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Now that we have seen various approaches to examine data, let us start with sampling exercise. 

Using the probability sampling techniques, we will carry out the following analysis with our 

tool. First, we will try to understand various approaches to sampling and their implementation 

in R. Broadly, there are two kinds of approaches; probability sampling approaches which 

include simple random sampling, systematic sampling, stratified sampling and cluster 

sampling. 

 

For empirical studies, these approaches are important. In addition, there are non- probability 

sampling approaches, such as judgment sampling, convenience sampling and snowball 

sampling. From empirical analysis perspective, these approaches hold less importance. 

Therefore, we will explain and implement the probability sampling techniques, namely 

probability sampling, systematic sampling, stratified sampling, cluster sampling and random 

sampling. 

 

We will start by summarizing the pre and post samples. Next, we will compute various 

measures of central tendency. These include mean, median, mode, and quantiles. Then we will 



compute measures of range and dispersion. These include range, variance, standard deviation, 

and mean absolute deviation. Next, we will visualize the density distribution of pre and post 

samples and compare them with each other. 

 

We will also compare the pre and post sample density distributions with normal distributions 

having mean and standard deviation that is same as pre and post sample distributions. (Video 

Starts: 00:01:56) Now that we have discussed the summary and visualization of the data, we 

will move to the sampling aspect. We will discuss a number of sampling techniques as a part 

of inferential statistics we analyse and interpret data. 

 

In the previous videos we discussed and computed various summary statistics, descriptive 

statistics for the Xio Limited case study. In this video we will discuss sampling and it is 

different types. A population contains all the items or individuals of interest that one seeks to 

study. A sample contains only a portion of population of interest. One analyses a sample to 

estimate the characteristic when we choose a sample. 

 

We want it to be as similar as possible to population. There are many ways to collect a sample. 

Now, we will discuss the sampling techniques one by one. Predominantly there are two 

sampling techniques, one is probability sampling and there is one non-probability sampling. 

From empirical perspective probability sampling is the one important. We will discuss a little 

bit non-probability sampling but it remains less important to the empirical aspects. 

 

In probability sampling you have simple random sampling, systematic sampling, stratified 

sampling and cluster sampling. For this particular case study, simple random sampling remains 

the most important as we will see. Let us start with the very basic simple random sampling. 

We will use the sample command. It is provided in base R data functions. I will apply it on my 

pre-data to extract the sample of pre-variable. 

 

I will tell it that I need 50 observations from the overall 1000 observations and I will also give 

a command replace equal to T which tells R that it should be done with replacement that means 

the observation taken in the first sampling should be replaced back in the original data. Now, 

one way to do this is to simply run this command and you would notice that certain output has 

appeared on my console. 

 



I can run this command again and you notice a different number of variables on my output. 

This has happened because every time you extract the random sample R changes the sample. 

So, one way to do that is to run this command called set.seed and establish a seed number. Let 

us say, set.seed as 51. Once I do that and if I run, notice that if I run the sample command notice 

a certain set of sample has appeared. 

 

If I now, if that I have run the set.seed command I have fixed it. So, every time I run set.seed 

at 51 you notice same sample is appearing which is needed to generate the same sample. Now, 

a more probably a different and more relevant way in this context is to use a variable name pre 

and assign the sample generated to this pre-variable. I run this command where I assign the 

sample to my pre-variable.  

 

Similarly, I run a very similar command to assign the post variable sample. So now, I am 

assigning the sampled values to my pre and post variable and they are ready for further analysis. 

For example, I can start with a basic summary operations. I can summarize the data how I can 

use simple summary commands to summarize previous sample. Notice, the minimum, 

maximum, median and other inferential statistics and also notice when I run it on post the 

measures of simple tendency are appearing. 

 

And we can compare the summary of pre-sample as well as post sample. Now, please notice 

there is a clear shift in the pre-sample versus post sample and more importantly please notice 

here using the sample not the entire 1000 observations but just a small sample from it I also 

reached the same conclusion. So that shows the importance of samples in making inferences 

about the original data. 

 

We will also check the mode of this data, as we did earlier for that we need that library statip 

that we earlier installed. We will use that library statip and now, we will see some of the initial 

most frequent observations or that are part of it is mode for pre-variable. Let us see some of 

the initial observations. Similarly, we will use the post variable, for its most frequent 

observations. 

 

Please noted that in console once I run this command clearly, there is a shift in most frequent 

observations from pre to post. That indicates that there is indeed some impact of training. Next, 

we can see some of the other measures of central tendency and range as we have seen. So, for 



example, we can look at the quantile measure so, start with quantile command. I can run the 

quantile command on my pre-variable and I can see this for 20 percentile intervals, with this 

sequence. 

 

I can specify to R that starting from 0 to 1, a 20 percentile interval is to be produced. I can do 

the same for my post variable also, as you will notice here. And please notice all these measures 

on sample are indicating a shift I repeat, a shift on the over original data. So that is interesting 

because we are able to make these inferences using our small sample of 50 observations. 

