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Optimization Theory and Techniques Part-2

Welcome  back  to  the  lecture  series  on  Microeconomics.  Let  us  continue  with  the

discussion on Optimization Techniques. Previously, we have seen a class of optimization

problems which are known as unconstrained optimization.  It means, that the decision

variables or the choice variables we are dealing with can take any value, there is no

constraint on them. But, in reality we find in many maximization or minimization type

problems the decision variables are not allowed to take on just any value so; that means,

that decision variables the choice variables have to satisfy some kind of side relation, and

that is why they are constrained in nature.

So, if we are dealing with such constraints some side relations which we need to satisfy

while we are optimizing we have the class of optimization problem which is known as

constraint optimization problem.
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And now we are going to discuss this class of problems. Constrained optimization type

problems can be classified in 2 groups. One is with equality constraints and the second

one is with inequality constraints.



Now, we are going to  discuss  the  first  type  which is  the  optimization  problem with

equality  constraints.  And  now  we  are  going  to  learn  a  technique  which  is  called

Lagrangian  constrained optimization technique.  And this  technique is  named after  an

18th century Italian mathematician named Joseph Louie Lagrange. So, we are going to

start with a very simple constrained optimization problem involving 2 choice variables

and 1 constant. Needless to say that we can easily generalize this, but let us start with a

simple problem to see what is the matter.

So, let us assume we are dealing with a maximization problem. There is a continuous and

differentiable function defined over x 1 and x 2. And we need to maximize this function

subject  to this  constraint.  Now, the Lagrangian technique  that  we are going to study

evolves around a function which is known as Lagrangian. And that Lagrangian function

is to be defined as follows.

So, here the decision variables will be x 1 and x 2. And we introduced this new entity or

the concept called Lagrange multiplier, which is also unknown. So, in total we have 3

decision variables x 1, x 2 and lambda. Later we will see that this concept Lagrange

multiplier  has  very  interesting  interpretation  both  in  mathematical  terms  and also  in

economics. So, if we need to maximize this Lagrangian function lambda, then what to

do? We will  take first  order  derivatives  of this  function with respect  to  the decision

variables that is the way to go. So, we are talking about del lambda, del x 1 and we get f

1 the first partial derivative of function f of the decision variable x 1, plus lambda g 1, we

need to set that equal to 0.

Similarly,  we now need  to  differentiate  the  Lagrangian  function  with  respect  to  the

second decision variable x 2. And this will give this partial derivatives f 2 and g 2. And,

as we all know we need to equate this first order condition equal to 0. And do not forget

lambda. So, that is also you know a decision variable. So, we need to also differentiate

the Lagrangian function with respect to this lambda. And that will give us the third first

order condition. So, we get 3 unknowns in 3 equations. So, of course, this system of

equations is solvable.
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Now, after solving we will get the optimized values x 1 star, x 2 star and lambda star. So

now,  let  us  consider  the  second  order  condition  of  this  maximally  constrained

maximization problem. So, we know we have to consider a matrix of second derivatives

of the function that we are maximizing. In this case, that is this function Lagrangian. So,

we  construct  this  particular  matrix.  So,  we  first  concentrate  on  the  third  first  order

condition,  which is  basically  can be obtained by taking derivative  of the Lagrangian

function with respect to the Lagrange multiplier.

So, we first focus on that constraint, and then we will differentiate with respect to lambda

x 1 and x 2. Then after, we are done with that, we have to now differentiate the first and

the second first order condition with respect to all 3 decision variables. And, that is how

we are going to get our components of this matrix. So, this is the matrix that we create

from  the  second  derivatives  of  the  Lagrangian  function.  Now  of  course,  given  the

Lagrangian function it is easy to derive for certain components and if we do so we get

the following.

So, this g 1 and g 2 are the first order partial derivatives of the constraint with respect to

the decision variables 1 and 2. Now, we can simplify this further to a form which has

easy to deal with notations. This is the matrix that we are going to consider when we are

going to discuss our second order conditions. Now note that there is a very interesting

stuff going on here. So, this is look at the square matrix here. This is looking more or less



like  the Hessian that  we have talked about  previously. And now there is  this  border

component  coming,  these  border  components  are  coming  from  the  partials  of  the

constraint.

