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Good  afternoon  students.  Welcome  to  one  other  lecture  in  the  Advanced  Green

Manufacturing  Systems.  We are coming to the close of the course most of we have

covered most of the topics and with this lecture we would probably now cover one of the

major concepts that we have trying to do is the optimization and some of the algorithms

associated with it. So, without wasting too much of time I will just jump into today’s

topic.

(Refer Slide Time: 00:42)

So, if you look at today’s presentation we have overview of optimization methods is

what we are going to do. We seen how the optimization problems are and now we are

trying to look into what are some of the methods how do we solve this. And today’s

learning agenda we look into something called total enumeration and branch and bound

search, then improving search heuristics which is called local search and the extensions

of local search. These are the four concepts that we will cover today.
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So, first let us talk about this new concept that we are going to cover today the class. So,

what have we learned so far? What did we learn on optimization so far, what did we do?

The thing that we learned so far is how to formulate an optimization problem? How to

formulate an optimization problem this we have seen. 

We are good at identifying how are we formulating this; this we know how do we do that

and what are the other aspects of it and we have a good idea. Then we also saw how to

use software to solve optimization problem ok.

Here in this case we have been limited to what you called as continuous variables ok. So,

our variables are continuous in nature continuous variables; that means, they are vary

from X vary from minus infinity to plus infinity ok. This is what our concept was and we

know how to formulate those problems. And we learn how to solve them using software

packages right. 

The trick is that many situations, many situations will happen where many situations will

occur,  where  variable  values  of  the  variables  variable  values  are  not  continuous  ok.

These variables are not continuous or in other way only discrete values are possible. So,

what we are saying is that many situations, many of the optimization problems will not

have the variables  has continuous variables.  Instead only discrete values are possible

discrete means integer values countable values those kind of things.



So, for the linear programming problem or what we call as LP ok where the variables are

continuous and step like that ok. Few prominent algorithms few prominent algorithms

are sufficient are sufficient to handle vast majority of the models of the optimization

models or optimization problem.

So,  for  LP  problems  where  the  variables  are  continuous  there  are  few  algorithms

available they are prominent algorithms and they are sufficient, they are very good in

handling majority  of these models  ok.  But the major  important  thing for this  is,  but

discrete  optimization  problems  discrete  optimization  problems.  What  are  discrete

optimization  problems?  Variables  are  not  continuous  variables,  not  continuous  your

variables are not taking a continuous value ok.

This discrete optimization problems often require clever methods that are specialized are

specialized for individual scenario ok. So, for each individual scenario specialize specific

scenario  of  the  discrete  optimization  problem,  we  require  clever  methods  that  are

specialized.  Highly  specialized  clever  methods  are  require  for  discrete  optimization

problem the reason being is variables are not continuous. So, hence LP like algorithms

not  possible  not  possible;  we  cannot  use  those  algorithms  to  handle  such  kind  of

problems ok.

So, what are some of the commonly used methods or question today is this is what we

are  going  to  learn  today. What  are  some of  the  commonly  used  methods  on  which

context for discrete optimization problems and this is very common because in real life

in manufacturing you do discrete manufacturing most of the time. You make cars, you

make a parts, you make engines all those kind of things they are all discrete optimization

problems because they are countably discrete there is no continuous values there.
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So, the first and for most algorithm that we are going to talk about is total enumeration.

And you would not believe this is a pretty effective thing for small cased problems. So,

like one of the things is it is often counter intuitive, you can it is often counter intuitive

that discrete optimization problems. What are discrete optimization problems? Problems

where the decision variables are not continuous, problems are more difficult are more

difficult than their continuous analogs.

So, what we are saying is that the discrete optimization problem for a particular case is

more  difficult  to  solve  than  the  same continuous  their  analog  of  the  continuous  the

analog  problem which  is  of  where  the  variables  are  in  continuous.  Why  because  it

appears that it appears that only a finite number of choices are possible are possible for

decision variables  for decision variables.  A finite  number of choices  are  possible  for

decision variables; hence should be easy.

