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Warm welcome to all my dear friends and students, a very good morning good afternoon

good evening to all of you. Welcome to this Data Analysis and Decision Making One

course on the NPTEL MOOC series. And as you know this is a 60 class or lectures

NPTEL MOOC series, which will go on for 12 weeks that is total 30 hours and each

week we have 5 lectures, each being of half an hour and we are in the 8th week which is

the 37th class.

Now, if you remember we are discussing about copula function and that some and the

mapping,  which  basically  happens  between  any  the  cdf  or  any  distribution  and  the

univariate distribution case. Univariate means, the discrete case or the continuous case as

that, we do I want to map a one mapping and find out the actual values of x, such that

they can map on mapped onto the u space. So, I am using the words for the first time, but

you will understand.

So, what we have if in a 2 dimensional case where we are plotting along the x axis, the

random variable x consider that is only for the univariate case. And along the y axis,

which I have the diagram which I have drawn in the 36th class and along the y axis we

are basically plotting both the pdf or the pmf as well as the cdf of that function. And

then, we also told that the main idea based on which we are doing it such that, we are

able to map from the x plane to the u plane; x being the random variable which we want

to find out for which we want to find out the copula function and u being the plane or the

coordinate  system  for  the  uniform  discrete  case  or  you  will  consider  the  uniform

continuous case.

The main fact why this can be done is because, the cdf function is between 0 and 1,

maximum  value  being  1.  The  cdf  function  is  monotonically  increasing  and  all  the

properties of the probability distribution function of probability mass function holds for

both the random variable x as well as for the random variable u. U being again I am

repeating is the uniform continuous and distribution case.



Now, this idea can be also extended to the 3 dimension or the 2 dimension, we have

already said 3 dimension 4 dimension and the higher dimension. Such that, if we have a

the  multivariate  case  for  p  number  of  random  variables,  we  can  find  out  the

corresponding  discrete,  distribution  or  the  continuous  discrete,  continuous  a  uniform

distribution on the discrete uniform distribution, such that the mapping can be done.

Now, for considering the 2 dimension I will basically, first show the diagram again which

I have drawn, I will again show it and then basically, go into the three dimension case

that is, it will be easy for you to appreciate So, consider for the 2 dimension case, so on

the screen on the left hand side.
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The left plate, you are basically the random variable x, we are measuring x along the x

direction along the y direction you are basically, finding out the values of the pdf or the

corresponding cdf.

So, consider this is a pdf function the continuous case. Now the green line which I have I

have, drawn it very arbitrarily. So, the green line which I have drawn we basically, have

the pdf values and consider it looks like a normal for the time being. And the blue line

which I have drawn even though it is may not be exact, but I am trying to convey the

picture. So, that is the cdf value.



So, one thing you notice, for the cdf value the minimum value is 0, where the pointer is

and the maximum value; obviously, for the case would be 1. Now one value here which I

am drawn, does not make sense, the actual value which I want to denote which as is a

hidden behind this arrow is the one value which means, the pdf values if we add them up

which  gives  the  cdf,  the  maximum  value  is  basically  one  because,  the  sum  of  the

probabilities.

So,  this  is  integration  for  the  case  summation  means  integration  So,  on  the  on  the

minimum value to the maximum value or if you have the this would be true. Now what

you do is like this, you pick up a X value here, some x1 and its corresponding value is

given for the pdf. Now consider this is x 1, which means let me erase it, so it will be

easy. 
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So, it will be from minimum to the x1 value f of x dx, so that would be the total area. this

is This will be the total area. 

So, this is the total area of the sum of the probabilities, this is the case. And that would be

mapped on to the uniform a continuous case. So, if you want to map it, continuous f of u

u du from uniform remember uniform, continuous case is between standardized 1 means

is between 0 and 1. So, the minimum value is zero and this is the small value of u 1

which I want to have.



So, I will have sum, so this uniform case would basically be sum u 1. This is the u 1

value and the total cda value consider this is here, use wait right. So, this is the blue part,

which  is  here  and  this  is  the  yellow  part,  which  is  here.  So,  there  is  a  1  to  1

correspondence between the values of u 1, which is here and x 1 which is on this the

actual for this univariate case and you can find out the u 1 and then do the calculations

for the copulas accordingly.

In the three dimension case, what it becomes I will try to draw it and show it to you.

(Refer Slide Time: 08:37)

.

 Let us draw multivariate case, you have x 1 being measured, x 2 being measured and

this is the f x 1, x 2 which is the pdf joint distribution, along with that you have capital f,

fx 1, fx 2 which is the cdf value So, if you pick up any 2 values x 1, x 2. so in the third

three dimension, it  will  be some we use the red colour. So, this  is some distribution

which is in the three dimension case, some value which will be here. 

