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Welcome, back my dear friends. A very good morning, good afternoon, good evening to

all of you and as you know this is the Data Analysis and Decision Making course one

course and on the NPTEL MOOC series and this course is for 12 weeks, 60 lectures that

is 30 hours. Each week we have 5 lectures each being for half an hour and this is the 38th

lecture that means, we are in the 8th week.

So,  if  you  remember  and  by  the  way  I  am  Raghu  Nandan  Sengupta  from  IME

Department,  IIT,  Kanpur.  So,  if  you  remember  we  were  discussing  about  Principal

Component Analysis and to give a picture I will repeat it, please bear with me. What we

want to do is that we have a set of variables x 1 to x p and we want to find out the so

called minimum number of axis amongst them which will give us the maximum set of

information that is the main idea.

Now, when we are doing that we want to basically pick up one at a time some of the axis,

but randomly picking up we do not know which is the best x which will give us the

maximum  set  of  information  as  available,  we  can  visualize,  but  we  cannot  give

mathematically so, and number 1. Number 2, what we will do is that will also ensure that

as we are picking up so called consider we are able to pick up those random variables

and go one step at a time that the first set gives us the maximum set information, second

set gives the second level maximum set of information, third set gives us the third level

of maximum set of information so on and so forth.

Once we are doing is that we will assume that once a variable is out of the scenario of its

whole set of information it would not be affecting the later on the calculations which you

are doing; which means that as I said I am again repeating they would be orthogonal to

each other; that means, the combinations which we are taking for x 1 to x p in the first

set would be orthogonal to the second set, again it would be orthogonal to the third set;

that means, x the set on the second would be orthogonal to the third and the set for the

first  would also be orthogonal to the third.  When we go to the fourth one fourth set



would orthogonal to the third set, fourth one will be orthogonal to the second set, fourth

one will be orthogonal to the first set.

So, as we proceed we get the maximum variability, maximum set of information, use

them, rank them, take the minimum number of from axis and give us as the maximum

information based on which we can give the dependent structure and we will basically

project that in the very simple diagram also, ok. Another thing which we did mention is

that trying to give equal weightages for x 1 to x p may not work out to be the best for the

best possible advantage.  So, obviously, we have to find out the best  methodology of

trying to do that.

Another point which was mentioned was very important that if the scaling factor, scale

means to what you needs x 1 to x p I have been measured they would also have an effect

when we are trying to take the variance covariance matrix. So, we will basically consider

the  standardized  version  of  the  PCA;  Principal  Component  Analysis  and  we  will

basically give example in details about that, so that will make things much easier for you.

(Refer Slide Time: 03:37)

So, what we want to do is that rather than basically giving at equal which to x 1 to x p

that means, of weights 1 by p, a more logical and intuitive method would be to consider

the  weighted  average.  So,  a  weighted  average  what  we will  do is  that  we will  give

weights x 1 a lambda 1, lambda 2, lambda 3, lambda 4 to x 1, x 2, x 3, x 4 and so on and



so forth till x p. So, lambda 1 is for x 1 lambda 2 is for x 2, lambda 3 is for x 3, till

lambda p is for x p.

Now, we will ensure in that way such that the sum of the squares of them is equal to 1,

with means that we are not even if they are positive or negative we will basically ensure

that the level of dependent structure which is happening between them is given by the

lambdas  the  squares  sum  of  the  squares  of  the  lambdas  is  equal  to  1.  So,  this  is

something to do with the concept of variability deduction and so on and so forth which

we even though we have not discussed in detail it for some idea we when we did the

concept of unbiasness and consistency mainly later by the consistency concept.

So, where lambda and the vector consists of the elements lambda 1 to lambda p and these

are the weights vector which needs to be optimized such that we are able to give the

maximum set of information coming out from the minimum set of variables; that means,

dimension it is being reduced the.
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Thus the standard so, this is the standard linear combinations for the case of principal

component analysis would be such that the we will basically give weights lambda 1 to

lambda p to x 1 to x p such that the square sum of the squares of the lambdas basically

equal to 1. And, what we are trying to do is that you want to basically maximize the

variance of the projections of the convex combinations of lambda 1 x 1 plus lambda 2 x

2 till lambda p, x p.



