 



 

 
 

Let us examine how this standard error plays a very important role in hypothesis testing  and 

confidence interval estimation around this coefficient.  In the hypothesis testing procedure 

you set up a confidence interval for example let's say you are  you want to be 95 percent 

confident in your estimate of that coefficient  or parameter estimate then there is a five 

percent possibility or five percent chance  you are willing to take where you may be wrong 

and therefore if you have taken this 95 percent  region of confidence you are considering then 

the remaining five percent which is distributed in two  half regions five percent divided by 

two and five percent divided by two which is 2.5 percent  is called critical region or region of 

significance where you may be mistaken. 

 



 
 

So this is the region  which you are willing to take a chance where you may be mistaken 2.5 

percent on the right and 2.5  percent on the left which is overall five percent because you 

have taken a 90 you are willing to  take a 95 percent confidence. Let's see how this works in 

the case of regression. Let us say you  hypothesize the population parameter as beta1 which 

means if it is a simple linear regression  model you are estimating a regression like this beta0 

plus beta1 into x and you estimate a  coefficient of beta1. Now the way the convention 

suggests you consider this beta1 or hypothesize  it to be 0 which has a practical implication 

that if beta1 is 0 x our variable of interest has no  impact on y. This is how is the convention 

works so you assume that you start with a hypothesis  that beta1 is the 0 or your true 

population parameter is 0 which means x does not affect y. 

 

Now you want to set up a 95 percent confidence interval  and therefore if you want to set up a 

95 percent confidence interval which is 1 minus alpha  your alpha or significance level is 5 

percent so you set up a 95 percent confidence interval  around your population estimate beta1 

which is 0 you set up this confidence interval and you are  willing to take a 5 percent chance 

2.5 percent on the left and 2.5 percent on the right that  you may be wrong as well. Practically 

you are assuming that beta1 is 0 that means x does not  affect y so this is your essentially 

your null hypothesis and if this null is rejected you  consider a null that beta1 is 0 and if your 

estimate falls in this region you tend to not  reject your null however if it your estimate falls 

in this region which is the significance  region or critical region then you reject the null and 

say that beta1 is not 0 it is significant  and the implication is that x indeed affects y so there is 

a relationship between x and y  if you are able to reject the null. Now in practice along with 

95 percent we also check  the significance with 90 percent and 99 percent that means this 

value in case of 90 percent this  value is 5 percent on the left and 5 percent on the right in 

case of 99 percent it is 0. 

 

5 percent  on the left and 0.5 percent on the right that means 1 percent significance.  Now that 

we have seen standard normal distribution we also know that if this  is a normal distribution 



then for each value of probability whether it is 5 percent 2.5 percent  we have a z value so we 

depending upon the area in this region we can find a relevant z value  corresponding to each 

point that we have already seen. In practice we have a small we have small  samples and 

often population variances are not known so instead of using z parameter we make use  of 

students t distribution which is very similar to standard normal distribution only minor  

difference is that students t distribution has relatively fatter tails it has fat tails  which means 

for any hypothesis testing rejection of null requires more evidence so it needs more  evidence 

to reject the null and therefore we because we work with small samples and we do  not want 

to make any major mistakes we tend to work with students t distribution however  the 

procedure remains exactly similar whether you use normal standard normal distribution or  

students t distribution the procedure exactly similar however in practice we tend to do  

hypothesis testing with regression coefficients using students t distribution as we'll see in our  

practice example because it requires more evidence to reject the null and therefore if  you are 

rejecting the null we are more confident so we try to find the corresponding t value  

corresponding to this alpha value we try to find this t value which is on this side left side it is  

minus t alpha by t by 2 or plus t alpha by 2 alpha by 2 indicates that this t value is 

corresponding  to alpha by 2 so in the t table t statistic table we take the values which are 

corresponding to  plus alpha by 2 and minus alpha by 2 they are same because of symmetry 

in the distribution  they are same now the way it is done you compute the relevant t values  

you compute the relevant t values or critical t values corresponding to these alpha by 2 for  

example if alpha is 5 then you compute the t value corresponding to 2.5 level on the  left side 

and 97.5 on the positive side the right side so you compute t values  corresponding t values 

these are called critical t values which is plus minus t alpha by 2  1 for 2. 