So, now what we do is, this has to be mapped. Now I have the discrete case this is u 1, u

2. Now this will be in the continuous discrete case, where u 1 u 2 are between 0 and 1 it

will be cube of dimension, 1 cross, 1 cross one. Maximum value 1, I am just drawing the

cube first So, this would basically, have sum u 1 sum u 2 and the value, the discrete case

would be somewhere here consider.



So, what you are doing is, you are mapping the value of these one, x 1, x 2 and the

corresponding cdr value which you have, with u 2, u 1 and this such that, this will be

possible So, here double summation of the total area, it will be the double summation of

f of u 1, u 2, obviously here dx 1, dx 2, du 1, du 2 will come ok. So, based on that you

can find on the copulas that has given, this is the idea which we have.

So, obviously that means that the cdf values is always has the same property for both the

pdf, whatever the pdfs are. This I give a blank screen, if we needed to draw it anyway.

Now, we will come to the copula concepts later on. So, this is the idea we will use it in

some problems.
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So now, we will  consider  the  principal  component  analysis,  which  is  a  multivariate

technique ordination technique used to display patterns in multivariate data.

So, we want to find out the components, which are principal based on which what is the

maximum amount of information,  which we can that is basically the idea.  So, in the

multivariate case, is there are different type of variables which have their effects. We

want to basically, break down the effects in such a way that, we are able to in a in a

simple way rank them from the maximum variability to the least variability such that, we

can say with confidence. Confidence the word I am confidence I am using is not the

confidence from the hypothesis testing, with we can see with confidence with a lot of

information being there that which way set of variables are important and what is the



overall effect on the on the dependent structure of the set of information, based on which

we are trying to do the study.

 Now, principal component analysis aims to graphically display the relative. So, we will I

will draw a small graph or I have a small graph, which will give the better picture of this

principal component analysis which is PCA. It basically, aims to graphically display the

relative positions of data points in fewer dimensions; that means, lower the number of

variability or such that, we have can have maximum amount of informations.

So, in a fewer dimensions, while retaining as much as a information possible and also to

explore  the  relationship  between the  dependent  variables  and whether  the  dependent

variables  can be placed in  such a  way that,  they are independent  of  each other. So,

graphically  when  you  are  doing  that,  you  will  understand  how  it  can  be  done,

considering  the  independent  structure.  And that  is  a  very  simple  concept  which  you

already are all studied in class 10 or 12 in basic physics, basic mathematics, in basic

concepts of sciences such that, the idea what we have there would can be brought down

concept sheet on the graphical framework.

Not  I  am not  talking  about  the  calculation  front  will  tackle  it  accordingly.  Now in

principle  component  analysis  or  PCA is  an  hypothesis  generating  technique,  that  is

intended  to  describe  the  patterns  in  the  data  table  and  rather  than  test  the  formal

statistical  hypothesis. So, using the data we will find out plot, them on the graphical

frame,  try  to  find  out  what  is  the  relationships  and  rank  them  from the  maximum

dependence to the minimum dependence and we would do not want to basically formally

state the hypotheses as they are applicable.

PCA assumes linear response of variables; so obviously, we will have the relationship

between  the  dependent  and the  independent  variables.  I  should  use  the  word  the  of

independent variables in the sense there are more than one variable. So, to consider this x

1, x 2, x 3 till  x p and you want to find out the relationship of each of them on the

dependent structure. This is not nothing to do with a multiple linear regression, so we

want to basically find out what are the ranking sort of thing and that means, maximum

effect to the minimum effect.

In regression we give a corrective dependence structure between the x 1, x 2, x 3, till X p

and the dependent 1 which is y. So, PCA assumes linear responses of variables and as a



range and applications other than data display including multiple linear regression it can

be utilized, but it is a little bit different. And variable reduction where you want to reduce

the number of variables which are very important, in order to basically understand what

that what the dependent structure can be.

 The main purpose of PCA is to reduce the dimensionality that means, if there are p

number of variables which have been giving,  you want to find out that what are the

minimum  number  of  variables  which  gives  us  the  maximum  amount  of  dependent

structure or the output; whether by the word output I means the dependent structure.
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So, it  is  basically  reduce the dimensionality  of a multivariate  data to make structure

clearer and find out their dependence concept. It PCA basically does this by looking for

the linear combination of the variables, like we want to combine the variables linearly,

combine  the  variables  linearly  means those x 1 to  X p which are there we want  to

basically, give them some weights such that the combination of them would give us the

dependent structure stage by stage.

