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Welcome back my dear friends a very good morning, good afternoon, good evening to all

of you we are in the 38 lecture for the TQM II course under the NPTEL MOOC series

and I am Raghunandan Sengupta from IME department IIT Kanpur. So, if you remember

we in the last 2 lectures for the last week, which is the 36th and 37th seventh lecture we

did not cover much of the slides.

But  we  have  we  had  a  lot  of  discussions  about  regression  model,  multiple  linear

regression model or you find out estimate of beta how you find out the sum of the square

of errors then how you find out the variance for the betas and the covariance of betas

sigma square, what is the degrees of freedom. And then; obviously, I keep kept repeating

what are the assumptions and how you do the q q plots, how you do the plots of the

errors with respect to x 1, x 2, x 3 whichever variable which are there the assumptions

being that normality holds true for all the x s for the errors for the y s and expected value

of the errors is 0 variances and all is obviously, there and all this things.

Then we slowly went in to the 2 to the power k fractional factor models considering

there are k variables they are 2 different levels 0 1 minus 1 plus 1 and so on. So, and we

saw that that how the concept of orthogonality can be brought into the picture and we

can module in the multiple linear regression models. 

And we were discussing that why is the variable and there are beta naught, beta 1, beta 2,

beta 3 which means there is x 1, x 2, x 3 variables based on which you can proceed and

we can find out the errors and the variances of beta naught variances of beta 1, beta 2,

beta 3 where the variances of beta 1, beta 2, beta 3 for the last example which were

discussing  in  the  37th  lecture  all  the  variances  were  equal  because  food  for  the

orthogonality one, orthogonality one.



And I did mention time and again the concept of degrees of freedom you are losing the

degrees of freedom as you and more and more variables which are the independent ones

which basically affect the value of y. So, continuing the discussion.

(Refer Slide Time: 02:34)

So, if you have the output for the viscosity regression models at the actual viscosity

which is y is given by beta naught hat which is 1566 plus beta 2 hat a beta that was beta

naught hat.

So, this will be beta 2 hat with 7.62 into temperate temperature is x 1 plus 8.52 which is

beta  2  hat  into  the  feed  rate  and the  if  you see  the  constant.  So,  which  is  what  is

interesting  I  want  to  note  down  and  highlight.  So,  these  were  the  coefficients,  the

coefficient value is 1 point 1566.08 which is here 7.656213 which is here 8.585 which is

here.  The standard  deviations  or  the  standard  errors  for  the  constant  one;  obviously,

because they are estimates, estimates would basically have expected value and if there is

an expected value they are random and they would be a variance for that. So, variance

for all these 3 constant which is beta naught temperatures coefficient which is beta 1

And and feed rate coefficient which is beta 2 their standard error are given. So, note

down for a value of 1566 the standard error deviation is about 61 for 7.62 it is 0.61 for

8.5 it is 2.4. For the temperature difference values which you remember t plus and t

minus and the p value level of significance, the r squared value is given as 92.7 adjusted



r square is given as 91.6 adjusted r square basically considers the degrees of freedom in

those picture that is all, in a in a very general layman terms I am saying.

So, r square basically gives you the level of prediction we are able to do it, if it is 92.7;

that means, we are able to predict about 92 percent of the variations of y with respect to

x; obviously, 100 minus 92 would be the effect of white noise or the errors, the adjusted r

square when we bring the degrees of freedom into the picture. So, it comes out to be

about 91.6; that means, 100 minus 91.6 is the overall errors or the prediction which we

are not able to predict using the axis which is basically given by the white noise.

The  analysis  of  variance  again  we  will  go  back  to  the  general  main  theme  of  our

discussions you have a table the, the reading in the all the variables of the attributes are

there on the first column, then second column you have the sum of squared errors you

have the third column in the degrees of freedom you have f value, because you want to

test the null hypothesis whether this is true or false and you have the degrees of a level of

significance. So, these are the sources, these are the degrees of freedom, these are the

sum of squares in a general table this sum of the squares comes here degrees of freedom

comes here, you have the mean square error which is division of the sum of squares by

the degrees of freedom with a value and the level of significance. So, based on that you

can calculate and do the ANOVA table for the regression model also.

(Refer Slide Time: 05:47)

2 to the power 3 factorial, factorial design with mixing observations.



So, you are mixing the observations consider the 2, 2 the power 3 factorial design with 4

centre points from same examples suppose that when this example was performed the

run with all the variables at high level run were missing. This can happen for a variety

reason that measurement  errors was there,  measurement  system can produce a faulty

reading,  the  combination  the  factor  level  are  not  feasible  infeasible  they  were  not

tempered or tuned as for the experiment and so on and so forth or the unit was damage,

we did not get that unit or we miss the unit or the person who was taking the reading was

not attentive on all this reasons can be there.

