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A warm welcome to my dear  friends  and dear  students  a  very good morning,  good

afternoon, good evening to all of you and this is the Data Analysis and Decision Making-

I course under the NPTEL MOOC series. As you know this is a 12 week lecture series

under NPTEL MOOC or a course. And 12 weeks basically means this there would be 60

lectures; total a number of hours is 30 hours and each week we have 5 lectures is being

for  half  an  hour  and  I  am Raghu  Nandan  Sengupta  from the  IME department  IIT,

Kanpur.

So,  this  as  you see on the  screen,  this  is  the 36th lecture;  that  means,  we have just

completed 7 weeks we are going to a start  the 8th week. Now if  you remember we

technically started the concept of multivariate statistics in around the end of 29th class or

begin of the 30th class. So, we have already covered about 5 lectures or of 1 week.

And we covered the concept of what is a multivariate statistics considering and there are

p  or  k  number  of  random  variables.  And,  what  are  the  actual  characteristics  of

population, what is the significance of the mean, what is of the population, what is the

significance of the standard deviation of population, the concept of variance covariance

matrix. The concept of correlation coefficient then the concept that when we are not able

to find out these characteristics from the population. We absolutely use the sample and

have  the  sample  mean  have  the  sample  standard  deviation,  the  sample  correlation

coefficient and the formulas thereof had been discussed.

Then  we  went  into  the  concept  of  the  multinomial  distribution  gave  the  pdf  of  the

multinomial,  but  the  pmf  of  the  multinomial  distribution  my  apologies.  And  I  also

discussed a very simple example by of using contraceptive in el Salvador, then we went

in the concept of other distributions like the multi normal distribution. Then discussed

that  it  is  a symmetric  distribution and we discussed the wizard distribution student  t

distribution all in the multivariate case.



And then we went into the discussion very briefly what is a copula. We will come to the

copula later on, then we discussed in the hypothesis testing case for the case of the multi

variate distributions and discuss, but that was only in the concept of multi normal case.

So, not for the other distribution as case and we discussed that how the sample mean and

the sample standard deviations are important depending on when the population mean is

known or not known, how we basically deduce it by the degrees of freedom, this concept

is exactly the same for the univariate case. And we will continue discussing that further

on and go into copula and other different type of multivariate statistical methods.

So, considering that considering on the multiple maximum likelihood estimations for the

parameter relative the multi normal distribution; so, once we should always see that the n

minus 1 n means the some of the set of observation minus 1 because, we are losing 1

degrees of freedom that should be definitely greater than p. P is basically the number of

random variables which is which you have otherwise as which is basically the standard

deviation matrix of size p cross p. 

Because, the principal diagonal would be the variances or the standard error square when

we are considering the sample and the off the diagonal element as symmetric; they would

basically be the covariances for the population if you considering the population only or

they  would  basically  be  the  covariance’s  existing  between  the  random  variables

considering the sample only. So; obviously, they would be replaced and the concept of

consistency the unbiasness which I have been discussing time and again would also hold

for the multivariate case.
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So, in case if n minus 1 is not greater than p so, an obviously, singularity concept would

come and the T square cannot be calculated. Hence we cannot basically proceed with the

hypothesis testing for the multi normal case. Now, remember for the normal distribution

in the univariate case I am sorry I am repeating in time. And again the for the multi

normal  distribution  case,  use  the  normal  distribution  and  in  the  case  of  the  point

distribution, you had different type of sample statistic. We are know we know about that.

Now combining the normal distribution, we can find out the chi square, the t and this and

the  f  distribution  and  obviously,  you  had  the  initial  z  distribution  which  is  the

standardized normal distribution.

So, the counterparts which we have for the chi square would with the wizard distribution

we have considered. And we also saw that z and t would be utilized for the univariate

case for finding on some characteristics about the mean of the population and chi square

and f  would  be the  distribution  used  to  find  out  something  to  do with  the  standard

deviation on the ratio the standard deviation for the population.  So, we will basically

follow the same concept as we do for the univariate case for the multivariate normal

distribution case also.
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So, now using the concept of sufficiency and concept of factorization,  we obtain the

following results we state again without proof. So; obviously, in the maximum likelihood

estimate what we did and if you remember we also discussed the general methods of

moments. So, maximum likelihood estimation the concept basically remains that if you

pick up a set of observations which is small and in size which are the observations, you

assume that we; obviously, you do not have the values of parameters which is mu and

sigma for the multi normal case and you want to some estimate that.

