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Welcome back my dear friends, a very good morning, good afternoon, good evening to all of

you. And this is welcome to this DADM 3 course on the NPTEL MOOC series. And as you

know this course is spread over 12 weeks. Total number of lecturers is 60 and total number of

contact hours is 30 which means that each lecture is for half an hour and each week we have five

lectures  of half  an hour each. And after  12 after  each week of lectures  of five number you

basically taken assignment and after the 12 assignments you basically will be appearing for the

final examination.

And my good name is Raghu Nandan Sengupta from IME department IIT Kanpur. And as you

can see in the slide we are on the 59 th lecture which is the last but one lecture and we are in the

12th week and the 50th lecture was basically but dealing with the concept that how the modelings

would basically be done and if you remember the concept of modeling I had been mentioning

time. 

And again in the (previous) in the first few classes of one or two weeks that the methodology

concept how you solve would be the main emphasis of this course but how you model how you

consider the constraints would be an important point which will only come through, through lot

of, lot of experience, lot of problem solving, lot of practical analysis.

And then in the last  slide or last  two slides we consider the concept of robustness and how

robustness was important and how robustness and sensitive analysis are some concept which

basically give you the same idea that what you want to basically propose or you want to find out.

So, with this we will start the 59th lecture and basically discuss more about robustness part and

again I will discuss some models, their proves, the data’s, the pre-processing part and what are

the answers and how we can analyze them.

So, considering robustness the salient points are so we can consider the constraints are robust

that means the corresponding the fact that there would be a probability based on which we can

say constraint  one or two or three whatever  it  is,  is  greater  than some some fixed value or



changing value also with some level of reliability, some level of robustness. And those level of

robustness  or  reliability  I  am  using,  going  to  use  the  word  reliability  and  robustness

interchangeably so please bear with me. 

They would be given by the level given by beta 1 and this level of beta one and beta two would

have same implication as we discussed in the diagrammatic form when we considered reliability,

when  we  considered  the  PMA  approach  and  the  RIA  approach  where  if  you  remember

((inaudible))(03:11)

Consider separately in one case the circle  slowly started increasing till  it  was tangent to the

feasible region and the size of that value of the radius was beta. In another case you kept beta fix

when you basically shifted the feasible region more inside such that it was tangent to the circle.

Why circle? Because we are considering that when you basically convert from the X space to the

U space considering the univariate normal and all of them are orthogonal. 

We will basically have circle in a two dimension case, in a higher dimension it will be a sphere

and so on and so forth. And it will be a hypo-sphere corresponding to the higher dimensions. So,

we so coming to the robustness part so the constraints can be robust.

(Refer Time Slide: 03:59) 

And we can consider the robustness by considering the concept of betas, you can also consider

the objective functions to be robust. But in our discussion the problems we will be solving will



only consider the concept of constraints to be robust and basically give the solutions accordingly.

The robust counterpart for these nominal problems, so now here how we will solve or how we

will basically propose the model would be obviously there is a deterministic part of the problem,

we will convert the deterministic one in the probabilistic part in the sense the corresponding

probability with the level of reliability of beta 1 to beta 2 or beta 3, beta 4 depending on number

of constraints which we have would be considered in the constraints.

And then this transformed form which is the probabilistic constraints would basically be solved

using  the  robust  counterpart.  So,  the  first  part  with  the  deterministic  models  would  not  be

written, we will immediately right the probabilistic counterpart of those deterministic model and

then give an idea, initially we will give an idea how the problems can be solved and we will

write  their  robust  counterpart  and then basically  skip the simulation part  because simulation

would basically more of trying to basically build the codes in mat lab or whatever it is.

I will just give you the gist and then go into the data which is utilize how the pre-process data is

analyzed and then how we basically utilize the preprocess data in the model formulation model

solving and then give the results and try to analyze the results that is also very important. So, we

can use the concept of uncertainty sets. 

So,  the uncertainty sets  are would basically  we mean set of values where the corresponding

probabilities would be there probabilities would not be considered per se the probabilities or the

chances would be there that each values in the uncertainty set would basically have a certain

probability of that being true or that being picked up.