Now, here  I  would  like  to  basically  draw  your  attention  on  two  parts;  number  1,

maximizing  the  variance  is  basically  we are  trying  to  take  out  the  maximum set  of

variability  in  the first  set  of  information,  keep it  separately  such that  one the set  of

information is taken out from that relationship between x 1 to x p and the dependence

structure which is there, it would not be affecting the second reading which is about the

orthogonality, point 1. Point number 2 is that one we once we take the combinations as a

lambda 1 into x 1 plus lambda 2 into x 2 dot till lambda p into x p we are basically going

to consider the linear combinations.

So, it is like this combining, so, this would work in this way we. So, this is equal to so,

this is linear. So, linearity would be maintained, number one and the first stage the first

combination this is the combinations which I am giving. So, this is combination means

what combinations of lambda 1 to lambda p I am considering. The second combination

again we will consider some set of other lambda 1 to lambda p, the third combination,

the fourth one. So, we will go these in a way that the combinations will give us the

variability; variability in stepwise fashion reducing one step at a time and also trying to

get take out a maximum set of information and each step such that their orthogonal or

ninety degrees to each other.

So, this is the optimization problem. We would not do the optimization I am just giving

you the picture remember that. So, hence we consider the following optimization, you

want to basically go in stepwise.
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Maximize the variability of the combinations of lambda 1 into x 1 plus lambda 2 into x 2

plus lambda 3 into x p dot till lambda 3 into third element was lambda 3 into x 3 plus dot

lambda p into x p. Subject to the condition that the variables, so, this should be p, my

mistake. So, the variables which we have lambda j square some of them lambda 1 square

plus lambda 2 square plus lambda 3 square dot till lambda p square is equal to 1, such

that we are able to take out the first set of information for the variability as soon as

possible and obviously, it would mean that lambda 1, lambda 2 till lambda p are between

minus 1 to plus 1, obviously, the sum should be 1 square and j is equal to 1 to p.

(Refer Slide Time: 09:45)



 Here one may easily deduce that the required direction of lambda may be found out

using the spectral decomposition. So, you are basically trying to break the direction of

the dependence structure into different orthogonal planes that is all. So, orthogonality is

very important.

And, use this using this spectral decomposition we are basically trying to break down the

structure not the structure as the dependence informations of the covariance variance

matrix which is basically for x 1 to x p that is the main reason.

(Refer Slide Time: 10:18)

Using basic rules of matrix algebra we know that the first direction of lambda is given by

the; obviously, so, if you remember in the Eigenvalues case. So, the Eigenvalues lambda

1 this gamma 1, gamma 2, gamma 3, gamma 4 would be orthogonal to each other.

So, what we are trying to do is that for the linear combinations break the relationship of

the covariance structure and put them like till the tilt, the dependence structure and the

first  set  in  the first  Eigenvalue  direction  then pull  the rest  of the  information  in the

second Eigenvalue direction continue doing it such that it is by choice by the design of

how you find out the Eigenvalues  this  gamma 1,  gamma 2,  gamma 3 would all  the

Eigenvalues  would  always  be  orthogonal  to  each  other  such  that  putting  that  set  of

information in the Eigenvalue plane will ensure that they are orthogonal to each other

that the relationship.



So, using basic rules of matrix algebra we know that the first direction of lambda of the

values of the deltas which we have sorry, sorry I am. So, the deltas which we have is

would be given by the Eigen vector gamma one corresponding to the largest Eigenvalues

which  we have  which  is  lambda  1.  So,  in  the  direction  of  the  Eigenvalues  and the

Eigenvectors will basically break up the first set of the combinations of the delta or the

weighted which we have for the first case for the first combinations.

Then in the second combinations we will have another set of delta. So, that delta 1, delta

2, delta p whatever they are they are basically combined in the second set of Eigenvalues

and Eigen vectors direction. Similarly, the third one, fourth one, fifth one, we continue

such that we are able to find out the maximum set of information in the minimum set of

such Eigenvalues and Eigenvectors.

(Refer Slide Time: 12:41)

Hence,  the  standard  form  is  the  one  when  the  highest  variance  obtained  from  the

optimization model would be turn termed as the principal component the first principal

component, then will basically have the second principal component and likewise we

will basically break them into stage by stage in order to understand them in a much better

way.

