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Welcome back my dear friends. A very good morning, good afternoon, good evening to all of

you wherever  you are in  this  part  of the globe,  and this  is  the DADM-III course under the

NPTEL MOOC series. The total course duration which I basically I these few things which is

basically add before starting of this lecture, in each and every lecture is for 12 weeks which is

spread over sixty lectures.

(Refer Slide Time: 00:56)

And the total contact hours is thirty because each lecture is for half an hour and in each week we

have 5 lectures of half an hour each and after each week you have an assignment. So in totality

have 12 assignments and as you can see from the slide we are in the last lecture for this course

which is the 60th lecture in the end of the 12th week. And we were discussing about robust

optimization and my good name is Raghu Nandan Sengupt form the IME department  at  IIT

Kanpur. 

So in the concept of robust optimization we considering the idea that main part is basically to

model it and the concept of modeling had been mentioning (())(01:16) in its importance, and you

basically consider either the ellipsoidal concept or the interval set. And the ellipsoidal concept



this concept of the sets we will consider here in the area of portfolio optimization and I gave a

reason for that.

We consider a perturbation based on the nominal value and the nominal value is basically we

will be considering the mean value based on the prior data. I will discuss that later on. So our

main steps of preceding how to solve the problem would we first discuss that deterministic part

solve it, and the solving that would also be a type of precursor which you have discussed in the

reliability case.

Then convert that the deterministic one in the in the probabilistic sense with the constraints being

probability with the level of betas being given the level of reliability or the robustness. Then

convert using the ellipsoidal set and using the nominal values perturbation over and above that,

convert them into the robust counterpart, propose the theorems and then solve it using this the

simulation method. So once you have the perturbation based on the less than type or a greater

than type the I will only give you the essence of the models please please bear with me.

(Refer Slide Time: 02:35)

So we will basically have the same maximization problem where we have given a weightages of

lambda to the return of the portfolio on 1 minus lambda to the variances and we are trying to

maximize that. The perturbation sets would be based on the fact that we will consider for the less

than type and greater than type corresponding to the fact that we have the returns to be greater



than equal to some RP or some RP star and the variance being less than equal to some Sigma

square P or Sigma square P star.

We basically formulate the produls corresponding to the fact that the ellipsoidal sets are plus type

that means this wi being the weights. So they would basically be given by the concept that the

perturbation sets would be more important if we consider the perturbation to be on the positive

side and if I consider the perturbation set I should be basic to use a different color.

If I use the portable N sets for the variances which are the less than time obviously a minus sign

come because I would be more concerned if they are going on to the left hand side for the returns

and if I will be more coincident for the risk if they are going out of the right hand side. So

remember this line which I drew. For t1 being greater it is good for the returns and for t2 being

less on to the left hands is good for the variances that is what we want as an investor.

So once you basically do the simple model formulation for the box and ball plot and then when

you consider the interval set for them you have basically the formula corresponding to the return

when the probabilistic constraint is converted into the robust counterpart considering the box and

ball plot is the following. 

Here ri0 are the nominal values for the ith stock. This box and ball plot concept which you are

considering using the L infinity norm and L2 norm would basically give you the part which is

here box and ball counterpart and that would be greater than RP because it is going to the right

hand side if you remember.

And in the case when we consider the box and ball plot for the variances is it will be given by

this. So is the less than type so obviously we add the box and ball and take the intersection and

this would be of the plus type because they are on the left hand side. Again Q naught Q suffix

naught are the nominal values of the variance covariance matrix. 

So  basically  we  will  be  taking  the  average  of  the  variance  using  the  concept  of  bootstrap

whatever it is and the of the diagonal element would also be given by the nominal values for

each and every stock taken individually.

And here as you remember as you know the XS are the concept of the perturbations we are going

to consider for the box and ball. The last constraint where we didn't have any perturbation was



basically the sum of the weights is equal to 1, and here we are going not going to consider any

short-selling. So the probabilistic first constraint is this one which I am highlighting within the

yellow color has been converted into a robust counterpart  and the robust counterpart  for the

second constraint which was related to the variance is this one which is highlighted. So objective

function does not have any perturbation because it is not we do not consider robust obviously we

can consider.

So once you have the model converted with probabilistic constraint into the robust counterpart

you will use simulation methods and solve them and basically give the results. Now remember

one thing changing the values of beta 1 and beta 2 would have a consequence on the concept of

the box and ball probability levels. So they would dictate how your results would be which I will

come when I consider the results accordingly.