So,  you think that  in a  continuous problem the variable  can take  infinite  number of

choices any value it is possible. Where as in a discrete problem there are only limited

values a finite number of values are possible for the decision variables hence you should

be ideally easy, but this actually counter intuitive because it is not easy. Because in when

the variables are continuous the most easiest thing is that you know you can use things

like  mathematical  things  like  differentiation,  integration  or  slop those kind of  things



gradient like techniques. Where as in these kind of problems it there kind of a thing is not

possible ok.

So, that is a one hypothesis one. Let us think about a important hypothesis in this regard

if  a  model  that  is  a  discrete  optimization  model  has  only  a  few  discrete  decision

variables; discrete decision variables. If a model has only few discrete decision variables

the most effective way or effective method of analysis is enumerate all possibilities to

obtain optimal solution ok.

So, what we are saying here is if the problem the model is a discrete optimization model

and there are  only few decision variables  ok.  Number of decision variables  are  very

small,  then  the  effective  way of  getting  the  optimal  solution,  how can you find the

optimal solution effectively is to enumerate all possibilities went through all possibility

options and then find out ok. This method this approach is known as total enumeration.

So, when somebody says total enumeration then you should understand few things one is

the decision variables have only few discrete few discrete options. And then out of this

you are able to get an optimal solution.

So, this total  enumeration where we define it  as checking of all  possibilities you are

checking  of  all  possibilities  implied  by  discrete  variable  values  or  taken by discrete

variable values are conducted. You do all discrete variable values you take them and you

check all those possible values and then choosing the best combination that gives the

best objective value that gives the best objective function value.

So, what you are trying to do here is you check all possibilities implied by the discrete

variable  whatever the decision variables remember these are very few in number ok.

These few discrete decision variables, you find out what are the all possibilities values it

can take, then what you do is you choose the best combination of this that gives the best

objective function value. Whatever is the best combination you take that in you call it as

the best objective function value that is the idea fine.
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So, let us see a simple example just look at a example of a total enumeration ok. So, this

is  kind  of  like  a  tricky  problem,  but  I  think  it  will  make.  So,  let  us  write  a  linear

programming problem maximize that is a objective function 7 X plus 4 Y plus 19 Z ok.

And subject to the constraint is X plus Z is less than or equal to 1; then Y plus Z is less

than or equal to 1; then X, Y and Z they are element of 0, 1 ok.

So, what you are saying is that you are three variables ok. These are the coefficients of

the variables  this  is the objective function ok.  Objective function and these are your

constraints right. So, then; obviously, the thing is that the most important thing that you

should understand is X and X, Y, Z the decision variables ok. The variables on which you

can take decisions X, Y and Z can half either 0 or 1 as it is values. So, you can have only

either 0 or 1 in this particular case for the decision variables X, Y and Z ok.

So, since there are three variables how many possibilities are there? Three variables each

having two values possible which gives you 2 to the power of 3 8 options; 8 possible

choices.  So, 8 possible choices this is manageable by you. So, what are the possible

choices let say the possible choices ok.

The possible choices in our case are let us call it as of X comma Y comma Z is a possible

choice is a 0, 0, 0 that is one possible choice. So, that is means all the values are 0 then

the other possible choice is 0, 0, 1 ok. So, like Z taking value of one-third choice is 0, 1,



0;  where  Y is  taking  this  1.  Then  you  can  have  is  1  0  0  that  is  another  possible

combination, so each one of them taking this particular value. 

Then we can have another value as the 0 1 and 1, Where both Y and Z are taking the

values of 1 is 2, 4 and 5. So, then the other value that is possible is 1, 0, 1 X and Z taking

1 and Y taking 0. Then the other value there is possible is 1 1 and 0 right and so now you

have 2, 4, 6, 7 and the last possible value is all taking 1 right. Now let us see in these

cases what are the values of the objective function right. So, now let us say constraints

constraints ok.