 

So now, that we have discussed summarizing and computing measures of central tendency for 

a sample of 50 observations which we extracted using simple random sampling. We will move 

towards more measures of range and variability after this. Now that we have understood 

extracting random sample from the data and we have also seen how to compute measures of 

central tendency for this data. 

 

We will start with computing measures of range and visualizing the data. So, we will start with 

computing range measures and measures of dispersion. So, for range measure, a very simple 

formula range can be applied to the pre variable as well as the post variable. We can clearly 

see the pre and post samples there is a difference. The range of pre for both lower and higher 

values is on the lower side. 

 

That means the range has shifted after the training and development program which suggests 

that there is some significant impact of training and development on employee satisfaction. We 

will also check the variance of pre-sample and variance of post sample the variance of pre and 

post sample are similar. We can also compare the standard deviation of pre-sample and 

standard deviation of post sample. 

 

There appear to be also quite simple, similar. If you remember the population measures or the 

data when we are referring to population, we mean to say data only. So, the data these measures 

were quite similar. That means the inferences that we are drawing using the sample are quite 

similar to the ones we drew when we were working on the original data or the population. 

 

That means inference is drawn from samples may give some indication about the nature of 

original data. We can also compute mean absolute deviation that is a MAD measure for pre 



and mean absolute deviation that is MAD measure for post-date sample data also. Although 

they appear to be slightly different. Now that if you understood the computation of range and 

dispersion measures, let us focus on visualization of this sample. 

 

First, we will start by plotting the density plot of pre-measure. For that we will again use the 

plot command on density of pre-variable. We will add the main heading central heading as 

density graph. The x-axis label, x lab argument can be set as data we can use red colour col 

argument can be set as red. Also, we can set the line with argument lwd as 4. As seen earlier 

we can also describe the x-axis limits as 2 to 7. 

 

And we can also set the y-axis limit with ylim argument as 0 to 0.8. Now, let us plot this data 

we will do an interesting exercise now, we will try to superimpose a random normal distribution 

which has the same mean and standard deviation as this pre-sample measure. Let us do that so, 

first and foremost, we generate a random normal sample. We will name it Norm_Pre and we 

will generate it with the following command rnorm, 1000 values we will give to the sample. 

 

And a mean which is same as mean of pre-sample data and the standard deviation which is also 

similar to standard deviation of pre-sample data. Now, we have generated the sample, we will 

plot the density of this sample with the lines command. We will not draw a new plot we will 

use the lines command to draw the density of this plot on the same original old plot. We will 

give it a colour of green and we will set the line width as 4. 

 

Let us see how it appears and interesting thing appears we can see that the distribution, the 

density distribution of pre-sample data and a normal distribution with same mean and standard 

deviation are not similar. While they may appear to be symmetric to us but their peak is quite 

different. The random normal distribution has theoretically well justified peak. While, if you 

look at the pre-sample data, it appears to be bimodal. 

 

So, there are two peaks that means two set of observations have particularly large probability 

densities. With this in a very similar manner, we will also compare the density plot of post data 

with a random normal distribution which has the same mean and standard deviation as the post 

data. So, the first step we will plot the post data. Again, we will use the same convention, we 

will use the blue colour. So, we will plot the post data. 

 



We will generate a random normal variable, with name as norm underscore post which has the 

1000 values but mean and standard deviation same as post sample data. So, we will plot this or 

superimpose this normal distribution which has a mean and standard deviation same as post 

sample data will plot this. Notice again both of them, the post sample data and random normal 

distribution may appear similar in terms of their symmetry but again their peaks are quite 

different. 

 

As expected, the random normal distribution has quite a nice peak as expected from theory. 

But the post sample data again appears to be slightly bimodal with two different peaks as it 

appears. And both of these set of observations appears to have quite high probability density 

and it appeared to be sort of bimodal distribution so, not similar. But please remember our 

discussion about central limit theorem. 

 

Even though this post sample and pre-sample data are not or do not conform exactly to normal 

distribution. But in large samples repeated sampling, often it is argued that the statistics 

computed from the sample approaches to normal distribution. And therefore, CLT central limit 

theorem allows us to do various statistical procedures with assumption of normality. 

 

Now, let us superimpose the pre-sample and post sample data with each other. We will try to 

compare them, we will compare pre-sample and post sample data we have 50 observations of 

these data. So, first as a first step, we will plot the density of Pre variable again like we did 

earlier. So, we will plot the using the same command we will plot the density of pre-variable. 

Now, we will plot the or we can say superimpose the density of Post variable on the Pre-

variable. 

 

So, as a first step, we are plotting the pre sample then post sample and then we can also add a 

legend to it. Legend can be easily added on the top left corner. Maybe we can decide the 

location as we may find suitable. We can again, as earlier we can give the name post and pre 

to post and pre-sample data. We will follow the earlier convention of colour. We will give the 

fill at red for pre, blue for post, so, we will fix the colours and then we will add the legend. 