So, the first orthogonality I am using the word orthogonality for the first set would be

given by gamma 1 into x, when x is basically the vector; that means, we are putting

weights based on the Eigenvalues such that the weights which will have will give us the



maximum set of variability  in the first  case. Then, obviously, when we multiply this

second set of Eigenvalues and Eigenvectors whatever we have they are orthogonal to the

first set. So, orthogonality is already presupposed and once we basically multiply the

second Eigenvalues Eigenvectors in the vector or the column vector of the row vector

with the x values which we have this will basically ensure the second set of combinations

for the lambda 1 into x 1 plus lambda 2 into x 2 till lambda p into x p. So, that will give

us the second set of information.

Then, we basically multiply the third set of Eigenvalues and Eigenvectors with the x

matrix or the x values of the random variables ensuring the third combination such that

we take the third set of variability pursued in this way till will basically get the maximum

set of information which is available.

(Refer Slide Time: 14:25)

So, once Y 1 is found out that in which direction we have broken down combining the

Eigenvalues, Eigenvectors into multiplied by the axis. So, we proceed to find a second

set  of  standard  direction  of  the  principal  components  such  that  the  second  highest

variance would be ensured for the principal component which will be given by Y 2 and

that will be the multiplication of the second highest level of Eigenvalues, Eigenvectors

multiplied  by  x.  Similarly,  we  will  go  to  the  third  one,  fourth  one,  fifth  one  and

correspondingly we proceed.
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Now, here  comes  the  diagram and I  will  try  to  spend some time  because  in  the  3-

dimension case it will be a little bit difficult to understand so I will be. So, consider we

have basically the there are three random variables which are x 1, x 2 and x 3. Now, if

you see x 1, x 2, x 3 without concentrating on the red dots without concentrating on the

green line, violet line and blue line. I have purposefully drawn it in such a way that they

are they are not orthogonal to each other. So, x 1, x 2, x 3 may not be orthogonal to each

other  which  is  the  random variables  which  I  have.  So,  these  are  the  three  random

variables.

Now, consider these points are there which are basically the combinations of x 1, x 2, x

3,  right.  It  can  be  height  pressure  humidity  and  temperature  and  we  measure  it  at

different places and we basically plot them in the 3-dimension case. So, they would be a

scatter plot and these red dots are the scatter plots. Now, what we do is that we combine

x 1, x 2, x 3 corresponding to the fact that the first Eigenvalues, Eigenvectors are there

for  these  random variables  x 1,  x  2,  x  3 such that  we get  the first  principal  in  this

direction, where the maximum variability is assumed. Maximum variance is taken out

maximum set of information is taken out.

Now, once that is done we keep it fixed and then basically put the rest of the variability

whatever the remaining part is of the variability and basically turn them in the direction

on  the  second  Eigenvalues  which  is  here.  So,  these  directions  have  already  been



presupposed by the Eigenvalues and Eigenvectors concept. Now, see one thing important

which I did mention and rhyme again, when I do the principal component for the first

stage and then I find out the principal component for the second stage they would be

orthogonal to each other.

So, this part which I am trying to draw, that means, PC 1 and PC 2; PC 1 and PC 2 would

be orthogonal to each other. So, PC 1 is fixed then what I do is that I the remaining

amount of the variability force them in the direction of PC 2 which is the second Eigen

vector and find out the orthogonality there which is ensured and I take out the maximum

set of information in the second case. 

So, first set takes out some information, second set takes out some information, the third

set whatever the remaining variability is there I see basically put it in the third principal

component direction. And, again if you notice this is orthogonal; that means, PC 3 is

orthogonal  to  PC 2,  PC 1  has  already  been  orthogonal  to  PC 2.  Now, they  are  the

Eigenvalues and Eigenvectors; obviously, everyone would be orthogonal to each other.

So,  we  have  basically  taken  the  orthogonality  based  on  the  fact  that  Eigenvalues,

Eigenvectors  are  and  basically  break  that  combination  on  the  variability  in  those

directions.

Now, let us consider a very simple example and I will give you the main calculations.
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So, consider the multivariate normal distribution. So, where the mean values of the three

random variables x 1, x 2, x 3 is given as 2, 3 and 2.5 here. So, mu 1 is equal to 2, mu 2

is equal to 3, mu 3 is equal to 2.5. So, this is done. So, you have understood it.