So, let us see if you put the value of 0 and 0 ok. So, let us see the first constraint the two

constraints right. So, this satisfies the X Y and Z these variables element of 0, 1; this is

satisfied in all cases ok. So, then the other constraint which let us call this as constraint 1

and let us call this as constraint 2 right, so the X plus Z less than or equal to 1 is it

satisfied in all cases. So, this is X, Y and Z. So, this is X plus Z less than or equal to 0, so

1, 2 ok, so 1 is satisfied.

So, we have put one two there is also first constraint second constraint; first constraint

second constraint; first constraint second constraint; first second first second. So, there

are two cases in this regard so the case of constraint one check which all satisfy.

So, we check the first constraint which one of them X plus Z less than or equal to 1 is

that satisfying. So, 0 plus 0 less than or equal to 1 that is correct this case is X plus Z. So,

0 plus 1 less than or equal to 1 this is also satisfied; this is 0 plus 0 less than or equal to 1

satisfied; 0 plus 0 less than or equal to 1 satisfied. This is 0 plus 1 less than or equal to 1

satisfied; again this is 1 plus 1 that is 2 less than or equal to 1 not satisfied; 1 plus 0 less

than or equal to 1 satisfied 1 plus 1 less than or equal to 1 not satisfied. 

So, these two cases immediately you can say that fine I do not need to deal with this

because this is infeasible on 1; the first constraint is infeasible here is also infeasible on

1. So, with the first constraint we know that these two are not needed.

So, then we do not need to check the second constraint at all because you this problem

you can eliminate. So, now immediately from 8, you are now reduced to 6 of them. Now

let us look at the second constraint which says X sorry Y plus Z less than or equal to 1

this is the check which all satisfied.



So, now we are checking which all will satisfy Y plus Z less than or equal to 1. So, Y

plus Z less than or equal to 1; 0 less than or equal to 1 this satisfies Y plus Z. So, 0 plus 1

is 1; 1 less than or equal to 1 satisfies 1 plus 0 less than or equal to 1 satisfies 0 plus 0

less than or equal to 1 satisfies right and then 1 plus 1 this is less than 2 less than or equal

to 1 does not satisfy right. Then in this case 1 plus 0 less than or equal to 1 satisfies.

So, we get this particular case also infeasible on 2. So, of these cases we know that we do

not need to worry about this case, we do not need to worry about this particular case and

we do not need to worry about this particular case. So, out of 8; 1, 2, 3, 4, 5 these are the

5 possible cases we just need to now check.

(Refer Slide Time: 20:10)

So, our possible cases in this include ok. So, now if you continue with this working of

this example the possible cases are now the evaluation cases. The cases that we need to

evaluate in this case include 0, 0, 0 ok. Then we have is 0, 0, 1 then we have is 0, 1, 0;

then the next one we have is 1, 0, 0 and we have is 1, 1, 0. So, these are the 5 cases if you

look into this we got these values from this particular table.

So, we are only evaluating these cases ok. So, now, how do we evaluate that? So now we

do is  these  we just  need to  find  the  objective  function  value  ok.  Because  these  are

feasible, these conditions of the mar feasible you have already check the feasible. Now

we just need to find what the objective function value is. So, how do we calculate the



calculations include like this. So, for 0, 0, 0 it is equal to you know 7 times 0 plus 4 times

0 plus 19 times 0 which will give you 0.

So, the objective function value is 0 in this case ok. The other case is let us take 0, 0, 1

then it will be 7 times 0 plus 4 times 0 plus 19 times 1 that will be 19. So, 0, 0, 1 will

give you the value of 19 right, then you have 0, 1, 0; 0, 1, 0 will be 7 times 0 plus 4 times

1 plus 19 time 0 will give you 4 ok. So, 0, 1, 0 the objective function value is 4. 

Now 1, 0, 0 will give you 7 times 1 plus 4 times 0 plus 19 times 0 will give you 7, so this

value is 7 right. Now the last one is 1, 1, 0 so that will be 7 times 1 plus 4 times 1 plus 19

times 0 is 7 plus 4; 11, so our objective function value is 11. So, these are the four

possible objective function values.