And we will basically have a set of the of the uncertainty level of the set, so each value which is

appearing would basically have a probability which I mentioned and these uncertainty sets would

basically be considered in our example we consider in such a way that we will basically consider

a nominal value and there is nominal value would be the so-called expected value over and

above, below which that actual value would be perturbed or changed and that perturbation and

change would basically be considered as the level of reliability in the robust counterpart sense.

You will use this set in place of the nominal data. Nominal data would basically as I mentioned

just few minutes back would be the average value and we will basically use this nominal data to

generate  the  robust  counterpart.  Now,  one  of  the  main  important  difference  between  the



reliability part or concept or the stochastic concept and the robust concept is, in the reliability

part we would or we have considered the concept of some particular distribution per se. But in

the robust counterpart we would not be considering but now later on you will see and obviously

there will be a question from your part that we will be using some nominal values over and

below which perturbation would be true.

So, these nominal values would be considering based on the fact that we have the information or

we have the practical knowledge that the returns of the scripts, of the return of the portfolio

would be extreme value distribution,  so we will utilize the concept of expected value of the

EVDs  in  order  to  basically  find  out  what  is  the  nominal  value  over  and  below which  the

perturbations will be true. 

We will use the concept of ellipsoidal sets and the concept of linear constraints in the nominal

problem may become non-linear. So, but obviously we will try to check that when it (())(08:01)

non-linear the concept of convexity should be true or else the concept of optimization would not

be able to be utilized in trying to solve the problem. 

(Refer Time Slide: 08:14) 

Now, in general robustness as I said in the uncertainty sets there are different ways to basically

model the uncertainty sets. So, in general we consider the uncertainty sets given by U where the

(())(08:26) values would be given from A1 to Ak and obviously each of them would be have

some level of reliability or a probability. In the interval uncertainty sets we will consider the



value of the fluctuation and the value of perturbations of the parameter A or it can be X, it can be

W whatever it is. 

The parameter A would basically fluctuate between a minimum value L and a maximum value of

U for each and every A there would be a L1, L2, L3 till Lk considering there are values A1 to Ak

corresponding to A1 to Ak the upper amount would be given by a small u1 to small uk. And the

ellipsoidal uncertainty sets would be considered based on the fact that will consider in a very

simple sense, if it is two dimension 1 it will basically be a circle and the center of the circle

would be the nominal value over and below which the perturbation set would be, so if it is the

level of variances I am bringing the concept of variances why I will come to that later on.

If we consider the level of variances of the perturbations for both of these variables are to be of

equal value then it will obviously it will be a circle in the case, if the variances are different in

that  case we will  basically  have ellipsoid with a major and minor axis in different  direction

depending on where the variance is high or where the perturbation is high. 

Perturbation’s concept is like a atom which is fluctuating, higher the level of energy more the

fluctuation is and lower the energy less the fluctuation is. So, if you are trying to find out the

common area it will be an ellipse or ellipsoid depending on which direction the perturbation or

the moment or the vibration is high. Now, we will consider this ellipsoidal uncertainty set will be

considered based on the fact that we are going to consider the L2 norm. 

Now, this concept of L2 norm I have discussed that in DADM 2 when we were discussing the

concept of electro and TOPSIS methods. So, this L1 norm, L2 norm till L infinity norm are the

norms based on which we measure. And L2 norm is basically the concept of in very simply we

use in the Cartesian coordinate where in order to find out the distances between the two points

we basically find out X1 minus X2 whole square plus Y1 minus Y2 whole square and then find

out the square root of that considering two-dimensional one, in three dimensional one it will

basically be calculated accordingly. 

So, we will consider and this norm of L2 norm has also be utilized in the case of reliability if you

remember in the PMA and the RIA method the constraint of the objective function depending

upon which problems formulation you are doing whether the PMA or the RIA we consider this

norm of distance which was given by the distance norm which is here, which I have just circled.



So, that the distance norm is basically less than equal to 1 because we are considering a unit

circle. 