 

Now again notice both of these samples give a clear picture that there is a shift from pre to post 

due to training. Now, this inference is quite similar as we draw that from our original data or 

what we are calling as population. The inference from sample and population are quite same 



that is in the random sample we clearly find that there is a shift in distribution. Interesting to 

note that without using all that 1000 observations from the original data. 

 

We are able to make the same inference this with just 50 observation sample. With this we 

have understood the random sampling we will also try to examine some of the other methods 

of sampling, as we discussed earlier. Now that we have understood simple random sampling, 

we will start with other types of probability sampling, starting with systematic sampling. As 

part of systematic sampling individuals are chosen at fixed intervals, from the population data. 

 

For example, to create a sample of n from a population size p with fixed interval k you have k 

= p/n. That means, if you have population of 1000 and you want to create a sample of 50, you 

need to pick observations from every 20 observation sample. So, your length of observations 

is 20 and you will be able to choose 50 observations. Now, why would you do that? 

 

Many times, if you believe that your samples are coming from a fairly uniform observation, so 

that if you divide your observations in a certain intervals let us say 20, 20 and you have 50 

intervals the samples that you will get from each of the 20 observations are not so different 

from each other. And they fairly represent your population then it will save a lot of time and 

resources while doing the sampling exercise and you would be comfortable fixing a certain 

length. 

 

Now fixing the length is a trade-off. If you increase the length of interval, you will get less 

observations in your sample. If you decrease the length, you will get a large number of sample 

but again the time and cost involved in sampling may be higher. So, as a starting point, first we 

need to install a package called TeachingSampling. So, we will install this package called 

TeachingSampling. 

 

Once you install this package, you need to put this in your current working library. This 

package TeachingSampling, will put it under the current working directory. Now, the format 

the syntax to implement is quite easy. We will use this variable Syst_sample = S.SY (1000,20), 

we will tell R that there are 1000 observations and we need to break it into 20 intervals this 

will generate a vector of indices. 

 



This vector if I want to check the length of this vector, a vector of indices, has a length of 50 

and inside this index vector we have locations. I repeat we have locations starting from 1 to 

1000 in between we have randomly chosen samples which indicate the location of variables. 

So, if I want to select the location for pre-sample, let us say we select for pre-sample. 

 

Syst_Sample = S.SY(1000,20) 

Pre = Data$Pre[Syst_Sample] 

 

The location is equal to we can choose our variable data dollar pre and we can select the index 

variable as our location variable by putting it inside the subscripts for data pre-variable. And 

we can generate a set of 50 observations which are systematically chosen observations for our 

pre-variable. Similarly, I can select another set of 50 observations, purely randomly chosen for 

our post variable as well. 

 

Syst_Sample = S.SY(1000,20) 

Pre = Data$Post[Syst_Sample] 

 

So, I can again run the same set of codes for our post variable also and we can generate our 

post variable. Now, we can do all the statistical analysis that we have done for our random 

sampling exercise. We can repeat all the exercise again but just for saving time we will not do 

that but we will simply only see the summary of our newly created period post samples. So, 

just have a look at our newly created pre and post samples. 

 

And please notice there is a clear cut shift notice that there is a clear shift in our pre and post 

sample data which suggests that indeed there is an impact of training on our pre and post 

sample. Now, let us start with the stratified sampling. It is another part of probability samples, 

so, we will talk about stratified sampling. In stratified sampling you want to create or you 

already have some predefined stratas in your data and you do not want to ignore these stratas. 

 

For example, you may have in your survey, respondents male and female candidates and you 

would not want to miss the responses from one set of gender. For example, you would want to 

give certain equal weightage in your both of these stratas of male and female respondents. So, 

you would try to take a sizable component or sizable number from both of these status. Let us 

do that for this particular example. 



 

So, for that we need to install dplyr package to implement the stratified sampling. We need to 

install dplyr package once it installed we will add this dplyr package to our current working 

library. Now, will simulate the gender variable where female = 1 and male = 0. In this way we 

will simulate the gender variable for that we can simply add a gender variable, a simulated 

variable to our data we will define this as factor. 

 

Factor is a categorical variable in R. So, the procedure to generate the simulated gender variable 

is quite simple. We will run this runif command and generate 1000 values from 0 to 1 and will 

round them so that we have exactly 1, 0 values. Since we have converted them to factor they 

are meaning as a numeric is lost. They are only factor to R now so, our gender variable is 

created. 

 

Data$Gender = as.factor(round(runif(1000,0,1),0)) 

 

Once we have this gender variable, we can run a sample command by going inside the data 

variable. Inside data we group it with group_by function and we group according to their 

gender. Inside gender we apply our sample command and from each of the genders we pick 

exactly 25 observations. This will help us giving equal representation to both male and female 

respondents, so that is 25 are chosen from male and 25 are chosen from female gender. 