So, we assume the realize values of x 1, x 2, x 3, x 4 considering for the univariate case

or x 11, x 12, x 13 or and x 21, x 22, x 23 so on and so forth till x p 1, x p 2, x p 3;

obviously, this set of observations would be given such that we will try to maximize the

likelihood  function.  Now likelihood  function  I  am repeating  it  is  basically  when the

random variables take that realize values, we put them plug them into the functional form

of the pdf find out what is the for total probability joint probability and; obviously, we

will  consider their  independent.  That independent means for the univariate  case their

independent of each other from reading to reading for the multivariate case also their

independent between each other and they are also independent from reading to reading.

So, once we find out the log likelihood; that means, we converted into a log function

because monitoring increasing, then the only things unknown are the parameters for the

population  we  differentiate  partially  differentiate;  that  my  apology  is  partially

differentiate  with  respect  to  the  parameters  put  them to  0  find  them.  Technically  in

normal case, they give a closed form solution. So, it will be easy for us to find out the



actual sample statistic or the sample estimate which then we will try to prove they are

unbiased and consistent such that we can safely use them as the best proxy in case the

population parameters are not known.
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So,  using  the  property  of  sufficiency  and  concept  of  factorization,  we  obtain  the

following results which we state again without the proof and that would be true what I

said what a general statement would be true for the univariate case and the multivariate

case.
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So, x 1 to x n; now x 1 to x n and all of them are vectors of size n cross 1. So, x this x 1

this x 1 we have is basically; so, this one the first one is for the random variable, second

number is for the reading. So, this basically means if it is a not vector they basically

mean this set which I have. So, actually what I have is this is a bold one X 1 which is

this, then let me change the colour for the second variable this again a vector bold one.

So, this is basically x 2 1 x 2 n x 3 1 x 3 n and this goes dot dot dot dot till the last one.

Let me take a different colour this is X p or X k; whatever it you denote. So, this would

be x p 1 x p n. So, each s of size sorry my mistake this colour combination would basic it

help us to understand. So, this is for the first variable second variable till  the nth pth

variables.

So, if we x 1 to x n on the observations from the multivariate normal distribution with

the mean of mu bold. So, this is a vector of size p cross 1 and this is the covariance

matrix. So, I just highlight it. This is the covariance matrix and this set of values what I

would you noted is this. So, basically this will come here, this will come here, this will

come here.

So, the variance covariance matrix is again of size p cross p or k cross k and then using

the concept of sufficiency and the concept of unbiasness consistency, the values of x bar.

This is the x bar means the bold one, the vector one would basically be the corresponding

estimate from the sample for each and every population mean for x 1 x 2 x 3 till x p.

And,  s  would  basically  be  the  standard  error  matrix  of  size  p  cross  p which  would

basically gives us the best estimate for the case of the population variance covariance.

So, this would be the case let me use the highlighter. So, the green one; so, this would be

for this and this one would be for this one. If somebody is confused let me remove the

colour; so, consider this. So, they are the sufficient and the best estimate for the case of

the population mean and the population covariance variance.

 (Refer Slide Time: 13:13)



The sufficient set of statistics: which we have considering the sample mean are complete

when the sample is basically drawn complete mean in all the statistical properties; if they

are drawn from the total population multivariate population of mean mu and variance

covariance of sigma.
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Now, consider the mth component of the Y 1, Y 2 till the set of observation which we

have and they are all i.i.ds. So, in this case consider the expected value of Y i is equal to

v. So, do not confuse let us not confuse with the concept of the degrees of freedom. Then

the covariance matrix given for Y would be T and then in the asymptotic sense the value

would be equal to with a normal distribution with 0 mean and T as the variance.



So, what we mean is that if the expected value of Y i is given as v and then the variance

is given by T then in the long run in the asymptotic sense it will basically be a stand. So,

called  assimilate  to  the  standard  normal  deviate  with  0 mean and T as  the  variance

covariance value.