 

5 on this side critical value and 1 for 97.5 this is in the case of 95 confidence interval  you can 

find the relevant values similarly for the 90 percent or 99 percent level of confidence  once 

you compute these critical or significant t values you compare them with the t value that  is 

obtained in the sample so you compute a sample t value which is there for your sample  and 

you compute if these t values is larger than this plus minus t alpha by 2 that means it falls  on 

the right side either on the right side in the critical region or on the left side of the  critical 

region then you reject the null that means you say that beta estimate of beta 1 hat or  beta 2 

hat or whatever is estimate is under consideration it is significantly different  from 0 it is not 

equal to 0 if it is on this side that means it is negatively  negative and if it is on this side right 

side it is positive  but it is significantly different from 0 that means it is not 0  and therefore 

we are rejecting our null and saying with that level let's say in this case  95 confidence or 5 

significance that beta 1 is significant and x the variable of interest indeed  affects the 

dependent variable y so just to summarize the discussion you assume a null  hypothesis 

which is called h0 that the true population parameter beta 1 which is assumed  to be 0 in most 

of the cases and therefore your alternate hypothesis h1 is that true population  parameter beta 

1 is not equal to 0 or the variable of interest which is xi affects indeed affects the  variable y 

the decision rule here goes like this you construct a confidence level of 1 minus alpha  where 

alpha is 5 percent the level of significance so your confidence interval is 95 percent  for the 

population parameter beta 1 then you compute the relevant t statistic  corresponding to this 

critical value of alpha by 2 on this side and here alpha by 2 on this side  so you compute the 



critical t value so let's call on this side this is minus t alpha by 2 this will  be negative so for 

example for 95 percent here the relevant t statistic will be corresponding  to a 2.5 percent 

value and on the right side it will be corresponding to a 97.5 percent value  if your computed t 

statistic for the coefficient if the computed t statistic which is beta 1  estimate estimate of beta 

1 minus 0 upon its standard deviation of beta 1 hat this number  this is the t statistic that you 

compute for the sample if it is greater than  or falls in this region greater than this value or 

lower than this value and fall in this region  then you reject the null h nWW you don't say that 

i accept the null but you reject the null  you reject the null or fail to reject the null you don't 

say that you accept the null either you say  i fail to reject the null or you reject the null so if 

you reject the null then you say that x  this variable affects y if you fail to reject the null that 

means your parameters  that means your parameters fall in this confidence region then you 

fail to reject  the null and say x does not affect y. In this video we'll discuss some of the other 

functional  forms of OLS regression that are non-linear in nature and we'll also discuss how 

to transform  them for suitable estimation with OLS regression procedure. To begin with 

we'll have a look at some  of the log linear or log log formations for example have a look at 

this expression y i equal to beta  one times x i to the power beta two into e to the power mu i 

now in order to estimate this notice  the parameters are of non-linear form and therefore if 

you take the natural log transformation  of this expression on both sides left hand side and the 

right hand side on the left hand side we  have ln y i on the right hand side we have ln of beta 

one plus beta two times ln of x i plus mu i  which can be further transformed into y i dash 

equal to alpha plus beta two times x i dash plus  mu i. 