 

Sample=Data%>%group_by(Gender)%>%sample_n(.,25) 

 

We will run this command and now, we will extract the pre and post sample data, for example, 

with this command. We will extract our pre-sample data and with Sample$Post, will extract 

our post sample data. Now, again, we can repeat all the summary and visualization analysis 

that we have seen for our earlier samples. But just for the sake of it we will add summary 

measure for pre and we will also add the summary measure for post. 

 

We have given equal representation to both of our strata that is male and female. And notice 

there is a clear shift, clear-cut shift from pre-sample to post sample, so, this is our stratified 

sampling. Now, we will talk about cluster sampling. In a cluster sampling approach the 

population is first divided into small groups, known as samples. Then randomly we choose a 

certain number of clusters and then, once you have chosen certain number of clusters. 



 

You probably choose observations inside each cluster. The business argument behind choosing 

clusters can be like this. For example, you may have different, different income segments in 

each department of your organization. Now, you would not want to miss out on any particular 

income segment. Probably you would want to give equal representation to each income 

segment. 

 

So, therefore, you cluster in each department, you create different, different income segments. 

Each department will have certain high income segment and certain low income segment. Now, 

you can select, maybe from a large number of high income segment. You can select a certain 

high income segment. Again, repeat the same for low income segment and again, if there is a 

another category called mid income segment. 

 

You also pick a certain clusters from mid income segment. Now, from each of these clustered 

segments, you can sample data. This will save a lot of time and cost for your sampling exercise. 

You need not look at all the clusters. You can probably from homogeneous clusters, pick and 

choose a smaller number of clusters. So, this is the kind of sick business situation where 

clustering exercise or cluster sampling would help how to implement that in R. 

 

So, for that we need to install a package called sampling. Once this package is installed, we 

need to add this package to our current working library. Now that this sampling library is added, 

we will first and foremost generate a sequence of department, a simulated number from 1 to 50 

for all the 1000 observations. So, we are adding a sequence and defining it as a factor because 

it is representing a department. 

 

So, each number corresponds to a department. It does not have exactly a numeric meaning it is 

more of a categorical variable. So, we are generating a sequence of 1000 numbers. Randomly 

assigning numbers from 1 to 50 each number from 1 to 50 represent one of the 50 departments. 

So, once we have generated you can see also, so, this will be a sequence of 1000 numbers, 

categorical values, starting from 1 to 50, these are departments for us. 

 

Data$Dept = as.factor(round(runif(1000,1,50),0)) 

 

 



Now, we will do our clustering exercise. So, we will assign these clusters to a new variable 

called sample, wherein we will run our cluster command on our data variable called data will 

give a cluster name equal to department. So, a cluster of departments will be created. Now, we 

will give a size of 10 that means out of 50, only 10 departments will be chosen. Probably our 

belief system suggests that all these 50 departments, 10 departments are fairly representative. 

 

So, also we are using a technique called simple random sampling without replacement srswor 

for our clusting procedure. The idea is that the probability of each of this cluster of being 

selected is same, so, there is no, it is without replacement. So now, let us see the dimension of 

this cluster variable. Let us see the dimension of this data sample. You have created this data 

sample now, let us find the dimension of this data sample it is around 216. 

 

Data_Sample = cluster(Data, clustername=c(“Dept”), size=10, method= “srswor”) 

dim(Data_Sample) 

levels(Data_Sample$Dept) 

 

We can also see what are these departments that are selected for our exercise? So, we can see 

that we can add this levels command and once we add this levels command to our data sample 

dollar department. Notice that it shows me all the 50 departments. However, we have asked the 

command to select only 10 samples. The problem here is that as the way R works it keeps or 

the original cluster of original departments are still stuck to the variables. 

 

Data_Sample$Dept=droplevels(Data_Sample$Dept) 

Levels(Data_Sample$Dept) 

 

So, how do we remove this? We add a very simple command called drop levels on our original 

data. So, we will add, drop levels command and drop these unused levels from my data once 

you do that those levels are dropped. And now you, when you run the levels command notice, 

only 10 levels are appearing these are the representative levels that are chosen. 

 

Once we have selected the levels or departments the 10 departments we can very well select a 

certain number of observations to get our final sample. So, we will name it final sample which 

is equal to Data_sample. So, we are selecting the data from our original sample with 10 



departments and we are grouping it by department only. Inside departments from each 

department we are using the techniques of sampling. 

 

And from each department we are picking only a size of 5 sample. So now, this final sample, 

let us see the dimension of this final sample, so, there are only 50 observations as we would 

have wanted. Now, let us say select the pre-sample variables from this final sample let us select 

that. And we will extract the pre-variable first. So, we will first extract the data, we will use 

this getdata command. 