In the scenario generation method here one may formulate the uncertainty sets and obviously the

general concept which will use would be the interval set or the ellipsoidal sets whatever all the

other  methods  we  consider.  So,  we will  formulate  the  uncertainty  sets  that  contain  a  finite

number of scenarios as we generate them and they are being they are generated from a possible

value of the parameter is and the parameter values ‘a’ that is the uncertainty set would be denoted

between by a set u and the level of realize values for the uncertainty set.

So, the a value would basically take any other values between A1 to Ak depending upon the level

of probability or the level of reliability which is true for those. So, realization of A1, A2, A3

would depend on the level of reliability which is there or you want to assign to those uncertainty

sets, uncertainty sets. Now, these are just for your information need not be too much bothered

into going into this books or the papers provided, if you are interested to go into the research it

may be helpful.

(Refer Time Slide: 12:39) 

So, Ben-Tal and Nemirovski, they are considered very well-known figure and Bertsimas and Sim

are also considered stalwarts in trying to basically model the concept of robustness using the

uncertainty level sets or ellipsoidal sets concepts. So, their paper and their book came out in the



years 1998 and after that in 2004 also there are seminal work by them. And they have described

the different methods to construct this uncertainty sets.

Now, the second point is important for our discussion here Goldfarb and Iyenger have shown that

the  confidence  region  generated  for  parameters  involved  in  equities  portfolio  in  trying  to

basically model the portfolio optimization. We consider the concept of ellipsoidal sets, so the

reason why we are mentioning that  second point  is  that  we will  be discussing many of  the

problems on the  portfolio  optimization  point  of  view that  is  why we want  to  give  you the

reference. 

That  is  why we are going to  consider  the  concept  of  ellipsoidal  sets  in  order  to  model  the

portfolio  optimization  problem. So, let  me continue  reading it,  so they have shown that  the

confidence regions generated for parameters involved in equities portfolios are ellipsoidal sets

and the advocate that they are used in robust portfolio selections as uncertainty sets are the best

way how we can solve them. 

(Refer Time Slide: 14:07) 

Now, in case of our solving our methodology of solving would be considered this box and ball

plot. In the box plot we consider the L infinity norm and in the ball plot we consider the L2 norm

and we will consider the transformation being done in such a way we will consider the standard

normal deviate this concept of U set as we did in the reliability sense that transforming from X

space to U space would also be utilized here.



So, usually this type of robust counterparts, once we basically have the probability convert using

the  concept  of  box  and  ball  into  the  robust  counterpart  find  out  the  commonality  or  the

intersection between them and then basically solve this problem accordingly. Usually this type of

robust counterparts comes under the category of Second Order Cone Programming problem. So,

our ball uncertainty is in the form of a Lorentz Cone. So, Lorentz cone is considered ice cream.

So, if you have a cone or set of an ice cream or the softy cone we consider, so they would

basically be of the Second Order Cone Programming and the order the solution would be the

quadratic in order to basically give us an idea that why we are using the concept of quadratic

programming is that because remember the concept of variance would be coming time and again

and variance is basically coming from the fact that we are considering the second moment. So,

the first moment was basically related to the mean value, second moment is basically related to

variances.

So, our ball uncertainty would be in the form of the Lorentz Cone. And then Lorentz Cone would

be given if you remember. So, we will basically the mean part for the Lorentz Cone to be true

would be that the (square) some of the squares of all the I’s, I is equal to 1 to M minus 1 if I

basically add them and find out the square root that should be less than equal to the mth one Xm. 

Xm is basically the dimension, not the dimension part it is basically the measure which we are

doing in the mth dimension. So, we will basically have the concept utilize here. Now, this has

something to do if you remember for a triangle to be true that the sum of the two sides would be

always be greater than the length of the third side or else the triangle would not be formed. So,

this is some concept which you try to utilize in the Lorentz Cone considering the L2 norm in a

quadratic programming concept.

