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 Welcome back my dear friends, a very good morning, good afternoon, good evening to

all of you. And as you know this is the DADM course which is Data Analysis and it

Decision Making and on the NPTEL MOOC series. And this course is for 12 weeks 60

lectures and that is total combined hours being 30 and each week we have 5 lectures each

being of half  an hour. So, we are in the 33rd lecture and in the 32nd lecture if  you

remember, we have just  discussed very briefly  that  what  is  with an example  for the

multinomial model that contraception example and we do the graph. Later on we went

into disk mass mentioning what is the multi normal distribution for the p very p variable

or k variable and how it has a one to the, in the formula sense, how easy does a one to

one correspondence with the univariate normal distribution.

And then we considered the bivariate normal distribution wrote down the formulas also

considered the relationship between the two normal distributions whether they are not

related whether they are related positively whether they are related negatively. And we

saw the contours, which was looked like one to looks likely lips with a major and minus i

axis and one looked like in a circle that the concentric circles, we are taking the slices

looking from above. Then we considered the student t-distribution.

So, all these things are background are giving the examples and then how the students t-

distribution was exactly for me in the same way as the univariate student t-distribution.

Then we are then very briefly, I mentioned about copula theory, I will come to copula

theory  later  on  in  details  and in  copula  theory  I  did mention  that  and the  extremes

whether  high values  or  low values  of  x.  The relationship  at  the extremes  where the

negative or positive between x and y need not be linear, they can be non-linear also. So,

in order to basically consider that we consider the copula function which is a function of

the univariate distributions u 1 u 3 u 3 till u p and each of them work basically uniform

discrete  distribution  or  continuous  distribution  whatever  the  case  because  continuous



distribution at the best way between 0 and 1. And copula functions are very heavily used

in order to find out the relationship at the extremes. So, continuing the copula function.

 (Refer Slide Time: 03:06)

So, they are used to describe the dependence between random variables X 1 to X p as per

the fundamental theorem of Sklar every distribution, every joint probability distribution.

So, this is the joint probability distribution because not it is no more running univariate,

it is basically the relationship between X 1 to X p and the marginals are given. Marginal

means the cope in univariate cases of each as is given. For the X 1 similarly X 2, X 3, X

4 till the pth one. So, all of them are univariate normal for the marginals. So, in that case,

the joint probability distribution can be related by a copula function with the variables of

the copula functions are the marginal themself. And what we will do is that later on see

how the marginals can be used converted using the univariate continuous case between 0

and 1. The concept is intuitively very simple. Now for a univariate uniform continuous

distribution between 0 and 1, the sum of the probability is always 1 which is true because

the cdf value is 1. What you do is that you map that corresponding value 1 to basically

consider the marginal any marginal it is F X 1, F X 2, F X 3 where x 1, x 2, x 3 all are

normal distribution so; obviously, that area is also 1.

Now, depending on the value of x or depend x 1 let me use the word x 1 or depending on

the value of u 1 you can find a 1 to 1 correspondence between u 1 and x 1. So, you have

different realize values of x u 1, you will have basically different realize values of x 1.



Similarly you can have different realize values of x 2 would have different realize values

of u 2 probe. So, underlying fact remains that the cdf value for the normal case from 90

minus infinity to that value of x 2 would be exactly equal to the cdf value sum of the

probabilities for the uniform continuous case from 0 to that value which is u 1 on u 2 as

the case may be and then you can find out the copula function.

 (Refer Slide Time: 05:47)

Now, these copula functions are used to describe dependency between random variables

X 1 to X p. As per the fundamental theorem of Sklar every distribution which is the

joint-distribution  with  marginals  F  X  1  to  F  X  p  may  be  written  using  the  copula

function.
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So, this is the copula function which I just mentioned. So, you have the joint distribution

of X 1 to X p that is equal to the copula function of the marginal.  So, let me use a

different colour. So, this is the copula function which you have which you would not

need to find and these are the marginals. This is basically a function of the marginals

being mapped on to the joint-distribution. So, alternatively copula function of now what

you do is that, you convert this X 1 X 2 X 3 distribution corresponding to the fact that

the some of the probabilities of all them is equal to 1. You map them on to the univariate

case and do the problems accordingly.