(Refer Slide Time: 07:39)

Now we consider  the concept where what is  convexity and we know that  we have consider

convexity in more details. So I will just read it with it will just be a repetition. 

A function is said to be convex if F of lambda X plus 1 minus lambda Y here lambda and 1

minus lambda are considered an A and B is equal to or less than equal to less than equal to time

and less than type or greater than equal to greater than type would basically becoming from strict

convexity and convexity and strict concavity and concavity.



We have already discussed that when we are considering the concept of  convex functions the

semi definite, definite, semi and semi definite positive, definite positive, semi definite negatives

and definite negative. So depending on the less than equal to less than or greater than equal to

greater than sign. If an optimization problem is convex it means it is objective function as well as

constraints are convex and we can solve it.

But in our model the system equations which is 1.2.3 and 1.2.4 which is the first and the second

one and not convex hence it cannot be solved using any classical algorithm. To avoid this we

devised an engineering approximation here it is. For the counterpart which when we are dealing

with the variances will consider that the variances are given by Q the variance covariance matrix

of size N cross N. 

So here we will consider any perturbation is happening in a sense that if it is the less than type

will  basically  add a negative  counterpart  if  it  is  a greater  than type will  be basically  at  the

positive counterpart and basically solve the problems accordingly. 

(Refer Slide Time: 09:40)

So this was the just repetition this was the model 1 and in the model 1 we had I am just repeating

it maximizing lambda rP  minus of 1 minus lambda Sigma square P because minus sign coming

because that will be when I add the maximization becomes a minimization. Probability of the

return of the portfolio is greater than equal to rP with the probability beta 1 and probability of the



variance  of  the  covariance  of  the  portfolio  being  less  than  equal  to  Sigma square  P has  a

probability of beta 2.

This beta N, beta 1 and beta 2 can be changed and that would basically have a consequence on

the values of the box and ball values based on which you are going to solve the problem. Again

some of the weights is equal to 1 and there is not short-selling so obviously the weights can be

has to be greater than 0. 

So these are again a repetition. The first constraint when converted into robust counterpart using

the level of beta 1 is this. And the second constraint considering the robust counterpart when the

probabilities one considering the beta 2 level of probability are converted is this. So we can solve

it using simulation method and get the result. 

(Refer Slide Time: 11:14)

Now we consider a model which is a little bit different in the sense that we will consider the

concept of hyperbolic risk functions which is Hara and what is the story behind that? Now the

story is like this so for any decision when you are trying to basically buy and this again I am

going to  the  concept  of  utility  for  any decisions  we have  the  investments  in  place  and the

investment gives it a utility. 



Now what is important to note that if your neutral functions are quadratic then obviously we

know that the returns would be normal and vice versa. This I had mentioned that not in the area

of DADM-III but I have been mentioning that in quantity finance time and again.

But the fact is that the returns of the stocks of the scripts are not normal. They are EVDs, with

type 1 type 2 distributions, so gamble distribution and all these things. Now how do we model it?

The answer is intuitive and simple. What you consider is that, you consider I am not going to go

through the proofs I will only state the sequence of how the procedure is done. We will consider

the distribution to be gamble or type 1 type 2 EVDs with some parameters alpha beta gamma.

So these are shape, scale and location parameter. So how we find it I am going to come to that

later on, so let us keep that aside. Consider alpha, beta, gamma are known for the EVDs. Now

what we do is that we consider the utility function based on the investment as Hara and using

Jacobean transformation we convert and try to find out that if the distribution of the returns are

EVDs then what is the distribution of the utility function.

Once we find that utility function, we need to basically find out so utility function returns for

each and every EVDs are given we find out using the Hara, using the Jacobean transformation

we combine them, so what is the reason of combination? So this utility functions based on EVDs

for each and every stock when they combine would give me the overall utility function for the

portfolio.

So now we are intuitively assuming that EVDs is being true for the portfolio distribution I would

basically have a utility which I need to find out and that what we just would do using the concept

of Jacobean transformation. Once that is done they would be a functions of alpha, beta gamma.

That is those parameters which we had in the EVDs. Now how would we find out the alpha,

beta, gamma.

Obviously we will need to basically estimate them using the alpha hat, beta hat and gamma hat.

What we will do and I will come to that later in that, given the data set for the EVDs for stock 1,

stock 2 till  stock N or script N will basically do the bootstrapping and find out the different

parameters alpha hats, alpha hat 1, alpha hat 2, alpha hat 3 for all the scripts similarly beta 1 hat

to beta N hat.



