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Hi, welcome back to the lecture series on Microeconomics. Let us now continue our

discussion  on  Linear  Regression  analysis.  Last  time  we  have  seen  simple  linear

regression  analysis  with  one  explanatory  variable;  now we  are  going  to  extend  that

simple model to more than one explanatory variables. So, if we have more than one x,

then that kind of model is called multiple linear regression model or multivariate linear

regression model. So, let us first start with a model expression.
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So, multi radiate linear regression model could be expressed as a linear function of this

sort where we have more than one explanatory variables right, now for simplicity sake

we can assume k equal to just 2. So, the simplest possible linear regression model would

involve  only  two  explanatory  variables,  and  then  we  have  a  model  with  a  smaller

dimension right.

So, for this lecture we are going to work with this two explanatory variable multiple

regression model, but needless to say that all the results that we are going to derive and

see can be easily generalized to k variable case. So, first thing that I would like to note



here  is  the  following.  What  would  be  the  interpretation  of  these  coefficients  in  a

multivariate linear regression model. So, of course, this beta naught is going to be my

intercept as usual, but we have slightly different intercept, slightly different interpretation

for the slope parameters or coefficients beta 1 and beta 2. So, how can we interpret these

coefficients?

So, these are known as partial regression coefficients. So, what do we mean by partial

regression coefficient? So, this term actually has some relation to calculus where we take

partial  differentiation  right.  So,  this  multivariate  regression  coefficients  actually  are

partial  derivatives  of  this  variable  Y i  with respect  to  the  corresponding explanatory

variable. So, we can actually write that beta 1 is del Y i del X 1 i and beta 2 is del Y i del

X 2 i or in fact, we can remove this Y notation this i to make it simpler expression ok.

So, these betas are basically indicating the change in the dependent variable associated

with 1 unit increase in the explanatory independent variable, but simultaneously holding

all other independent explanatory variables constant in the equation. So, the coefficient

beta  1 measures  the impact  of 1 unit  increase in the variable  X 1 on the dependent

variable Y, holding the X 2 variable constant, but note that here we are not holding any

other omitted variable which are part of this term epsilon i constant right. So, omitted

variables can vary, but those variables which are in the regression equation, you have to

keep them constant while you are changing one explanatory variable at a time ok.

Let us now concentrate on a statistical method to get estimates of these parameters right.

We are again going to adopt the wireless method that we have explained before right. So,

brief recap we know that in the wireless method we have to minimize the sum of squared

residuals  alright  and  here  this  will  look  like  the  following  right  ok.  So,  this  is  the

expression that we need to minimize with respect to the unknowns which are basically

beta naught hat, beta 1 hat and beta 2 hat.

So, I am skipping the steps you know what to do you have to take derivatives of this sum

of squared residuals with respect to these unknown variables set them equal to 0, you

have to then solve those normal equations, 3 of them to find the solution for these 3

unknown variables. So, if you do all this, then actually you get this nice looking formula

ok.



So, here the lowercase variables actually indicate the deviations from the mean. So, if

you  have  observed  some  data  sets  like  this,  where  n  is  basically  the  number  of

observations in the sample, then x 1 i is equal to X 1i minus the arithmetic mean of the

variable X 1. Similarly, we can write x lowercase 2 i equals mean variable X 2 minus the

arithmetic  mean  of  the  variable  X  2  and  similarly  y  i  is  also  centered  around  the

arithmetic mean of the dependent variable.

So, here in these expressions that we obtained for our regression coefficients, the sum all

the some ranges from i equal to 1 to n ok. Now as we have discussed earlier that these

coefficient values beta 1 hat beta 2 hat and beta naught hat will vary from sample to

sample, because if the data changes of course, the formula will result into a different

number. So, there is some kind of dispersion in the data see you we change our sample

we get different betas.

So, there is some kind of variation in the beta. So, of course for that reason there is some

standard error that will emerge we have looked at that before as well. Here in this case let

me  also  give  the  formula  for  standard  error  for  the  slope  parameters  or  the  partial

regression coefficients, because these are the most important variables when an applied

econometrician uses this regression tool. So, again the sum ranges from 1 to n, I am

skipping this sum range to save space and produce less clumsy expression.  I am not

showing you the derivation of this, because this is tedious and that serves no purpose for

this course as well. So, let me just give you the final expression ok.