So, I will come with the diagrams and of these things later on. So, let me write it in

screen. So, consider you have a uniform continuous case between 0 and 1, 0 the axis I

have shifted out to the left. So, this cdf value is exactly equal to 1. So, the sum is 1. Now

consider in the other case, you have another distribution and that is normal. So, this is

normal. So, this distribution value is also 1, I need to do a 1 to 1 correspondence between

them. So, 1 to 1 correspondence between these two distribution. So, what I do is then the

in, so I will write in and let me use another colour; let me use the blue one yeah. So, the

integration from minus infinity two  (Refer Time: 08:16) I use a blue colour here in order

to highlight. So, consider this value consider a value here. So, these are corresponding

values and I am basically trying to map these two values for equivalence. What I mean

by equivalence I am going to come to that is colour should be seen yes should this the

values of the cdf addition should be exactly equal to this right. So, this is done.



Now, what do we do? And you use this one so; consider this value is I am writing in

blue. So, it will the colour difference will make you understand this is x 1. This value is

here would be say for example u 1. So, x 1 f of X 1 d x 1 will be equal to summation for

probability of u 1; this is the random variables. So, this is a random variable capital, this

is capital is less than equal to u 1. So, this part the p use green colour this. So, this part

and this part are equivalent. It means if I take that colour the overall formula which is

given here  and the  area  which  you had here  would be  exactly  same,  point  1.  Point

number 2, this part and this part are again equivalent, but there is equivalence in the

sense the total area is same thing.

So, this part  and this  part  area wise they are same. So, you use the equivalence and

basically find it out. So, that generally we use for generating pseudo random numbers in

the computer. So, that is basically the general essence.

 (Refer Slide Time: 11:39)

So, very simply to illustrate the application of multivariate t-distribution, let us consider

the following two scripts.  One is TATA STEEL, one is SBI from the National Stock

Exchange date being first to January 2014 to 29th May 2015 and we take the data from

NSE India. So, it can be found in Yahoo, Google whatever, but I am taking the end of the

day price.

 (Refer Slide Time: 11:59)



So,  if  you  draw  the  two  dimensional  copula  considering  a  bi  variate  t-distributions

considering the returns, returns would be given by an opinion log base e of the today’s

price  divided  by  yesterday’s  price.  So,  if  I  am  so,  that  return  would  be  given  for

yesterday. So, if I want to find out the return for today, it will be the law log base e to the

and the ratios of the prices would be tomorrow’s price by today’s price.

So, that is basically the return of today. So, we find out the returns in this way of all this

two pairs of stocks and then based on that one can find. So, before solving that problem

let me mention the one can find out the mean values for both the stocks, the standard

deviation of both of stocks, the covariance of those stocks, but here we try to basically

use the student t-distribution.
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So, we use the copula function using the student t-distribution. So, here now you see

very  interestingly  I  am  using  copula  functions  also  a  plus  the  bi-variate  student  t-

distributions. So, where I am trying to basically use the concept which you have just

covered in trying to highlight how they can be used. I am not going to the details of the

calculations just the flavour. So, the p d f because student t-distribution if we remember

or  indium  is  basically  a  continuous  case  and  for  you;  obviously,  you  would  have

understood by this now in the chi square f and t and z all are continuous distributions. So,

I you along the x axis we plot TATA steel, along y axis you plot SBI and we get the p d f

for the student t-distribution on the using the copula functions this is the concept of the

bivariate t-distributions using copula.

So,  these  are  the  values  and  if  you  see  that  at  the  extremes  when  both  the  in  the

univariate case; obviously, you have converted into univariate case. Add the extremes

means, add the value of 0 for the SBI and 0 for the TATA steel or 0 for the SBI one value.

These are the univariate conversions which are talking about so; obviously, the student

univariate student t-distribution for SBI would be convert it in univariate continuous case

between 0 and 1; similarly for TATA steel. So, I am considering the relationship between

SBI and TATA steel at their extremes. So, rather than talking about the extremes I will

talk about the point 0 0, 0 1, 1 0, 1 1. So, you see these values at the value of 0 0, this is

the relationship as the value of SBI and TATA STEEL. So, we basically in SBI being 1,

TATA steel being 0 and TATA steel being 1 SBI being 0 and the final for both the values

of 1 1.