 (Refer Slide Time: 14:47)

Now, when we are considering the copula, we will consider that we will talking of the

correlation coefficient. So, now, let me come to the covariance correlation coefficient;

concept the covariance and the copula. Now consider there are two distributions. Let me

draw it let me draw it with the in a fresh blank PPT slide. So, it would be easy for us. I

will come to this discussion further on. So, let me remove it just give me few minutes or

few seconds ok, now I can draw it.

So, when we consider the correlation coefficient and I will come to this slide later on. So,

when we consider the correlation coefficient it is like this. So, this is the diagram which

will basically we discussed along with that just the previous.
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So, consider is a normal distribution and there is another normal distribution, it can be

more than two also. So, I want to find out the relationship for these. So, this is basically

X 2 and this is basically X 1. Now, what I need to do is consider I am trying to find out

the  relationship  of  X 1  X 2  at  the  extremes.  So;  obviously, in  that  case  covariance

between X 1 and X 2 would be sufficient such that from this given the standard deviation

of  X 1  standard  deviation  X  2,  we  can  find  out  the  correlation  coefficient  existing

between X 1 and X 2. But what happens if the distributions and; obviously, in that case

covariance is fine in case gives us good relationship.

Now, see if I expand the covariance the formula is actually this. So, this is the linear

relationship in terms of X 1 and X 2. But what happens if these two distributions, let me

use two different colours of orange on a green one and I am interested for the extremes

values on to the left or right also. Now, remember here for the exponential distribution,

the values fall exponentially bought on to the left on the right. But in the extreme value

distribution the corresponding probabilities and those corresponding points which are on

a equivalent scale distance on the EVD scale, on the extreme value distribution scale and

the normal distributions are unequal. 

And the corresponding probabilities  would also be unequal such that for a particular

value happening in the normal distribution case. And, its probability if we compare that

and the same probability when I consider for the extreme value distribution for the same

type of value on the EVD scale, the probability in EVD scale would be higher.



Hence, when we try to find out the actual values of the excessive loss; loss I am using in

a  very  general  sense  then  the  corresponding  probabilities,  even  if  they  are  little  bit

higher;  they  have  a  catastrophic  effect  or  a  huge  amount  of  effect  on  the  overall

relationship between X 1 and X 2. That means, per unit change in X 1 and is actual value

on X 2 or vice versa in the normal case would be given basically by the correlation

coefficient which is fixed for any values of X 1 and X 2 you consider.

But when we consider the extreme value or some non symmetric values or distinctions

for which the ends probabilities are higher than a normal case, then the relationship is

non-linear. That means, per unit change in X 1 or in X 2 the corresponding change in X 1

and X 2 are definitely not linear, then we use the concept of correlation which means in

the case of the normal case this covariance and this correlation coefficient are fine. But in

the extreme value case let me use, extreme distribution case correlation coefficient or

covariance do not give us the right picture with respect to the relationship between X 1

and X 2. 

This I will keep repeating it when we come to the copula, but this is just a very brief

background  which  I  wanted  to  mention  when  you  are  basically  going  to  study  the

concept of copula in the multivariate case. Obviously, considering the whole number of

sets or topics we have to consider, it may not be possible of us discuss everything, but I

thought I will just give you a small brief background about that ok. Let me go back to the

initial slide.

So, when we talk about correlation coefficient between X and Y we generally prefer to

use  on  a  one  of  the  followings  which  are  the  Pearson product-  moment  correlation

coefficient,  the intra  class  correlation  factor, the rank correlation  depending on what

ranks  the  air  and  how  you  basically  find  out  the  relationship,  the  Spearman’s  rank

correlation coefficient,  the Kendall  tau and the Goodman’s fit  or the Kruskal gamma

which are basically used to find out the relationship between two random variables and

we consider them to be linear dependent structure. 

But  as  I  said  with  repetition  I  am again  saying  that  for  extreme values,  this  linear

structure at the extreme does not happen. That means, per unit change of X 1 or X 2

would have non-linear effect on X 1 and on X 2 and X 1; that means, X 1 changing one



unit would have a non-linear effect on X 2 and similarly one unit changing in X 2 would

have a non-linear effect on X 1.