Now, the objective was to maximize ok. Since the objective was to maximize choose the

largest value of objective function ok. So, what we have doing is form here this is the

largest value of objective function. So, we say this is the best possible solution for this.

So, the solution is that so what we are saying that the value of X is equal to 0; value of Y

is equal to 0; value of Z is equal to 1 ok. Objective function is 19 and this is the best

possible set of for, this is the optimal solution optimal solution for the problem ok. So,

depending on the constraints  we already seen that  we eliminated infeasible  solutions

these are all infeasible.

So, we eliminated them you using both constraints and then only the remaining ones

were  work  out  to  find  out  what  the  best  possible  solution  is;  this  where  we so  we

evaluated limited and yet feasible alternatives of decision variables ok. So, we evaluated

and yet feasible  and yet  all  feasible  alternatives  of decision variables were done and

hence this why it is called as total enumeration ok. 
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Hopefully this makes sense to you; from there we get into the next algorithm or next

approach what we called as branch and bound search ok. This is also a very popular

approach among lot of people now let see what it is ok. What is the major what is the

major  drawback  of  total  enumeration?  Major  drawback  of  total  enumeration,  what

happens when you do the total enumeration? Why is the; what is the major drawback

why is it like people do not heavily use it ok. 

This is not feasible for a large set of decision variables. So, if you have a large set of

decision variables this is not very feasible. Why? The exponential growth of solution

space of solutions ok so for example, if 3 decision variables let say 0, 1; then it is 2 to the

power of 3; 8.

Let us say if four decision variables again 0, 1 then it is 2 to the power of 4. What is that

2 to the power of 4 will be 16 ok? So, now if it becomes 5 then it will be 16 times 2; 32,

so it will grow. So, this solutions pays will grow something like this, this exponential

growth if this is the number of decision where number of decision variables ok, this is

the solutions.

If you draw graph like this then the growth will be like an exponential growth. So, then

when it is large number of decision variables. Now you have to look at if it there a 5 then

you will  look at  32  options  pretty  soon it  becomes  manually  impossible  for  you to

evaluate the things ok.



So, then alternative what else can we do ok. What is alternative to this headache ok? So,

this is the let us say hypothesis 2, second belief system that. If we have a way to deal

with problems having large set of decision variables set of decision variables ok. We

have problem, which has large set of decision variables can the optimal solution be found

without enumerating without explicit enumeration of all possible excuse me and feasible

cases.

So, what we are trying to say or our belief is that if there is a way, if there is a method

available where problems having large set of decision variables are there they are all

discrete decision variables ok. Where we still want to find the optimal solution we want

to get the optimal solution that is provably optimal while we do not want to enumerate

all possible and feasible cases ok.

So, then branch and bound is one such strategy so, we can we call it as with is a sub set

enumeration strategy ok. So, we are saying is that we do not want to enumerate every

possible  options  ok.  So,  what  we say is  that  systematically  form classes  of  solution

systematically  from  class  solutions  and  investigate  whether  the  classes  can  contain

optimal solutions.

So, what you are saying is from the total problem you create systematically from the

classes of solution and see whether these classes can contain optimal solution. If we find

that the classes cannot contain optimal solutions then do not look into that class. We find

that the class can come have the optimal solution then look into this so that kind of an

approach.

So, usually the tree search approach is used to expand options so or classes ok. So, what

we do is we use a tree search approach in this regard to see whether we can actually

systematically form the classes of solution and then investigate whether the class can

contain the feasible solution or not ok.
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So, again as I said earlier let us look at a simple example of this one this would make a

you will understand the problem better ok. So, this is a single machine scheduling. So,

the idea is that you have a machine a single machine let us call it as drill and you know

entities arrive. So, they arrive into the system this is the que or something. And then they

get drilled here then there is a processing time Pij ok, whatever the processing type and

then they leave and this is the machine ok.