So, this is the border that is generated, and it is bordering this Hessian and that is why it

is called bordered Hessian matrix. So, note the difference, in the case of an unconstrained

optimization  problem  we  get  imple  Hessian  matrix  in  the  case  of  a  constrained

optimization problem we get a bordered Hessian matrix.  Now you may ask why the

border should be like this. Now, there is an alternative representation possible and if I go

for that alternative representation, then bordered Hessian matrix can also be written like

this.

So, this is also allowed. Now once these bordered Hessian matrix is constructed, let us

see  the  second  order  condition  how  can  we  state  the  second  order  condition.  For

maximization  problem  Hessian  has  to  be  negative  definite  matrix  subject  to  the

constraint. Thus, if we name this matrix say H then determinant of this H matrix has to

be positive and that is the second order condition for maximization.
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Now, we have discussed a 2 variable one constraint case. What if we generalize to n

choice  variables.  Then how my first  order  condition  and second order  condition  are

going to change? First order conditions will not change. You know, you have to take the

first order partial derivatives set them equal to 0, and you know if there are n number of



choice variables there will be n number of first order conditions. And of course, you need

to differentiate with respect to the Lagrange multiplier lambda.

So, if there are n number of choice variables you get n plus 1 number of first order

condition equations. So, in the case of n choice variables and one constraint model, you

know the bordered Hessian matrix is going to be n plus 1 by n plus 1 matrix. And the

signs of the determinants from left to right, we will change in sign we will alternate in

sign. And the order should be plus minus plus minus etcetera.

Now, note one thing, we have defined our Lagrangian function as f x plus lambda g x.

One may ask what if I replace this plus and you know I replace this plus with a minus.

No change, only the sign of the Lagrange multiplier value the optimized value of lambda

star  we will  have a different  sign.  So, only that  much difference will  happen if  you

replace plus with a minus here. Now, let us move on to an extension. And this extensions

we will now have n number of choice variables, and 2 constraints.

So, let us write down a fresh maximization problem. Maximize f of x 1 x 2 x n and

subject to g of x 1 x n equal to c 1, this is function g 1. There will be another function g

2. So, in this case, how can we write the Lagrangian function? Now, the Lagrangian

function  we will  take  the  following  shape.  So,  of  course,  as  there  are  n  number  of

decision variables, and there are 2 Lagrange multipliers, there will be n plus 2 number of

decision variables, and you are expecting n plus 2 number of first order conditions. And

you know of course, you know following the way I have shown previously, you can

construct the bordered Hessian (Refer Time: 21:56) all. But, now let us concentrate on

the interpretation of this lambda 1 and lambda 2. What are these variables? So, the issue

at hand is to get the interpretation of Lagrange multiplier.
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Now, we can approach this interpretation in 2 different way. So, in a general case where

you know we are dealing with k number of constraints, we can write and this is the first

way of looking at it.  And of course, in the case that we were dealing with k takes 2

values, because in we were dealing with 2 constraints. So, this c are the parameters, c 1

and c 2. So, this Lagrange multiplier  is the rate of change in the optimized value of

Lagrangian function. And, this is with respect to change in the constraint parameter.

Now, let us look at the second approach to interpret the Lagrange multiplier and for that

you know let us remember the discussion that we had earlier that the optimized values of

the decision variables in this case x 1 star and x 2 star are functions of the parameters in

the model. So, if you change in the parameter value then it will have an impact on the

optimized values of the choice variables. That is what we have seen under the heading of

comparative statics. Now, we are going to follow that approach to interpret the Lagrange

multiplier.

So, suppose we are changing the parameter 1 and that is c 1. So, we can write Lagrange

multiplier value Lagrange multiplier as the following expression. So, this expression is

the  Lagrange  multiplier  1.  So,  if  we  follow  this  line  of  thought,  then  this  can  be

interpreted  as  marginal  effect  of  the  constraint  on  the  optimal  value  of  the  original

objective function. And in economics, this particular interpretation is very popular and

this Lagrange multiplier has another name and this is also known as shadow price or



value. Now, we are going to discuss an example of this Lagrangian method. So, this is it

for right now. We will continue with these discussion in the next lecture. 