𝐿𝑜𝑔 − 𝑙𝑖𝑛𝑒𝑎𝑟 𝑜𝑟 𝑙𝑜𝑔 − log 𝑚𝑜𝑑𝑒𝑙: 𝑌𝑖 =  𝛽1𝑋𝑖
𝛽2 ∗ 𝑒𝑢𝑖 

 

ln(𝑌𝑖) =  ln(𝛽1) + 𝛽2 ln(𝑋1) +  𝑢𝑖 

 

𝑌𝑖
′ =  𝛼 + 𝛽2𝑋𝑖

′ + 𝜇𝑖 

 

 

 



 

 Now this final transformed model notice it is linear in parameters alpha and beta two  and 

therefore if we estimate this model through OLS regression procedure then repetition of beta  

two here is important which is of coefficient of interest which is beta two measures the 

percentage  change in y i for a percentage change in x i because this is log log transformation 

that is  why it is percentage change in y i for a given percentage change in x i but for all times 

to  come remember that the original nature of equation has transformed so if you wanted to 

estimate this  beta two the interpretation with respect to original x i and this x i dash is 

different  nonetheless this expression can be estimated with the OLS regression procedure.  

Now have a look at this another expression for which we are going to use log-lin  

transformation y t equal to y naught plus one plus r raised to the power t  if we take the 

natural log and transform the model as below here natural log of y t equal to beta one  plus t 

times beta two because it was one plus r to the power t the logarithm transformation has  

made it in this form. Now please note this is a semi-log model because the dependent variable  

y t is in log form while the independent variable t is not in log form and therefore the 

interpretation  of beta two is as follows beta two measures percentage of proportional change 

in y t for  a given absolute change in t however if your coefficient of interest were y naught 

and one  plus r the interpretation is not exactly identical to them nonetheless this model can 

be transformed  with the help of OLS procedure. Also this was a log-lin transformation a vice 

versa interpretation  for lin log model as we can see here that is given change absolute change 

in y t for a percentage  change in x t will be applicable to a model of this kind where x t the 

dependent variable is in  the log form while y t the independent variable is not in log form 

and therefore the interpretation  of beta two will be like we said absolute change in y t for a 

percentage or relative change in x t.  To summarize this video we noted that there are certain 

expressions where which are not exactly  linear in parameters however with some 

transformations such as taking log on both sides  can transform them into different or 

resulting format which is linear in parameters and therefore  the resulting format or the 

transformed expression can be estimated using OLS regression procedure. 

 

𝐿𝑜𝑔 − 𝑙𝑖𝑛 𝑚𝑜𝑑𝑒𝑙: 𝑌𝑡 =  𝑌0(1 + 𝑟)𝑡   

ln(𝑌𝑡) =  𝛽1 +  𝑡𝛽2 

𝑌𝑡 =  𝛽1 + ln (𝑋𝑡)𝛽2 

 

 



However the interpretation of coefficient from this transformed equation may not be identical  

to the original equation nonetheless it is still useful for estimating the coefficients and making  

policy decisions and from such perspectives. Among supervised learning algorithms 

regression  algorithm is a very important tool employed in finance domain for applications 

such as  forecasting security prices or create scoring. Regression algorithms can be run with 

only two  variables one independent and one dependent which is known as simple linear 

regression  or with more than two variables which is called as multiple linear regression.  The 

key variables in a regression model include a dependent variable, one or more independent  

variables, coefficients of these variables and an error term. 

 

The error term accounts for the variation in the dependent variable that cannot be explained 

by the  model. While regression analysis can provide the statistical significance of the 

relationship  the direction of causality should come a priori from the theoretical 

underpinnings.  Refer to the rain versus crop example in this lesson.  Ordering least square or 

OLS is the most often employed method to estimate a regression model  which involves 

minimizing residual sum of squares. OLS estimation or ordinary least  square estimation of 

regression involves 10 key assumptions. The most important assumptions here  include 

linearity in parameters, exogeneity of independent variables, zero conditional mean  of the 

error or residual term, homoscedasticity of error variances, absence of multicollinearity,  no 

autocorrelation across error terms, no correlation between error and dependent  variables. 

 

If these assumptions are held then OLS estimators are referred to as BLUE that is best  linear 

unbiased and efficient estimates. The statistical significance of OLS estimators  is determined 

through hypothesis testing of coefficients individually. This requires  normality assumption 

of the error that is residuals. Very often the model is not linear  and may require some kind of 

transformation to make it linear which can be subsequently  estimated through OLS. 

However, the interpretation of coefficients also change with such transformations.  Thank 

you. 