 

Final_Sample=Data_Sample%>%group_by(Dept)%>%sample_n(size=5) 

dim(Final_sample) 

 

And from the original data which is my data variable I will extract this final sample and we 

will name it new data. From this new data we will extract the pre-variable which is of 

importance to us pre-variable we will assign it. Similarly, we will extract our post variable also 

from this new sample, while other visualization and summary analysis remains the same as for 

the random sampling that we did. 

 

New_Data=getdata(Data, Final_Sample) 

Pre=New_Data$Pre 

Post=New_Data$Post 

ummary(Pre) 

 

Let us only look at the summary variable for our new pre-variable obtained using cluster 

sampling and also, we will do the same for our post variables. Again, please notice, as we have 

seen earlier as well there is a clear-cut shift in the pre-sample and post sample values indicating 

that there is indeed a significant impact of training and development exercise on employee 

satisfaction. 

 

 

(Refer Slide Time: 00:49:13) 



 

Now that we have seen various approaches to sampling the data, let us start with confidence 

interval estimation. We will explain and implement confidence interval estimations for our pre 

and post survey response data. For this we will use normal distribution with z statistics and 

students t distribution with these statistics. We will discuss the implementation in r in a detailed 

manner, to explain the concept and also see the quip implementation as well. 

 

We will compare the t and z values and also the resulting confidence intervals. We will try to 

describe and explain the differences between both of these distributions and the implication for 

analysis will also simulate normal distribution and student’s t distribution to understand the 

difference and it is implications for confidence interval analysis. Next, we will also discuss a 

case of binary distribution. 

 

We will discuss a business case wherein the organization focuses only on certain individuals 

with a score of less than 4.5 as detectors and more than 4.5 as promoters. The organization 

wants to focus their training and development programs on these detectors with a score of less 

than 4.5. Therefore, it assigns a value of 0 to these detectors and 1 to promote us. Given the 

binary nature of data that is 0, 1 categories it needs to be modelled using binomial distribution. 

 

And using confidence interval estimation we need to assess whether the data fairly describes 

the original data with 1000 observations, we will also try to make some inferences about the 

impact of training and development, pre and post sample data. And further make inferences 

about this impact on population. (Video Starts: 00:51:04) Now that we have understood 

various sampling techniques. 



 

We will employ them in our confidence interval estimation and we will understand this process 

of confidence interval estimation and it is application with r. So, we will start with confidence 

interval estimation. When we wanted to estimate the population parameter. Let us say, 

population mean, beam can employ sample estimator. For example, sample mean, in fact if you 

want to estimate any population parameter, you can use sample statistic. 

 

So, in this fashion, you define confidence interval as an interval surrounding the parameter and 

the interval has a certain chance of being the true statement or definition of being the population 

parameter. So, how do we interpret this confidence interval? The statistical interpretation is 

quite simple. It is the confidence interval, it has a certain probability 1 – alpha where alpha is 

the critical value or the complement to the confidence level. 

 

This probability of containing the population parameter. For example, if you have 95 percent 

confidence interval which falls between 0.65 to 0.73. Then you would say that there is a 95 

percent chance that the interval of 0.65 to 0.73 will contain the true population parameter. Now, 

we will perform this exercise on our pre and post sample data and we will do this in the step-

by-step manner. 

 

Please note there are certain differences between t distribution and z distribution. We will use 

these t statistics and z statistics n our interval estimation. There is a fundamental difference 

between these two distributions. The t distribution depends upon the degrees of freedom, as we 

have discussed and curves with more degrees of freedom, are taller and have thinner tails, t 

distributions have heavier test than the z distribution. 

 

So that means it needs more evidence or heavier values of t are required for same level of 

confidence interval estimate limits. So, let us start with our interval estimation process and first 

we will install the relevant packages. In this case it is distribution 3, this is our relevant package. 

We will install this package and once we have installed this package we will use library 

command to put this package in our current working directory working library. 

 

Now, first, we will start with the z test statistics. Although z test statistic is less spectacle, as 

we have discussed, t statistics is employed when either you do not know the population 

standard deviation or in cases where you have less sample value, for example, 30 40, 50, values 



in your sample. In those cases, you prefer to use t statistic which is more efficient in these 

cases. 

 

So, but first we will start with z test statistic and confidence interval estimation. What we will 

do is we will try to estimate some population parameter like population mean using the sample 

estimates. Conduct the confidence interval estimation and see whether actual population 

parameter is falling in that interval or not. That will give us some idea about the efficiency and 

effectiveness of the sampling process. 

 

So, in our case we have already taken the sample from our random sampling process. The 

sample mean is 4.05 but this is just a sample estimate. We need to generate the confidence 

interval to say that actual two population parameter lies in that interval. So, let us decide our 

confidence interval as 95 percent. So, our complement value or critical value is 0.05 that is 5 

percent. And therefore, obviously our confidence interval is 95 percent as you can see. 

 

Next, we need to generate a normal distribution, since it is z statistic based confidence interval 

estimation, we need to have a normal distribution. In fact, we need standard normal distribution 

which has a mean of 0 and standard deviation of 1. So, now that we have generated this normal 

distribution, let us look at some of the parameters. So, if you want to check the mean of this 

normal distribution it is 0. 