So this beta should not be confused with the level of reliability beta 1. Obviously we are using

the same symbol but let us not get confused. Then we would have the gamma 1 to gamma N all

the hat values the estimated values and we basically find it from the sample using bootstrapping

method. Once they are found out they are put back into the utility functions for individual scripts

considering EVDs and an utility function based on Hara.

Then  we  will  combine  them to  find  out  the  combined  utilities  for  the  portfolio.  Once  the

distribution is found out for the combined portfolio we need to find out two things one is the

expected value of the portfolio considering the HARA utility function to be true and one is the

variance of the of the utility for the portfolio considering HARA utility function to be true, why

we need the first moment in the second moment?  

The reason is that we want to basically maximize the first moment with this expected value and

we want to minimize this the second moment which is the variance. So this is what we are doing

once you find out the utility, the utility function is given. I will just highlight the values using

different  colors.  So  this  is  the  utility  function.  And  this  Eta  Zeta  all  these  values  are  the

parameters for the Hara utility function. 

The expected value or the utility function is given for the portfolio is given by this. This I said I

am not going to go into the proof I just gave the general idea how you solve it, and then you find

out the variances. Now only point what added extra step in calculation in the various would be

that you will basically have a Taylor series expansion a form which you need to basically expand

in a Taylor series expansion and basically ignore the higher terms.

Because they would basically be tend to 0 because the value of return off on any particular stock

is 10 to the power minus 2 so any square value cube values would be 10 to the power minus 4 or

10 to the minus 6 hence we basically ignore them. So if we consider the variance or the portfolio

this is the variance of the portfolio considering the Hara utility function and based on that we

will basically right to proceed and do the calculation.



(Refer Slide Time: 17:47)

So  now  the  problem  is  again  the  simple  way.  Look  that  at  the  maximization  problem.

Maximization problem is basically the same one tried to basically maximize us lambda into rP

some value which you want to keep increasing that means we are trying to increase t1 more on to

the right, and minimize t2 which is Sigma square P and basically push it on to the left. So you

want  to  maximize  lambda  into  rP minus  1  minus  lambda  into  Sigma square  P. P suffix  is

basically for the portfolio.

Now the  constraints  are  interesting.  I  will  use  the  colors  accordingly  the  probability  of  the

expected  value of the Hara utility  function for the portfolio  is  this  formula which you have

already calculated. So that has to be greater than rP and that probability is beta 1. So in the case

the yellow colour it is this orange color which had been utilized if it was normal distribution

would be the expected value of the portfolio the multivariate distribution be true for the portfolio

if symmetric distribution was considered to be true considering the Marquis Principle and model.

And in the case if the variance is considered using the Hara utility function for the portfolio this

is the variance and again if you consider the Hara of this Marquis model to be true they would be

replaced by the variance covariance matrix. So now again you will basically have a model to

formulate using the probability for the return of the Hara utility function to be greater than rP

with the probability of beta 1 and probability of variance of the Hara utility function for the



portfolios in both the cases to be less than Sigma square P and that probabilities is greater than

beta 2 again we need to basically formulate using the robust counterpart.

(Refer Slide Time: 19:52)

So we write the equations as it is. Here is the expected value of the Hara utility function. The

objective function remains the same note that and the variances for the Hara utility function is

this is less than equal to Sigma square P this is true with the level of beta 1 and beta 2 for the first

and second constraint respectively. The summation of the weights is 1 and Xs are greater than 0

considering no short-selling is there.



(Refer Slide Time: 20:38)

So once you basically do the robust counterpart and do the model considering the less than time

and greater than time I am not going to go into the proofs. What you have are these again I will

highlight. So this is the robust counterpart for the first constraint using the less-than or greater-

than type and here we are using I will use another color blue. So these are the initial equations

for the perturbation sets and then you use the box and ball plot.

And the box and ball plot would basically have a consequence and what is the value of capital

Phi and the value we would be basically based on the level of beta 1 which we have. That is why

we have written capital Phi suffix 1. The robust counterpart for the second constrain our given.

So this is the robust counterpart  again you see this is less than type. Obviously it should be

because it is on the left hand side and the this perturbation sets what basically model using the

perturbations as highlighted here.

Again the value of capital Phi suffix stood basically mean they are corresponding to the level of

beta 2. So as beta-1 beta-2 change these values of capital phi 1 and capital phi 2 would change

and you would give you different results. The third scans constrain summation of Xi is equal to 1

remain same Xi being greater than 0 remains same.
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The second model is exactly the same only that we are putting the levels of lambdas on the levels

of weights on the variance covariance matrix and 1 minus lambda for the return on the portfolio.