That means, we want to basically give the maximum amount of information, based on

the first set of linear combination. So, once that linear combination is there we try to

gather  or  glean  the  maximum dependence  structure  take  it  out.  Then the  rest  of  the

structure  or  the  dependence  the  information  which  is  there,  we  basically  propose  a

second set of linear structures between the same x 1 to X p and continue doing it in such



a way that, we are able to glean the maximum amount of information the dependence

structure point 1. And point number 2, when we are doing that, it basically formulate the

depend the linear combination between the independent variables in such a way that,

technically they are those sets are independent of each other. So, that is what I mentioned

that I will try to basically portray it graphically, so, we will understand in much better

way. 

(Refer Slide Time: 17:21)
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The method of PCA then goes on to look for a second combination those who just or

what  I  mentioned.  So, first  of all  once you find out the dependent  structures  on the

combinations for the first stage we glean out take the information, in the next stage after

the left amount of dependence, we find out the second combinations we give the second

ranking of the information structure. So, that is what is mentioned it then, goes on to look

for a second combination uncorrelated with the first.

So,  once  I  am mentioning  uncorrelated  basically,  means  it  is  something  to  do  with

orthogonality in the in that graphical framework. So, that is why I mentioned that we

would  definitely  would  have  done  such  small  things  in  class  10,  11,  12  such  that,

pictorially  it  will  be really  easy for us to basically  have a look at  how the principal

component analysis looks at. So, it go then goes on to look for a second combination

uncorrelated with the first,  which accounts for as much as the remaining variation as

possible and so on and so forth. If the greater part of the variation is accounted for by as



small number of combinations of the random variables the independent random variables

are then, they will may be used in place of the original variables and we are able to give

the dependence structure with the least number of variables such that our overall task is

reduce.

So, what we are trying to do is that, have a set of variables which are already given,

combine each of them at stage by stage such that,  we give the minimum number of

combinations which are each orthogonal to each other, using that minimum number of

combinations we are giving a we are able to give the maximum amount of information

about the dependent structure of those x 1 to X p and the dependent variable. That is all

what we mean by principal component analysis.

And again I am repeating, we will try to do the problems, you the steps of the calculation

in the way as I mentioned verbally we will see that. But pictorially it will be easy for us

to see that, as we are doing the calculation pictorially it will also be give us a lot of

confidence,  when  we  try  to  understand  that  how  the  combinations  of  the  random

variables x 1 to X p are being done; such that, they are independent of each other means

they are orthogonal  on the graphical  plane  such this  1  to  1 correspondence between

orthogonality in the graphical plane and the independence and uncorrelated structure in

the calculations will come out very easily.
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So, the principle idea how the principle component analysis is basically, to deduce the

dimension of the actual matrix which is given, which is X the matrix X n comma cross p

where, n is the number of the readings, the readings will not decrease remember that.

What we are trying to reduce is p and p are the number of variables which we have. So,

here we have this matrix is broken down into vectors.

So, these are all bold X 1 till X p where, X 1 bold is basically the first vector or the

column whichever, you denote depending on what does the nomenclature of the of trying

to basically predict the matrix or portray the matrix it is. So, X suffix 1 is basically the

first set of values for the first variables and they are of size n cross 1; that means, is a

column vector. Similarly the last one would be X suffix p which is also n cross 1, but

here the random variables are for the pth 1 so, obviously, we will have x 1 x 2 x 3.

So, I am talking about the vectors, capital X 1, capital X 2, capital X till capital X p.

Now we want to find out the best combinations of them, which is basically combinations

that means, we want to combine in such a way, so, that they will give us the maximum

informations are required depending on the dependent structure.
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 This  reduction  in  dimension  or  dimensionality  may  be  achieved  using  linear

combinations. We are considering linear combinations of this random variables only no

non-linear  combinations.  Thus  in  PCA  one  looks  for  linear  combination  aimed  at

creating the so called largest spread among the variables X 1 to X p stage by stage such



that, we are able to find them in such a way that each combinations are orthogonal to

each other just stage by stage such that, the overall first set of information which I glean

from the first combination can be kept aside such that, the effect of the first set onto the

second or second to the first will always be of no significance because they will be the

orthogonal.

Similarly, when we take the second one, considering the first is already in a move, we

will place the second place, means place it in the in the dimensionality in the graph in

such a way, that it will be independent for the third also, the third combination of the set

of X 1 to X p. So, if  the first and second are orthogonal and second or third to are

orthogonal, we will ensure in the calculations that, it will also be orthogonality would

also be maintained between the first and the third.