 

The standard deviation of this normal distribution is 1. In fact, we can see the plot and also 

make out some inferences about its characteristics. So, when I plot this, it clearly appears as a 

very normal, smooth, stable normal, standard normal distribution. As a second parameter we 

also need the standard error of estimate. So, standard of the estimate in case of z statistics, it is 

standard deviation of the population which would be Data$Pre. 

 

Since in this case the 1000 observations are used to generate the small sample of 50 

observations. We will consider this original data as population. Only so, it is standard deviation 

is employed in computation of standard error divided by the square root of sample size. So, 

sample size in this case is 50 which can be easily computed as length pre. So now, we have our 

standard error of the estimator which is around 0.08. 

 



Next, we also need to compute the value of z statistic, z statistic can be very easily computed 

with the help of quantile command. I can generate the relevant quantile for our normal 

distribution which we have just generated and specify the confidence interval that is 1 – a by 

2, why 1 – a by 2 we are using? Because we are saying it is a two-tailed test. That means the 

actual population parameter, can move either on the upside or on the lower side both positive 

and negative side. 

 

So, we are considering both tails and therefore, we are using 1 – alpha by 2. That means starting 

from 2.5 percentile to 97.5 percentile. Since our confidence interval is 95 percentile. So that 

means this 1 – alpha by 2 will represent 2.5 percent to 97.5 percent interval which is essentially 

95 percent only. Now, we have computed our z value in this fashion. Let us compute our margin 

of error MOE margin of error = z statistic into standard error. 

 

Now we are done. We need to compute the lower limit of our confidence interval very easily 

computed as mean which is our sample estimate of mean – margin of error. Similarly. I can 

compute the upper value of the confidence interval very easily computed mean of sample + the 

margin of error. So, if I compute these values like, let us have a look at these values. So, the 

lower value is 3.90 rounding off and the upper value is very easily can be seen here 4.21. 

 

So, this is my confidence interval of 95 percent, where I am hype where I am estimating that 

in this interval I have 95 percent confidence that my true population parameter should lie. Let 

us look at the true population parameter value. In this case, we are saying that original data is 

data itself and we are assuming it to be our population I can simply compute, it is mean as 4.00. 

 

So, it appears indeed, this population parameter falls inside that 95 percent confidence interval. 

So, our sample is reasonably good. Now, as you keep on increasing the level of confidence, 

you increase the sample size and decrease the alpha value. It does a trade-off. The more 

confident you want to be. You can increase the confidence interval but at the same time there 

is a cost in terms of efficiency. 

 

So, either you increase the confidence, interval and decrease the alpha value or you increase 

the alpha value and decrease your confidence interval. So, with this we have been able to 

compute the interval estimation using z statistic. Now, in the next video we will talk about 



confidence interval estimation using t statistic. In this video we will perform confidence 

interval estimation using t statistic. 

 

So, we will have confidence interval estimation using t statistic, t statistics are defined by their 

degrees of freedom corresponding to the sample. So, first we need to compute the degrees of 

freedom which can be very easily computed with this length command. I can compute the 

length of my pre-sample which we have been working on and this D of is my degrees of 

freedom.  

 

Next, I need to compute the t-statistics which is quite easy. I can use this t = qt function, qt 

function is basically to generate the quantiles from t distribution. So, I will use this and my 

critical value I will define as alpha by 2 because it is a two-tailed test. So, as we discussed 

earlier, we are using alpha by 2. Then I assign DOF degrees of freedom to my df variable df = 

DOF. And I specify that lower.tail = F. 

 

If I do not do that it will give me other till, for example, if it is a 95 percent confidence interval. 

If I put a lower.tail as true, it will give me 2.5 percentile value. If I put it as false, it will give 

me 97.5. So, both cases are fine but in this case I am using lower.tail equal to false. As a next 

step I will compute standard error of the estimate. Next, set of steps are quite similar to what 

we have done earlier? 

 

So, standard error equal to standard deviation of pre. Please notice that in the previous case, 

we were using the population standard deviation but as per the assumptions of t-statistics. We 

already know the con the variation of the population in case of z-statistic. But in case of t-

statistic, it assume that samples are small. And generally, we do not know the variation or 

standard deviation of r population. 

 

So, with this I divided by square root of length of pre variable and in this fashion I compute 

my standard error of the estimate. Next, I compute margin of error as done earlier, margin of 

error is t into SE which is my standard error. So, I get my margin of error. Then using this 

margin of error, I can compute the lower bound of my confidence interval which is mean pre 

– MOE. And I can compute the upper bound as well. 

 



So, we can see this confidence interval easily so, lower is 3.88 and upper is 4.23. Now, if I 

want to confirm whether my true population parameter which is the mean of the sample that 

not the sample. But the actual data original data itself that is Data$Pre, let us see that. So, my 

mean of original data is 4.00 which actually, false in this confidence interval. That means I my 

confidence interval where I said that with 95 percent of probably t. 