So,  what  happens  is  there  are  like  say  and  jobs  arrive  there  are  different  jobs  are

available. So, let us call the number of jobs for this case as 1, 2, 3 and 4. There are four

jobs available the processing time pi. For 1 let us make the processing time as 37, for 2

the processing time is 27, 3 the processing time is 1 and the 4 the processing time is 28

ok. 

And then there is one more that is called as due date where you are supposed to deliver

the so this is the processing time, this is associated with this. Then here is a customer

sitting here and here is the delivery and this is where the due date happens due date

means when you have to give it to the customer. So, in this case let us put a value of 49,

let us put 36, let us put 1 and 37, now the question here is ok. So, we can schedule it in

many ways, but find the schedule that minimizes lateness of all jobs ok.

So, what you are trying to do is we want to find the production schedule that minimizes

or find the sequence or schedule. Let us call it as a sequence for the time being schedule



and sequence there is only much small difference. So, sequence means there are four

jobs.  So,  there  is  roman  numerals  are  sequence  positions  ok.  These  are  sequence

positions and we have to decide which job we will go into which sequence position in

this regard right. So, you can solve it as a discrete optimization problem as well or you

can use branch and bound to solve a case.

So, one way to think about this problem is that ideally speaking you can think about it as

a tree search. So, if you say you call this as 0, let us call this as root node for the time

being and let us call this as the position 1 ok, position 1. So, then you can have four

possible options out of this can put four possible jobs ok. So, these are the four possible

jobs.

So, if you put 1 here, 2 here, 3 here and 4 here. So, that is equivalent to saying sequence

position 1 is taken by 1, 2, 3 and 4 ok. Then we take from here once you fix this when

you say I am going to gum to this particular portion then you can say that there is another

position called position 2, sequence position 2 that position 2 in this job we can have 3

under need them ok.

So, once one is fixed then you can have for the position it is 2, 3 and 4 any one of them

can take the sequence position 2, for 2 again there is possible possibility of 3 ok. So, this

is 1, 3 and 4 you cannot use 2 because 2 is already gone in to the first sequence position

right.

So, then if you think about this below that you have something called as position 3, the

sequence position 3. There are only 2 possible options for this for this case what because

you have already used 1, you have already used 2, then the possibilities are 3 and 4. 

So, then the last case is position 4, this can have only 1, it can be 4, this can be 3. So,

when you think about this the sequence becomes 1, 2, 3, 4 and the other sequence is 1, 2.

3. 4. So, what you have done is; this is where you have created something called as a,

what I mentioned earlier this particular term is systematically form classes of solution

ok, systematic class of solution forming that is what we are doing here in this particular

case. So, how would this actually help us in solving the problem?
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So, let us see an example ok, this same example let us workout little bit longer. So, that

would probably help us in a understanding the mechanics of the problem. So, our root

node is 0, and we have our four sequence positions ok. I hope we get space here 1, 2, 3

and 4 ok.

So,  the  first  sequence  position  is  taken  care  of  in  this  case  we have  made  the  first

sequence position set up to 1, 2, 3 and 4. Now, you can decide the minute you put one

here the time taken to produce the pi for. So, the lateness late let us call lateness equal to

due date Di the job minus sum of Pi’s all the processing times.

So, for this case the lateness is equal to what is the value of lateness, the due date the

processing times are 37, 27, I am just writing it here for the time being making my life

easy 1 and 28 ok. So, for 37 if you think about it the due date of this problem is I am

writing the due date on this side which is 49, this is 36, then this is 1 and 37 ok. So, in

this case the lateness is 0, the in this case also the lateness is also 0 ok. I am just putting l

equal to 0 here. This is also lateness equal to 0 lateness equal to 0 fine.

Now, there are multiple ways you can think about ok. So, sometimes what people do is

fine I will take one of these sub class and expand it and so that I get a solution out of it

and see wherever I exceed this I do not continue this problem. So, let us look at that

example so I am just going to take this branch one and expand out of it right.