So, this is not there in the case when you consider in the correlation coefficient or the

different type of very simple linear correlation coefficient concept. In order to overcome

that, we use the basically the copula concept which we copula concept is basically if you

remember I I mentioned is a sort of mapping which is happening between the marginal’s

and the joint distributions in order to give us a good picture that the how the relationship

between X 1 and X 2 or if there are more than X 1, X 2 in maybe X 3, X 4. These

variables are there and we are basically  trying to understand the relationship and the

extremes. So, these blank slides I will try to utilize that as it is.
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So,  again  continuing,  but  in  general  most  random variables  are  not  jointly  elliptical

distributed as normal distribution is a case, because normal distribution is class elliptical

distribution.  And using linear correlation as a measure of dependent structure in such

situations  might  prove  very  misleading  because  it  would  not  give  us  the  actual

interrelationship between two random variables which are not elliptical.  So, hence we

use copula.
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As an example to illustrate how linear correlation is misused, let us consider as follows.

Let  us  consider  x  is  normally  distributed  with  0  mean  and sigma square  a  standard

deviation or variance and let us find out a random variable Y which is the square of X, X

which says that Y is equal X square, then is expected that both an X and X, Y and X and

Y should be correlated. But, if we try to actually find out the covariance between X and

Y, it will come out to be 0 which means that the actual information which you are trying

to get using the covariances on the correlation coefficient would mean that we are not

able to portray the relationship between X and Y. 

In  this  case  it  a  Y is  basically  X square  such that  it  does  not  give  us  what  is  the

relationship happening between the two random variables even though they are related

in; so, in order to overcome that you basically use the copula function. When we use a

copula  function  we are in  a  way trying  to  basically  map from the  cdf  of  the  actual

distribution  which  is  X  into  the  univariate  case  such  that  this  is  a  one  to  one

correspondence.
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Now, this I will again explain. So, I will come to the second bullet point which is to

illustrate for the case when you have p is equal to 2 random variables; obviously, can we

increase for the third case also for three dimension. So, what we are doing is like this

now background which have did discuss, but I will again consider it again.
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Now, consider there are two random variables X and Y and f of x is the pdf. This would

be true for the univariate case also sorry for the discrete case also and this is the pdf of y.

So; obviously, all the properties would hold; in the sense that if we are consider capital F

of X which is the cdf, capital F of Y then; obviously, it would mean sum of f of x is equal

to 1. The values of capital F capital F; so, this is small f let me clarify this. So, sum is 1



sum is are thus the value of pdf of f of y small f of y is between 0 and 1. And F of X

natural  value starting basically  for x tending to positive infinity  F of Y y tending to

positive  infinity  considering,  then  the  max maximum value  this  is  1;  obviously, this

would be true always remember that. Now, if this is true, we will try to basically bring a

one to one correspondence here, what we do is like this.
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Let me draw the pdf of X. So, consider the pdf and consider for whatever this is for Y.

So, this is X this is Y. Now consider the cdf function so; obviously, cdf function would

be between 0 and 1. So, the cdf value would be this sum cdf value is this which means

that in case if we are doing a one to one correspondence between them, then at a certain

value of x 1 the F of x 1 which we have capital F of x 1 would have a corresponding

value of y 1 such that this would always be true. In case if that is true; obviously, then

sorry then the value of x 1 and x 2 would be such that if I add up all the probabilities of x

is still the x 1 value add them up and add up all the properties for y till y 1 and add them

up both of values are equals such that the total probability cover till that point of x 1 and

total probability cover till the y 1 are equivalent.

So, if you are able to use in place of y a univariate distribution case or a very simple

distribution which we know then doing a one to one mapping would basically solve our

problem. That is what the main crux of the problem or what the essence of how we are

going to tackle the copula theory would be. I will discuss that in more details in the 37th



class. With this I will end the lecture and I am I know that it is a little bit more theoretical

than univariate case, but I will request all the students to please bear with me as I slowly

covered the theories and also cover some of the simple concept from the multivariate

case.

Thank you very much and have a nice day. 