Again probabilities are beta 1 beta 2 for probability of the risk return being greater than equal to

rP. 

Now remember  one  thing  the  change  in  the  problem is  happening  here.  You  are  trying  to

minimize, minimization and maximizations are not important, what is important is to note down

what is being multiplied with lambda. In the initial problem you are basically multiplying our

value of lambda with rP and you are trying to basically maximize my and minimize rP.

But here now trying to basically bring the value itself of the portfolios risk and return so that risk

is basically given by the double summation of Xi into Xj Sigma i Sigma j Rho ij while the value

of the returns are given by the summation of our ri into Xi.  So in one case you are keeping the

values of rP and Sigma square P as in their objective function in the next model which is in front

of you, you are trying to basically keep it as the value being which is being calculated from the

portfolio by itself depending on the weights which you are going to invest for each and every

stock.

The third constraint which is summation of xi equal to 1 remains the same. The fourth constraint

xi is being greater than equal to 0 for no short-selling remains the same and the probabilistic

parts for first constraint and second contents are the same.
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Once you basically again consider the robust counterpart considering the perturbation sets, I will

highlight the perturbation sets using the blue color. So this is the perturbation sets corresponding

to the first constraint which is to do with the mean value of the portfolio. This is the perturbation

sets corresponding to the variance for the second constraint and that has to do with the variance

only and the changed constraints depending on the robust counterpart are basically given I am

using the same color. This is the robust counterpart for first constraint and this is again utilizing

the concept of box and ball plot.

Again capital Phi suffix 1 basically means this is the value of Phi 1 corresponding to beta 1 and

this beta 1 value changes would also have a consequence and change in capital Phi 1 would also

result.  And  similarly  when  I  consider  the  corresponding  robust  counterpart  for  the  second

constraint I will use the same color green. So this is the change constraint for the robust part for

the second constraint.

So here capital Phi 2 suffix 2 is basically the value of the reliability corresponding to the beta 2

value  and again  these values  I  am not  repeating,  r1 naught  and Q naught  both in  the other

problems, r1 naught is basically the mean value of the return and Q naught is basically mean

value of the variance covariance matrix. This will basically simulate it using the bootstrapping

and then consider those values. And this third constraint summation of Xi is greater than 1 is

equal to 1 and Xi is are basically greater than 0 remain same.
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Now I consider the model where I have the minimization being true but this minimization are

being considered for the case when we have the risk and return corresponding to the Hara utility

function, so minimization for the objective functions remain the same as in the third model.

This is lambda into variance covariance of the portfolio minus 1 minus lambda because you are

trying to minimize. Minimize or negative value would basically be trying to pull it up. Minus 1

minus lambda of the return and the probability corresponding to the first and the stress second

constraint have the reliability levels of beta 1 and beta 2, but the values inside the bracket are

interesting to watch.

In the first case it is basically the so called return calculation which we found out as the expected

value of the Hara utility function based on the fact that we are considering the EVDs to be true

for each and every stocks. So this is the part where I am just highlighting I am not going to put

the color but where the pointer is this is the part greater than equal to rP is basically the value

which I have for this the return of the portfolio considering the higher utility functions.

Similarly the second part is basically in the second probability is basically the part related to the

variance or corresponding to the utility function from the ri utility function. The third constraint

remains summation is equal to 1. The forth constraints are related to each and every investment

is greater than 0. 



(Refer Slide Time: 28:25)

The counterparts are given I will just highlight them. This is, so this is for the first constraint

depending on beta 1 whereas capital Phi 1 would basically be calculated using beta 1, and the

second constrained counterpart in the reliability sense are is this. Again the less than type greater

than type equality would be used. 

And this capital Phi 2 would be calculated from beta 2 and these are the perturbation sets for the

second case and the first case. So I will just request one thing because today being in the last

class I will just extend it for by about 5-7 minutes. So please bear with me. The third constraint

remains as summation is equal to 1 and the fourth constraint is Xi are greater than 0.



(Refer Slide Time: 29:32)

So we take the stocks off of 25 different stocks from nifty 50 starting from ACC to Infosys Tech

Jindal,  axis  bank,   Ranbaxy,  BHEL,  ITC,  Reliance,  Dr..Reddy,  BPCL,  SALE,  SBI,  Cipla,

Siemens, Tata Motors, Mahindra and Mahindra, Tata Steel, Wipro, HDFC, HDFC bank,  Hero

Honda, Hindelco, HUL that is Hindustan Unilever limited, ICICI and Infosys Tech.