So, the next one I am going to do is the sequence position 1, so you finished to that. So,

now, let us think about the next job that we are going to put in here we have 3 jobs here

possible there is 2, 3 and 4 for us. So, now the processing time of job 1 is 37, if we put 2

here ok. So, then that becomes the type two processing time is which is two processing

time is 27.

So, the time taken is the Pi, sigma Pi in this regard is here will be I will kind of use the

bottom portion the sigma Pi is equal to 37 plus 27 right. So, that will give you 7 plus 7 is

14 3 plus 2; 5 plus 1 6. So, this will be 64; 64 and 2 is supposed to be delivered on 36th

day and you are already late now ok.

Now, about 3 if you think about it 3 the time is 1. So, the sigma Pi for 3 will be 37 plus 1

that is 38 right. So, this will be 38 and 3 is supposed to be delivered on day 1. So, you are

already late again and if you think about 4, it will be sigma Pi will be is equal to 37 plus

what you called as 4 will be 28 ok. So, that will be 65; 65 and 4 was supposed to be

delivered on 37th day. So, you are late here.

So, by the second sequence position itself your solution is not very good you are already

late big time right. Now, same way if you can think about it is so some people will say

fine then there is no instead of point in going here. Let me see whether there is any other

scenario where it is better. So, you can try the next one the second one and let see for an

example I take the second sequence position I have 3 jobs possible here.

So, I put it as 1, 3 and 4 and if you think about it the time taken for this is 27. So, the

sigma Pi for the first branch is it is 27 plus 1 is 27. So, that will be 64 the time to deliver

is 36 it is late ok. So, then 3 will be it is 27 and 3 is time is 1. So, 28 and it has to be three

has to be delivered in due date on 1, it is still late 27 plus 4 so that will be 4 is 28.

So, this case will be sigma pi will be 27 plus 28 so that is 15, 2 plus 2 4 5 55. So, in this

case it is a 55 and it supposed to be delivered on 37, it is still late. So, you will like fine

here also by the second sequence position everybody is too late.

So, now let us look at the third one we can say is that there are three places that we can

do at this point so 1, 2 and 3 so I can put 1, 2, 4 ok. So, these are the three options I have

and this one if you think about is three the number of the processing time is 1. So, there

is no lateness here and so then the next job is 1, we are taken and that is 37 right.



So, 37 plus 1 is 38 and it is supposed to be delivered on 49. So, no lateness l is equal to

0. If I do 2 then 2 will be 1 plus 27 that is 28 it is supposed to be delivered on 36, the

lateness is equal to 0 and 4 is 28, so that is 29 ok. So, then the due date is to be 37, so the

lateness is equal to 0. So, now here is a scenario where the second sequence position

none of the jobs are late. So, which means now this is compared to these 3 cases I can

say that this is a promising subclass.

So, compared to these guys these 2,  1 the subclass the first  subclass and the second

subclass this subclass is better. Because here all the jobs are late by the second sequence

position and here none of the jobs are late by the second sequence position. So, then I

can do is from here I can expand the third sequence position done. So, in this case it will

be 2 sequence positions will be used in this case, that will be I am just going to expand it

for the time being just to expand. So, this will be 3 and 1 are used.

So, it will be 2, 1, 4 or the 2 possible options in this case right so then if it is 2. So, this is

38 was a total processing time. So, far so the sigma Pi for us is 38 and for 2 the time is

27. So, 38 plus 27 so it is 8 plus 8 16, so it is 5 3 plus 2 is 5 plus 1; 6. So, this is 65 and 2

is supposed to be delivered by 36. So, you are late here and then with 4 you can find out

4 is 28.

So, sigma Pi is equal to 38 plus 28, so 16 and 3 plus so 3 plus 2 is 5; 5 plus 1 is 6. So, 66

and 4 is to be delivered at the time of 37, so this is late ok. So, both the jobs are late in

the sequence position. So, now if you look at the next ones and you can say that this 32.

So, in the next option is you have is 1 and 4 ok. So, these two guys will have that and

then you expand it and then there is four case you will have 1 and 2 right like this.