 

I assume that micro population parameter should be lying in this range which is true it seems. 

But please also remember that when we computed this exercise through z-statistic. Then also 

we successfully found that our true population parameter lied on the same confident interval 

using z-statistic as well. And therefore, whatever the need to conduct this exercise using t-

statistic. 

 

And for that please have a look at t and z values computed in this size. T value is 2.0 and z 

value is 1.96. This is a clear indication that for same level of confidence for me to have the 

same level of confidence, I need a relatively higher evidence. I need a higher t value to generate 

the same level of confidence. To talk about more on this let us try to visualize, let us try to 

visualize what is happening here? 

 

So, we will plot the density plot of the normal distribution using rnorm command. And we will 

generate, let us say 50 maybe 100 values. I will assign a colour of red, line width of maybe 2. 

And will not sign any central heading here that we will do in legends. We will add legends to 

make it more clear. The plot is provided on the plot window and now I am adding the t-statistics 

also. 

 

And for that I need to use rt command which will generate the density distribution for a p 

distribution with 500 observations and let us put df as = 20. Again I will use the same argument 

colour I will put to green. And remaining arguments remain the same. So, when I generate this 

graph, please notice. The t-statistics is very clearly very different from this one the red one. Let 

me add, legends also to make it more clear. 

 

So, I will add legend also the legend to be added on top left side. I will give the name as t 

distribution and normal. I will also follow the same convention by providing the fill as equal 

to green for t distribution and red for normal distribution. So now, you have the commands and 



now, I can run this command. So, I have my legends also. Now, please notice as of now, the t 

distribution is quite different from the normal. 

 

In fact, it deviates a lot notice, I will zoom it notice the tails of this t distribution. The tails are 

much fatter, while it is peak is lower. The tails are fatter which indicates that for a t distribution, 

it has higher probability of finding observations on rather extreme tails. And a lower probability 

at closer to me. That means it is mean and more are smaller which suggests that the most 

frequent observations that are closer to mean or others. 

 

And measures of central tendency like median mode is much lower and more observations are 

spread much further away from these measures of central tendency. With this understanding, 

let us change some of these values. Let us generate slightly higher values, as you can see, as I 

increase sample size both of these distributions. They become closer to each other. 

 

For example, if I put let us say, 5000 observations and increase my degrees of freedom to 200 

very large number of observations. They almost appear identical which means when I have 

large number of values, whether I do it with z-statistic or with t-statistic. The interval estimation 

process is almost similar but if I have less number of observations, let us say 100. And very 

low degrees of freedom let us say 10. 

 

And if I run this notice, the plots deviate a lot, the tails are much fatter and the peak is much 

lower. And therefore, in this case it would be better to perform this interval estimation with the 

help of t-statistic. So, this is the reason we use t-statistic when we have small number of values. 

Also, there are some shortcut ways to conduct this teen test statistic related interval estimation. 

 

We can simply use this t.test on my pre variable and notice on the console window. You notice 

the confidence interval which is same as we obtained, using the detail procedure where we 

manually computed the interval. Another shortcut to do this is from linear regression models. 

So, I run this con in command on my lm mod command lm is basically for linear model or 

regression model. 

 

So, I can regress my pre variable on a constant term that is one and generate the confidence 

interval for the constant estimates. Please notice the estimates are identical as our earlier 

confidence interval which is 3.88 and 4.23. So, it is another trick to estimate the confidence 



interval for the sample or you can use that t.test. So, with this we realize what is the importance 

of conducting t test with small samples? 

 

And in the same fashion, we can also conduct confidence inter estimation for our post sample 

variable as well to see the effectiveness of our sampling system exercise. With the sample 

estimates we can check and compare them and their confidence interval we can construct. And 

check if the population parameter is falling in those confidence intervals. And therefore, how 

effective are sample is? 

 

In this video, we will model the data with the help of binomial distribution. Will conduct 

confidence interval estimation and make inferences about the population parameter and also 

the impact of training and development on the employee satisfaction. So, we are analyzing 

binomial distribution and generating confidence intervals. The binomial distribution model 

deals with finding the probability of success of an event which has only two possible outcomes 

in a series of experiments that is success and failure. 

 

The business case for our exercise is as follows. The organization wants to specifically focus 

on those individuals that score low on satisfaction. And wants to design training and 

development programs that are more suited and customized to their needs. So, an individual 

below a score of 4.5 will be assigned a value of 0 and is considered as detector. While those 

above 4.5 will be assigned a value of 1 and are considered as promoters. 

 

So, as a starting point, let us examine the pre sample data. So, for that we will create a Pre_Bino 

variable this. This variable will be added to the pre sample data. So, we ascribe to a pre sample 

a value of 0. If it is less than 4.5 through this command and the value of 1 if it is more than 4.5. 