So,  since  it  is  a  second order  problem we will  call  them the  quadratic  constraint  quadratic

optimization. And this quadratic optimization we utilize based on the fact that it will be a matrix

queue, if it is in a higher dimension and the property if you remember which I mentioned the

positive definite, positive semi-definite all this would basically hold true such that we are able to

solve the problems accordingly utilizing the robust counterpart.



(Refer Time Slide: 17:26) 

Earlier robust formulations has been solved by the Soyster’s model, Ben-Tal and Nemirovsky’s

model but they lack three basic requirements to give a better results. So, that means what are the

requirements which are lacking? They do not consider for variance as a constraint as it increases

computational complexity of the model by making it a semi-definite programming. Because the

more complexity you want to bring obviously the answers will be more near to practicality but it

will basically increase the solution methodology it will make much more difficult for us to solve.

The variances of portfolio but also remember that we have to basically consider the concept of

variance of the portfolio to be incorporated in a model because we are trying to basically balance

between the return which is the first moment and the risk which is the second moment. The

variance of the portfolio is to be considered and computed correlation and coefficients of all the

assets cannot be 0 as considered by Bertsimas in his work. Hence variance covariance matrix

must be utilized which is basically the principal diagonal, obviously you know but I will still

repeat.

The principle diagonal are the variances of the first two itself the 2,2 element is the variance of

the second to itself and so on and so forth. And of the diagonal element are basically the co-

variances. Both box and ball uncertainty must be utilized to create the robust counterpart and we

will take basically the intersection of that with the common area based on that we will solve and



try to basically formulate the probability constraints into a robust counterpart  and then solve

them.

(Refer Time Slide: 19:07) 

First we will basically have the nominal problem to be constructed, so remember the nominal

problem would be based on the fact that we will take the expected value or the mean value of

them and then basically try to model the problems according to the perturbations which we will

have for over and below the nominal value. So, it is a problem which has an objective function

which needs to be achieved adhering to some constraints. 

So,  those  constraints  in  the  case,  if  they  are  deterministic  we  will  solve  them  using  the

determinist method if they are not then obviously we will have the probabilistic counterpart. All

the uncertain parameters, variables are then identified. So, you have to basically first identify the

variables and then model them at the constraints. Those uncertain parameters and the variables

are then converted into uncertain sets as described above. 

So,  first  so  what  we  have  skipped  here  I  did  mention  that.  We  will  basically  have  the

probabilistic constraint, convert this probabilistic constraint in the robust counterpart and then

proceed.  And using the concept of uncertainty sets for each and every of this  robust or this

perturbations values for each and every variable which we are going to consider. These uncertain

sets are then put into the original nominal model to form a robust counterpart as I just mentioned.



In our case the resultant optimization problem becomes a semi definite programming considering

that we are trying to going to consider variances which are NP Hard problems and unsolvable by

basically interior point algorithms. So, obviously you have to use either heuristic methods in

order to get near optimum solutions. So, we will basically utilize some concept of very simple

engineering in order to solve them. Now, we will consider one by one four models and also give

their where as necessary we will give their robust counterpart.

(Refer Time Slide: 21:04) 

So,  in  the  robustness  part  in  model  one  which  consist  containing  probability.  So,  the  first

problem is like this. We have the return on the portfolio rp, we have the variance of the portfolio

Sigma Square b and we want to basically formulate the problem in such a way that we want to

basically maximize a convex combination now the return under risk. So, if Lambda is high it will

basically put more weightage, if you are concentrating on the objective function if lambda is high

we will put more weightage is to the return, if lambda is low we will put more weightage on the

variances.

Now, why we are maximizing? We are maximizing and trying to basically pull up the expected

value and maximizing a negative value which basically, we are trying to basically pull down that

value which is the variances. The second and the third constraints are very simple, still give me

some time to repeat it. So, if you considering inside the bracket what you have is basically the

return on the portfolio is greater than are some value of rp which we have set for ourselves.



The second constraint again if we only the part which is inside the bracket it means the double

summation of Xi, Xj, Sigma I, Sigma J and rho IJ basically means we have the variance co-

variances of each and every portfolio or script that is less than equal to Sigma Square P which we

have set for ourselves for the problem based on the level of confidence which the investor has. 