Now, I come to the variance covariance matrix. So, the variance covariance matrix is

given by this. The so, obviously, it will be like this sigma 1 1, sigma 2 2, sigma 3 3,

sigma 1 2, sigma 2 1, sigma 1 3, sigma 3 1, sigma 2 3, sigma 3 2 so, 3 cross 3 so, now,

on the values. So, this one is equal to 4, then this one is equal to 9, this one which is the

variance of the third is equal to 16. So, standard deviations are 2, 3, 4.

Now, come to the covariances. So, now, covariances value is not being 0; obviously, they

it means there are not orthogonal there is dependence structure. These are the values. So,

the covariance of the first to the second or second to the first is given as minus 2. So, is

negatively related. Covariance of the first to third, third to first is basically 4, they are

positively related because the negative sign is not there. Second to third, third to second

is 3 again, they are positive related.

So, it means so this is what we have on these cells. They remove this; once I am drawing

it I will remove it for better ease of understanding. I am sorry, I am going and repeating

it, just please try to understand. These are the values for the covariance of first to third,

third to first. Again, I am I am basically remove it, then I come to first to second, second

to first. No, sorry this sigma just removed done and finally, when I come to the principal

diagonal which is the variances.

So, this is the information. I went a little bit slow just please bear, this is done. So, now,

with this I will basically go to the calculations.
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Then the Eigenvalues we can calculate are given as 1.6793, Eigenvalues 9.4789. I am not

going to  go to  this  this  detailed  calculation  can be picked up in any class  11 or 12

textbook and lambda 3 is 17.84. While the corresponding Eigenvectors which is basically

gamma 1, gamma 2, gamma 3, are given the first set is given by this where the first set of

of Eigenvalues,  Eigenvectors would be mapped. Then the second set is this with the

second set of Eigenvalues, Eigenvectors in the set of information you mapped, the third

set is this.

So, using basic simple calculations given the variance covariance matrix we can find out

the Eigenvalues and Eigenvectors for the first, second, third depending on three variables

which are there. So, that part is first done that is basic class 10 mathematics which we

will try to utilize it.
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Now, we want to do the principal component transformation. Now, this remember is the

standard form. So, if it is standard form remember here standard form means that these x

1’s, x 2’s, x 3’s would basically be normalized with respect to the mean values. So, x 1

minus 2 because it is mean value that is why I have highlight at the mean values of x 1, x

2, x 3. So, x 1 minus 2 is mean values, x 2 minus 3 which is mean value, x 3 minus 2.5

which is mean values.

And, the prints the Eigenvectors which you have are basically sorry no I should. So,

what we are going to do? We are going to multiply the first one the first row into column,

then second row into column, third row into column such that in the 3-dimension case

the first  one will  the principal  component  corresponding to this.  Second one will  be

orthogonal remember I am not able to draw it here it will orthogonality corresponding to

this and the third part would be again orthogonal corresponding to this.

So, we will be mapping the Eigenvectors multiplied with the corresponding standardized

x 1, x 2, x 3 because there are 3 x and map them in such a way that they are orthogonal

which  means  angles  between  them will  all  be  90  degrees  because  Eigenvalues  and

Eigenvectors are done accordingly.

Now, remember that when we are doing is this dimensionality and the concept of of

Eigenvalues and Eigenvectors and the linear combination is very important, that we will

assume to be true like in multiple linear regression all this thing we assume some of the



assumptions which are very simplistic in nature may not be true, but they had give us

good results. We will assume the concept of linearity and the concept of dimensionality

in the sense of the units which I mentioned are such that the affects of non-linearity

would not be there, affects of units would not be there. And, based on that once we use

the concept of principal component analysis using the Eigenvalues and Eigenvectors you

can break them the overall variability stage wise such that with minimum number or

dimension we get the maximum set of information.

So, with this I will end the class and continue this problem in more details such that we

are able to get the concept of principal component analysis as far as possible. Drawing it

in that in higher dimension is difficult. So, that is why I have taken a 3-dimension case in

order to basically portray this information as far as possible.

Thank you very much and have a nice day.