The data is taken for indices considering the 10-year range from December from January 2001 to

31st December 2010, which is 2840 days. We find out the max and the min considering the

EVDs to be true. We basically find out the maximum the return, on the minimum return basically

sort it out. 

We find out two sample sets one is for in sample and out sample. The in sample basically would

have about 4. So we basically divide 2040 into 2 equal sets. So we consider 1400 for the first

sample and the 1400 for the second sample and for both the samples we find out the minimum

and the maximum.
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So this we do give us a density plot for all this 25 stocks. So they are extreme values depending

on  whether  you  want  to  take  the  left  hand  side  or  the  right  hand  side  of  the  distribution

considering skewed on to the left of the right.

(Refer Slide Time: 30:59)

Financial returns as usually flat and have expected picnics we use the concept of EVD that has

been telling you time and again.
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So I just give you the general results. So EVDs for the right hand side and the left hand side are

basically the returns corresponding to whether the positive one. So I will just highlight using the

red color. So this is the positive part which you have and this is the negative part which you have

so like this so either skewed on to the left or the right. 

(Refer Slide Time: 31:38)

And we compare the bootstrap results to find out whether the values are the QQ plots are related

to the EVD distribution or normal distribution the normal distribution does not hold but the EVD



distribution for the central region are quite visible and they agree with the fact obviously you

have to do better bootstrap results and take the data accordingly.

(Refer Slide Time: 31:59)

So I will just give you a few sample sets. I will only give you the highlighted points. So we take

basically sample 1 min max, sample 2 min max and give the portfolio returns and the variances

for model 1. So they basically formulate if you do about 1000 or 2000 simulation runs they

basically agree with the fact of the mean variance theorem. 

But the values what is interesting to note is that if you keep changing beta naught and beta 2 they

would be conjugating on were concentrating envelopes, overlapping envelopes where you can

find out to what level of beta and beta 1 or beta 2 you basically need to find out the level of risk

and the return. So they would be like this so each levels of betas would give you the risk and

return level for the different beta. So we have basically just giving you a beta 1 and beta 2 as 90. 
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So this is for model 2, so that general structure remains the same. So this is for model 2. 

(Refer Slide Time: 33:05)

This is for model 3, so risk and return profile the frontier is same. 
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And this is for model 4. 

(Refer Slide Time: 33:18)

Then we come to highlighting the sample 1 min max weights for the portfolios of the scripts. So

this gives you a distribution of the weights this is nothing to do with the actual operation but they

give you the results. 
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Then I find out the weights for the investment for sample 2 for the min and mean man max.  So

with this I will end this course of DADM-III and before I close the course I will take another 7-8

minutes. I want to thank all of you for your patience. 

We  have  covered  yet  taken  a  long  journey  starting  from  concept  of  linear  programming

optimization the latest area of what are the concepts of the slacks, the surplus then the concept of

the weights, why they are important. The concept of the nonlinear programming, the this concept

of (())(34:20) cuts and the concept of branch-and-bound.

Then we went on the concept of reliability optimization, robust optimization and we consider a

different type of problems accordingly. So obviously we not may not have been able to cover all

the topics in in optimization but it basically I am sure it will give you a good feel that how you

can proceed and basically try to pick up the concepts and there are many interesting areas which

are still left to be explored corresponding to the fact that the DADM 3 course was basically for

30 hours.

I want to basically thank all of you for your patience and all the queries which have been there.

We have tried our level best to answer them. If you are not if you have not been able to answer

all the queries I apologize and I am sure that in future any of your correspondence being sent to

NPTEL office or to me individually we will be able to handle and satisfy  all  your  queries  on

this academic front.



I want to thank all my TA for this course. I want to thank all the staff in NPTEL office at IIT

Kanpur and all the people who have been able put all their efforts in trying to edit the videos,

lectures here and also IIT Madras which is the nodal agency for the NPTEL course. I am sure all

of you would definitely be motivated by these NPTEL courses and take up some of you would

definitely try to basically read further and we are there as a teacher, professors, tutors.

We will definitely be there to help you out and encourage students who are really willing to

basically pursue this for higher level in either on a theoretical level or on the practical level.

Have a nice day and  I would like personally like to wish all of you the very best for a fantastic

career either in academic or in professional life and I am sure you will do very well. Have a nice

day and thank you very much.  