And the last constraint is basically related to the fact that the sum of the weights of X size. X size

are the weights is equal to 1. Interestingly we have considered the values of X I is greater than

zero. So, here obviously we have we have not written it but it should be that the values of XI’s

are between 0 and 1. Now, this would basically be the when I have not mentioned probability

this is basically the simple deterministic part. 

The moment we bring in equation 1.1 and 1.2 as written in the slide, the concept of probability

then we have basically converting this deterministic problem into the probabilistic sense. Now,

and obviously on the right-hand side we have the probabilities of returns being greater than RP is

greater than equal to beta 1 where beta 1 is the level of probability corresponding to the first

constraint. 

And in the second constraint the probability of the co-variance of the portfolio being less than

equal to Sigma Square P with some set value depending on the market conditions that overall

probability is greater than equal to beta 2 it means basically that the level of confidence which

we are putting for that second constraint is greater than equal to some value of beta 2 or the beta

2 value which you have set for ourselves. 

What we will do is that what I mention is that, convert the first constraint using the nominal

values  and the different  concept  of ellipsoidal  set  into a robust  counterpart  then convert  the

second constraint again depending on the level of robustness and the nominal values into the

second robust counterpart. Now, what we consider as the nominal value in the first case and the

second case? In the first case we will consider the mean values of each and every stocks arise

which are there. 

So, we will basically collect the data,  find out the expected value and basically consider the

nominal values or the mean values for each and every stock. And in the second constraint we will

consider the variances and find out the average variances based on which we will try to basically

find out, consider them as nominal values and based on that we basically find out the counterpart



for the second constraint. And obviously as I mentioned we are not going to consider any level of

robustness in the objective function.

(Refer Time Slide: 24:59) 

The objective function here comprises, I will just read it, I have already mentioned that but still

am reading it.  The  objective  function of  this  model  comprises  of  two parts,  the  first  which

ensures that the maximization of the return of the portfolio whereas the second is the variances of

the portfolio which is to be minimized. So, as I mentioned maximization of lambda into RP

minus of 1 minus lambda into Sigma Square P basically means that I am trying to basically

increase the first moment of the return of the portfolio and decrease the second moment which is

the variance of the portfolio. 

The first constraint denote as I said that the actual return of the portfolio is greater than the

threshold  value  RP with  the  level  of  probability  or  reliability  beta  1.  The second constraint

implies that the actual variance of the portfolio is less than the threshold value with a level of

probability of beta 2 and this beta 1 and beta 2, I am again repeating depends on the investor. 

The third constraint implies that the sum of all the investments should be one along with that fact

that no short selling is allowed here, but if you remember I mentioned the word these are very

interesting in the sense, if they are between 0 and X it means that we are not short selling in case

if some of them are negative then obviously some of them would be positive these weights of X. 



Which means I am trying to basically utilize some stock which I do not owe, sell it and give it in

the market to someone utilize that money from selling that, that stock or scripts which I do not

own and basically utilize that money in trying to basically jack up the total amount of investment

which I have for those stocks which are already with me and I think they will give such higher

returns.

(Refer Time Slide: 26:47) 

So, in this model we have two equations which are not robust and they contain terms which are

not robust and they contain terms which have uncertain parameters but we will try to basically

ignore  them accordingly.  We need  to  convert  them that  these  two  constraints  to  the  robust

counterparts in order to accomplish that we propose the particular theorem. And the fact is that

whenever you are trying to basically solve the concept of robustness they would be either less

than type and greater than type depending on the returns being greater than RP and the risk been

less than equal to Sigma P.

So, what we will try to do is that we will try to basically convert them using the plus and minus

some concept of perturbation which is there and convert them into the robust counterpart and

that we will basically see in the in the later part as we solve the problems accordingly. With this

part I will basically end the 59th lecture and basically continue giving a discussion on the robust

counterpart in the last lecture which is the 60th one. Have a nice day and thank you very much.