So, these are the tedious expressions for standard error, we will see the usage of these

standard errors later on. Now note that we have introduced two new notations here, sorry

I forgot to write 1 2 here. So, actually one new notation and that is basically r 12. So,

what is it? So, that is the thing that we are going to study next. So, the new symbol that

we have introduced r  1 2,  actually  is  a measure called simple correlation  coefficient

which measures the strength and direction of linear relationship between 2 variables. So,

here r 1 2 measures the linear associationship between two explanatory variables x 1 and

x 2. So, let us have a formula for these expression r 1 2 so, that you can compute it from

the data given.
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Again the sum ranges from 1 to n. So, I skip these to make it less cluttered makes the

expression  nice  looking  ok.  So,  you  can  actually  see  that  this  expression  can  be

simplified further and this will be in the deviation term. So, we are talking about the

centered data now. So, if the original data is given on capital Y, capital X 1 and capital X

2. Now we can center all these variables with respect to their arithmetic mean and then

we can use the lowercase variables to have a simplified expression, but basically they are

the same thing ok.

So, now note that this r can take two extreme values. So, if there is a perfect positive

linear relationship between x 1 and x 2, it implies X 1 i is exactly equal to X 2 i, then r

takes value plus 1. And, if we have a negative linear relationship which is also perfect in

that case, we mean X 1 i is equal to minus of X 2 i, then the expression that we have

above on r 1 2 results into a value of minus 1 for r. Well we have discussed so, far on the

multivariate linear regression model in a theoretical setup.

Now, let  us you know look into the philosophy of this  model  and let  us look at  the

interpretation  of  these  coefficients  through  a  simple  graphical  exercise,  a  simple

numerical exercise you can say ok. So, let me talk about some hypothetical numerical

example ok. So, suppose an econometrician or an applied economist is given data on

quantity demanded and quantity demanded of a commodity and let me denote this by Y,

that is going to be my dependent variable and I observe n number of data points ok. Then



I got two explanatory variables one is price per unit denote this by X 1. So, I have wait a

minute so, 1 n ok.

And, we have another explanatory variable which is per capita income of the household,

you remember the theory of consumer behavior what we have studied earlier; there we

have seen that not only the price of a particular commodity has impact on the quantity

demanded, but consumers income also plays a big role in determining the demand. So,

we have this simple hypothetical model. So, basically this is coming close to our theory

of demand right ok.

So, given the data set we have if we apply the formula, that we have jotted down so far,

we  can  get  the  estimates  for  our  partial  our  regression  model  and  we  can  find  the

coefficients of our linear regression model, which is written as Y i equals beta naught

plus beta 1 X 1 i plus beta 2 X 2 i plus the random or stochastic noise epsilon i ok. So, do

not be scared to the complicated formulas because, these days the statistical softwares

are available and they can help you to find out these numbers quite quickly within a

second. But, you know it is important to know what goes behind the screen right; what

actually  is happening behind the curtain when you ask a computer  to compute these

things for you.

So, given the data suppose you have done calculations yourself manually or a computer

produces some numbers for these coefficients and measures, and let  us assume some

simple numbers purely hypothetical just you know for the purpose of illustration ok. So,

suppose these are my numbers fine. So, what do we get to know from these numbers?

So, first we have to concentrate on the partial regression coefficients beta 1 hat and beta

2, because they have sorry let me put a negative sign in front of this number 0.87 because

the reason it will be clear to you soon. 

So, here let us first concentrate on beta 1 hat. So, what does that mean? It means that if

there is an unit increase in the price of the commodity then what will be the impact on

the  quantity  demanded.  So,  we know that  the  law of  demand states  that  there is  an

inverse  relationship  between  price  of  a  commodity  and  quantity  demanded  of  that

commodity. So, we expect a negative number for this beta 1 hat coefficient, and that is

why you know I placed this  negative sign in  front  of the number. So,  this  basically



satisfies that law of demand right, that every other thing remaining the same if price

increases quantity demanded falls.

Now, let us look at the other partial regression coefficient beta 2 hat. So, what does that

mean? It says that if the price of the commodity does not change and if the income of the

consumer changes by 1 unit, then what will be the impact on Y? So, by how much the

quantity demanded will change. So, if you remember our discussion on the theory of

demand and income increase actually relaxes the budget constant of a consumer and the

consumer tends to purchase more to find the equilibrium right. So, there is a positive

income effect on the quantity demand and purchase right. So, that is what we exactly see

here as well ok. 

So, we will continue with this discussion in the next lecture.