So, you find out the extremes the actual concept of the copula comes into the picture in

the right way.
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So, I will mention few coefficient relationship, these are not immediately important we

will see that as we proceed. The Pearson correlation coefficient between the two scripts

can be found out. So, the Pearson correlation coefficient is exactly like the correlation

coefficient which we do so; obviously, the principal diagonal be 1 1 and of the diagonal

element  values  0.35  which  means  the  correlation  coefficient  existing  between  these

stocks is about 0.35.
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Now, then we come to the Wishart-distribution is  basically  a generalized.  So, if  you

remember  I  am going  in  a  very  scientific  manner  for  the  univariate  normal,  then  I

discussed the p value variate, multivariate normal distribution, then you have initially

you had the student t-distribution, then I discussed the multivariate student t-distribution.

Initially you had the chi square of all these are the univariate chi square, then I am going

to discuss the multivariate chi square which is the Wishart-distribution. 

The  Wishart-distribution  is  a  generalized  of  the  chi  square  distribution  the  multi-

dimensional case on a multiple dimension. It was first formulated by John Wishart. So,

hence we are basically given the distribution as such.
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So, suppose X k. So, generally we will consider X k as being 1, 2, 3, 4 to v which is

basically the degrees of freedom. So, in that case you will have the Wishart-distribution

given as the multiplication of X k and k which are basically normal with certain mean in

certain standard deviation which is the covariance matrix variance matrix. So, here the

covariance variance would be size of p cross p and it will be a positive definite. When

the value of v would definitely be greater than p minus 1 and you can solve the problems

accordingly. So, this would be the degrees of freedom.

 (Refer Slide Time: 17:29)

The Wishart-distribution arises at the distribution of the sample covariance matrix for a

sample from a multivariate normal distribution. So, as if you remember the chi square

used to come out for the case when we are going to discuss something to do with the

standard deviation. So, it will be chi squared with n degrees of freedom chi square with n

minus or degree of freedom. Similarly the Wishart distribution will be rising for the case

when you want to basically study something to do with the covariance matrix for the

multi normal distributions. In the similar way 1 to 1 simile you can see an similarity.
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Then the Wishart-distributions basic it would be basic n if n is a matrix of n cross p

where n is the number of readings, p is number of random variables. Then the Wishart-

distribution would be given by the formula which is here.

So, this is the trace, t r is the trace and given this formula. These are very simple this p is

the number of random variables this is the gamma distribution value. This is the variance

covariance matrix, p is b as I discussed is the number of random variables v is basically

the degrees of freedom. All these things are known to us.
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Now, will consider the inverse Wishart-distribution in an inverse Wishart-distribution is

denoted by IW. So, W was for the Wishart-distribution IW would be the inverse Wishart-

distribution and the suffix p or k would denote the number of random variables which are

independent. It is the multivariate extra it is again in the univariate case you have the

simple in inverse gamma function. 

So, the extension of the inverse gamma function in the multivariate case would basically

be  the  inverse  Wishart-distribution.  If  one  consider  that  the  Wishart-distribution

generates  the  sum the  squares  matrices,  then  the  inverse  Wishart-distribution  can  be

imagined as that which generates a random covariance matrices based on which we do

our studies. So, inverse gamma distribution Wishart inverse Wishart-distribution have a

again similarity in the univariate and the multivariate case.

 (Refer Slide Time: 19:55)

So, in this case if w is Wishart-distribution with degrees of freedom of v and the variance

covariance matrix 7 then inverse Wishart-distribution would also have the same degrees

of  freedom and the other  parameter  rather  being the covariance  matrix  it  covariance

covalent  matrix  into  the  inverse  of  the  variance  covariance  matrix.  So,  user  inverse

Wishart-distribution can be found in Bayesian statistics where it is used as a prior on the

variance covariance matrix of rho of a multivariate normal distribution and based on that

we do the studies.
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So, remember that for the multivariate case one can make deductions about the Wishart-

distributions and inverse Wishart-distributions in a similar manner as we can do for the

chi square and inverse chi square which is  done in the univariate  case.  So,  Wishart-

distributions or the inverse Wishart-distributions would basically be in the counter part

from the univariate case would be the chi square and the inverse chi square distribution

and will try to basically see that to the diagram.