So, once we take out the third one, we basically go for the fourth combinations. So, if the

set of combinations for X 1 to X p which is the fourth combinations which we have, if it

is orthogonal with the third; obviously, it  will  be orthogonal to the second it  will  be

orthogonal to the first. So, we go step by step and the variability would be maximum in

the first case, would be a little bit reduced in the second combination, would be a little bit

further reduced in the third combination and go on in such a way, that the cumulative

effect which we want to find out for the combinations of this X 1 to X p can be found out

in  the least  combinations  such that  the  dimension dimensionality  is  reduced and the

maximum set of information is gleaned or gathered as fast as possible.
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The concept of largest spread invariably leads us to look into linear combination which

have the largest variance. So, the spreads being large means variability is large, spread

being low means variability is low. As the reader may be aware the concept of principal

component analysis is performed on the covariance matrix. So, obviously when we have

X 1 to X p remember that,  these X 1 to X p the matrix which we have may not be

independent on each other.

So, the combinations we are have formulating is made in such a way they are being

forced to be orthogonal to each other. Hence it is not scaling invariant, so the scaling

would basically affect them because, if you reduce or increase one of them by unit of 2.5

and decrease one by unit of 0.5, obviously this concept of a scale invariance will not be

true. So, as the units of measurements of X 1 or X 2 or X 3 or X 4 or X p may be

different  such  that,  their  scale  concept  would  be  important  when  you  are  trying  to

basically do the PCA method.

Hence we generally we try to use the normalized PCA method; that means, we try to find

out the normalize concept of PCA such that, the units do not make any sense or units do

not basically effect when we are trying to basically combined in the first set second sets

so on and so forth. Because in that case trying to find out the variability and then find

trying to find out the orthogonality, would be much easier than in the case when they are

non normalized or not normalized.
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The main objective of PCA as mentioned above is to reduce the dimensionality of the

dimension on the observations, and the simplest way to do that is to retain one of the

variable say X j and discard the rest. So, we will basically take randomly X jth 1 and

discard X 1 to X j minus 1 and also X j plus 1 to X p such that, the maximum the

randomly the word randomly I am saying is that it would not be do not done randomly it

will have some logic.

So, once we take out that random variable, we are able to basically take out at one go the

first step the maximum set of informations which is available. And we continue doing it

in such a way, that we glean out step by step thus maximum amount of information of

dependence structure by the least number of variables.
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Though the idea may seem plausible, but it is definitely not a reasonable approach as a

strength of their  or the ability of the explanation is definitely not possible using any

arbitrarily X j, that is what I mentioned.

So, arbitrary picking up any X j may not give us the best starting point based on which

you want to find out the maximum variability and then go step by step, as we try to

basically find out the maximum variability coming out in the minimum number of such

random variables. So, that may not be possible. 
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So, there is an alternative plan. So, what is the alternative plan and an alternative plan

may be to consider the simple average; that means, we find out these combinations of the

variables X 1 X 2 X 3 till X p in such a way that, we find out some convex combinations

of them.

So, that is what, we will come to that. So, an alternative plan may be to consider the

simple average; that means, we are giving weightages and consider there are p number of

variables;  obviously,  the  weightages  for  each  of  them  would  be  one  by  p  1  by  p;

obviously, it can change and that will depend on what the variables you think are have

maximum amount of importance. So, such that simple average of all the elements in X 1

to X p, So, X 1 to X p are the vectors which I have just mentioned.

So, I just and know that you have understood it, but I still I will I will draw. So, this X 1

this means so this is n cross 1 so, but when we find out equal weightages, but this again

is not without its drawbacks as all the elements on X p n are considered to be of equal

importance will which not be true. So, the first is randomly pick up giving up any X j s

would not give us the best solution, given us equal weightages for to x one to X p may

not give us the equal solution.

So,  we  will  basically  see  it  in  the  next  class  that  how  we  can  do  it  this  principal

component analysis considering, the fact that on two main tasks are there, which I am

repeating again. Number 1 take the combinations in such a way that, we are able to glean

up maximum variability in the first case, then reduce variability, the next step reduce

variability the next second step then, the third step so on and so forth point 1.

Dimensionality is reduced, maximum amount of information is possible and when we

basically find out the combinations such a way, that the first set would be independent of

the second set that is a orthogonal, second set would be independent on the third that is a

orthogonal, but; obviously, we will ensure that first and third is also orthogonal. When

we find out the fourth stage or combinations it will be orthogonal to third second first

and we will  continue doing this  such that  we are able  to clean the maximum set of

information. So, with this I will end this 37th lecture and continue discussion more about

in 30th lecture and so on and so forth have a nice day and.

Thank you very much.