And this Pre_Bino variable will be added to those employee codes. 

 

Let us have a look at the sum of this variable Pre_Bino. So, this variable suggests that there are 

17 employees in our sample that have received a score of 4.5. And therefore, this Pre_Bino 

variable is 1 more than 4.5 sorry and remaining score of 0. So, if I want to know the fraction 

of those that have scored 1. I can simply divide this summation by the length of 3 which is 50. 

This means that 34 percent of the employees in the sample are satisfied. 

 



Now, you may want to check the confidence interval. That is maybe 95 percent confidence 

interval in which you believe your population parameter will be there. So, for that a simple 

command prop.test we can apply and we can define the sum. So, this will give us the number 

of occurrences which is 17, 17 time we have employees that are satisfied. And the total length 

of sample will put the formula although length is 50. 

 

But still, we will use this formula to define the length. Then we will put the confidence level 

as 95 percent. If I run this command notice, the confidence interval estimate of the population 

parameter. It is from 0.215 to 0.488. And the sample estimate, as we already know 0.34 which 

is 17 upon 50. Now, you would like to know how efficient is this estimate? How correctly it 

defines the reality? 

 

So, in our case first, we need to know how many times in our population parameter the value 

is more than 4.5 or less than that. So, for that again we will perform the same procedure but 

this time we will use the population. We are calling our 1000 observation data as population in 

this case. So, let us use that from which actually, the random sample was taken. If it is less than 

0.5 then we take a value of 0. If it is more than 0.5, we take a value of 1. 

 

So, this is our population parameter pre training. Now, we can compute the summation that is 

those who are satisfied with very this simple command population pre. And we will divide it 

by length. So, it is quite simple with this let us see the number, so, it is 25.5 percent which is 

slightly different from the sample but it is still false in that 95 percent confidence interval. That 

means our sample fairly accurately describes the reality. 

 

And it suggests that the original population parameter false within the range of 21.5 percent 

and 48.85 which actually, is true. So, our sample is a fair representation of reality. Now, with 

this in the next video, we will talk about the post sample, it is properties and whether it is able 

to provide that confidence interval for population estimate. And will also compare the impact 

of training and development on pre and post samples. 

 

Now, we will examine our post sample data with the help of binomial distribution and conduct 

confidence intervals. So, we will examine the post sample data with binomial distribution and 

confidence intervals. So, first, as we did earlier, we will generate this Post_Bino data. And here 



in our sample those values that are less than 4.5 will assign a 0 for those values. And 1 for those 

values that are more than 4.5. 

 

We will assign these values now. If you want to know, how many individuals this value was 1 

I can assign I can check the summation Post_Bino. It seems this number is 39. It has increased 

significantly I will divide it with the length of our sample which is length of post. And notice 

the fraction this is 78 percent is our sample estimate. So, this is a sample estimate for getting a 

value of 1. That is response of more than 4.5. 

 

Now, you would like to generate the confidence interval for your population estimate. And as 

we did earlier, we will use this prop.test sum Post_Bino which will give us the number of values 

that are more than 4.5 and then sample size. This is post and we will assign a confidence level 

of 95 percent. So, when I conduct this confidence interval estimation, please have a look at this 

confidence interval of the population estimate which is 0.64 to 0.88. 

 

And the sample estimate is 0.78 which was expected, as we already saw. Now, to check the 

efficiency of this sample or the ability of sample to correctly define and describe the population 

parameters, let us compute the population estimate. And for that I need to generate the values 

of zeros and one. Again, same procedure I will for Data$Post. In this case, data variable original 

1000 survey sponsors access our population data. 

 

Because from this data only we have generated the sample estimates. So, if this is less than 4.5, 

we will assign a value of 0 and if it is more than 4.5 we will assign the value of 1. Let us 

compute the values. And now, we will see what is the total fraction of the population post 

divided by the length of population which is 0.75. So, the sample estimate is 0.78, while the 

population estimate is 0.75 which is fairly closer. 

 

And also, this number false well within this 95 percent confidence interval. So, first we got an 

idea that our samples are fairly describing the population. But more importantly, have a look 

at the confidence interval estimate before and after that is pre and post. So, before the estimate 

is 0.21 to 0.488. So, this is our estimate before training. After training our estimate is 0.64 to 

0.88 which clearly indicates that there is a shift in the employee satisfaction. 

 



So, pre survey sample data and post survey sample data clearly indicate that there is a shift and 

there is a significant impact of training on employee satisfaction. That means there are much 

more employees that are shift satisfied with the score of 4.5. More than that that is one very 

important inference that we can draw from this analysis. And therefore, it seems that our 

training and development program is successful. 

 

So, this is how we tested. We model the data sample data using binomial distribution. And we 

conducted the confidence interval analysis and also saw whether our sample properly describes 

the original population data. And it also successfully indicated the impact of training and 

development program on the entire population. (Video Ends: 01:18:28) 