 (Refer Slide Time: 21:11)

So, this is the Wishart and the inverse Wishart-distributions is being considered. See our

illustration is basically through the chi square with v degrees of freedom. So, chi squared

with one degrees of freedom is this pink one and this is x value x axis is the chi square,



along the y axis here the density, then you have 3 degrees of freedom, 6 degrees of

freedom. So, this is for 3 and this is for 6 degrees of freedom based on which we draw.

So, this is the univariate chi square so; obviously, you can if you are able to draw for the

higher dimension, you will get the Wishart-distribution because you remember the one to

one similarity. When we have the inverse for the univariate case, you have the inverse

Wishart-distribution.

 (Refer Slide Time: 22:09)

Again degrees of freedom being 1 or 3 or 6 using the pink, blue and green line you will

basically have the inverse Wishart-distribution. We inverse chi square distribution which

is the counterpart in the univariate case for the inverse Wishart-distribution and again

you can draw it accordingly. Again along the x axis your inverse chi square and along the

y axis you have the density plots. 
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Now, we will. So, again I am repeating this just a thorough way of trying to basically

give you a feel what things are there. So, multivariate extreme values, it gives us the

picture of an asymptotic behaviour of the components wise based on the maximum the

minimum for  a  i.i.d.  So,  the  main  problem one  faces  is  how to  define  multivariate

extreme value distribution which is MEVD multivariate extreme value distribution. This

problem arises due to the fact that there does not exist any strict ordering principle for

the multivariate observation. 

So, if the problem is if x 1, in univariate case is very simple to basically rank them from

the lowest to the highest, but say for example, when I am doing for you multivariate case

it may be possible the random variables x 1s are ranked. But the random variables x 1

values need are not possible to rank because they are basically not ordered similarly

when you try to do it for the x 2 rank them, it may happen that in the momently moment

you do that x 1 is not ranked or ordered. So, trying to basically have an uniform ranking

system from for x 1 to x p is not possible in the multi dimension extreme value case.
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So, let us assume Y being i.i.d and you want to basically find out the maximum of them

and  you  have  basically  p  number  of  random  variables  and  each  has  n  number  of

readings. Now as for the definition is n is the number of observations which I have just

mentioned while p is the dimension of that random variables. So, consider p 1, p 2, p 3

till p means p value 1, 2, 3, 4 till 10. So, you have 10 number of random variables each

has basically n readings. 

So, given this we are interested to find out the maximum. So, what you are trying to do is

that in a very simple case without going to the deep the formula consider you have a

univariate case. So, this example if I give hopefully it will make things, but clear to you.

So, consider your data set is there let me make, try to make it right it is possible.
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So, consider you have our data set and the values are marked x 1 till x see for example,

capital N whatever the values forget about that.

Now, what I do is that, I break that into groups same number and consider the groups are

given as number first one, second, third and so on and so forth. Now in the extreme value

case what I will do? In the first case let the values be the first one be the group number 1,

second one with the reading number till say for example, 1 till say for example, n this n

and the other value of sample size. Let us not confuse so, what I do is that, I find out the

minimum similarly find out I take the minimum of x 2, this is the first 2 is the so called

block number. Second one is the reading number till x 2 n. I continue doing it towards

the last one give our value x N 1 x Nn. So, once I have the means, I jumble them up

consider and keep it in a box. So, in the box what are there? They are the means of them

are the minimum of different blocks which have taken.

Now, consider  I  am able  to  take  them as  take  the  minimum of  that  minimum and

continue doing it is for such different number of n values. So, it may be possible then the

minimum of the minimum for each block would actually give you the realized values of

the sample of the minimum distribution  based on which I  am trying to  find out the

extreme value for the minimum. Similarly if I do for the x maximum value, I repeat it

take the blocks find the maximum, for the first block, for the second block third block

put it in a box and then find out the maximum the maximum. So, if I do such different

type  of  blocks  and I  take  it  one time 2 time,  3  time then;  the realize  values  of  the



maximum the maximum would actually  be from the sample based on which we are

trying to find out the extreme value distribution. 

So, these type of bootstrapping. So, called bootstrapping other things can be discussed in

details if somebody has a good knowledge in statistics and they are very heavily used in

data analysis nowadays like the concept of bootstrapping, concept or time series concept

of Bayesian analysis; they are being very heavily utilized. So, will cover them later on,

but let us proceed slowly and try to basically understand the concept in more in a much

better sense. With this I will close this class and hope all of you are finding it interesting

and have a nice day and.

Thank you very much.