And then from here then you calculate which is the lowest lateness and then from there

you can decide which lateness or so far you might be promising and continuing that. And

then wherever you find the lateness. So, this process what we are doing below this is

called branching. Expanding the solution to the branches of the trees is what we called as

the branching. And then let us say for example, I just let me take one example in this

case I have already let us say 28 is here and then with 1 the it is 37.

So, let us take a one example is that here, this is let us say a 4 and I got that is 65. So,

sigma Pi in our case is 65 plus the processing time of 4 is 28 so 28 that so it is 93. So, let

us take it the total processing time as 93 and let us say the sum of the lateness in this



particular case is let us say you get a value of let us say for example, take it as 30 ok. So,

the l value is 30.

So, let us say you get the for this particular branch let us say for the l value here is 31,

then what happens is you know that going below this branch is not going to help ok,

because  it  is  not  going to  get  you any better  solution.  So,  do  not  enumerate  called

bounding ok. You are terminating or stopping or cutting the search ok. So, there is other

thing also is called bound.

So, I would not call it as bound bounding I will call it as pruning ok. What I am using is I

am using this using this as the bound ok. So, I am saying that with this bound this l equal

to 30 whatever I calculated I can basically stop all those branches of tress I. I can stop all

those enumerations, where say look there is no need I need I do not need to expand this

because my solution is not going to be better. 

So, using the bound so why do you use bound? Bounds are used to reduce the number of

leaves these are the leaves evaluated in a tree ok. So, this approach what I am just talking

to you as of now is, what we called as a branch and bound algorithm ok.

You branch on different branches like you branching on a tree and then you use a bound

to ensure that you do not evaluate all possible options in this particular example. So, I

hope you understand how I am how this methods works that different implementations of

these  methods  by  different  people  the  different  variations  of  this  also,  but  the

fundamental idea is somewhat like this fine.
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So,  now  we  get  into  the  last  possible  options  which  is  called  as  a  heuristics  and

optimization. So, the heuristics and optimization is also another important aspect that we

need to consider in this case ok. So, one of the main thing that you need to understand is

most of the large scale most of the large scale optimization problem, most of the large

scale  optimization  problems  settle  for  some  kind  of  approximation  approximate

optimization approximate optimization. 

You are trying to look for some approximation which we typically called as heuristic ok.

Some approximate optimization method to obtain feasible and good solution ok. Some

people also call,  but not necessarily optimal solution. So, what you have trying while

managing the computational effort computational effort ok. So, what you are trying to

say is that why when you are looking at a large scale optimization problem.

So, then you set for some you try to tend to use more of an approximate optimization or a

heuristic method for getting feasible and good solutions your aim is to obtain feasible

and good solutions. So, when you do that what you are trying to do is you are sacrificing

you are with the scenario, where you are not going to get an optimal solution, but there

computational effort can be managed.

So, that is the idea and this one. So, the one thing that you need to learn about this point

is  called  constructive  heuristics.  So,  constructive  heuristics  is  that  aims  to  build  an

approximate optimum approximate optimum incrementally. So, step by step you make an



approximate optimum ok, an approximate optimum is created one step at a time. So, how

do you do values for discrete decision variables discrete decision variables are chosen

one by one.

So, you choose this variable values one by one chosen one by one. The discrete decision

variable  values  are  chosen one by one and stopping when a full  feasible  solution  is

obtained ok. As long as you have a full feasible solution and as soon as you get it is stop

it ok. Many times many algorithms many times stopping happens stopping happens upon

obtaining first feasible solution. So, many a times as soon as you get your first feasible

solution, then you stop ok. Sometimes it can happen in single pass and then some people

call it as single pass one pass heuristics and those kind of cell ok.

So, there many names and other terminologies of used in this particular scenario, but the

idea is that you basically choose the values of discrete decision variables. You choose

them one by one and stopping stop it when as soon as you get a full feasible solution

right all right. So, this method this approach is called as a optimization heuristics in this

or how do you use heuristics for optimization. You will actually see a simple algorithm

and probably see an example so.

Thank you.