Again the same model, y is equal to beta naught, but beta one into x one plus beta 2 into

x 2, plus beta 3 into x 3 plus epsilon again is the multiple linear regression model. Beta

naught, beta 1, beta 2, beta 3 are the regression coefficients with respect to beta naught is

when is basically the point at which where it is cutting the y axis. Beta 1, beta 2, beta 3

are the partial regression coefficients or the rate of change of y with respect to x 1, x 2, x

3 respectively. Using the 11 remaining observations the x matrix is of this form which is

basically n cross the 4, 4 means beta naught beta 1, beta 2, beta 3.

So, we so if there are x 1, x 2, x 3. So, it will be n plus 4 because the fourth one is

basically coming for beta naught, y values again n plus 1 the x, transpose x values is

found out here which I am just circling you can use simple excel sheet or a mini tab or a

mat lab to find it, then x transpose y is given from that you can find out beta hat. So, beta

hat beta when I am mentioning betas or the x s of the y s are all  vectors,  matrices,

vectors, scalar would only come for the case when you are trying to find out the sigma

square. 



(Refer Slide Time: 07:58)

So, beta because there is missing observation the design is a no normal orthogonal when

you find it out the beta hat values comes out to be 51.25 this is beta naught hat beta 1 hat

is 5.75, beta 2 hat is 10.75 beta 3 hat is 1.25 therefore, the fitted model is ah; obviously,

they would not be any error term.

So, if you want to find out the nth plus 1 value it will be y hat nth plus 1 which is in the

suffix would be 51.25 which is beta naught hat plus 5.75 which is beta 1 hat into x 1.

This is the first value is the first x value and its corresponding reading is the nth plus 1,

then in plus beta 2 hat which is 10.25 into x 2 and it is corresponding value is the nth

plus 1 for the second variable, plus beta 3 hat which is 1.25 multiplied by x 3 and it is

corresponding x 3 value being nth plus 1.

So, from that we can find out y hat, then find of the difference between y and y hat for

the nth plus 1 nth plus 2 nth plus 3, n is basically depending on at which stage you are

which reading you are, find out the errors plot the errors with respect to x 1, x 2, x 3 find

out the averages values come out to be 0 yes or no. Then plot the values of errors which

should be normally distributed with respect to the standard normal distribution you use

the q q plots, plot it along the 45 degrees line check whether they are there. Obviously,

they would not be all lying on the 45 degrees line, but you can get an answer for that,

compare this model to the obtained earlier the regression coefficients are very similar



because the regression coefficients are closely related to the factors effects. So, what is

the effect of the x 1 and y, what is the effect of x 2 and y, what is effect of x 3 and y?

So, they would be given by beta 1, beta 2 beta 3, but we are using the small sample

whatever it is to predict the values using the estimate beta 1 hat, beta 2 hat, beta 3 hat,

obviously, we will use beta naught hat to find out beta naught. However, notice that the

effects estimates are no longer orthogonal because x transpose x and it is inverse on no

longer orthogonal for the more variances of the regression coefficients are larger than

then when it was the original data because you have basically shrunk your sample size to

smaller simple size. 

(Refer Slide Time: 10:21)

When running a design experiment is sometimes difficult to reach and hold the precise

factor levels required by the design, small description are not important.

So; obviously, they would be, but large once are potentially of more concern to us and

we should  be  careful,  regression  methods  are  useful  in  the  analysis  of  the  designed

experiments. Where the experimental has been unable to obtain the required factor levels

at what factor they are, to illustrate example where very many of the test combinations

are not exactly the one specified the in design most of the difficulty seems to have been

occurred with the temperature variable.



So, again I am noting down or presenting to you the experimental design for the example

where you have the run given in the first  column,  the temperature which is  the x 1

variable at the second, pressure which is x 2 in the third and concentration which is x 3

on the fourth, the coded variables are basically done accordingly such that you can find

out the average values and noted down and the y yield which is the dependent variable

which is given on the last column.

(Refer Slide Time: 11:29)

We will fit the main effect model again the same model y is equal to beta naught plus

beta 1 into x 1 plus beta 2 into x 2, plus beta 3 into x 3 plus epsilon and y hat would

basically be is equal to beta not hat, plus beta 1 hat into x 1 plus beta 2 hat into x 2 plus

beta 3 hat into x 3 plus; obviously, there is no error.

So, x matrix is given the y matrix is given from this we find out the x transpose x and x

transpose y from that we find out the beta hat vector.



(Refer Slide Time: 12:03)

So, vector comes out to be, after the all the calculations because the formula or which I

am circling always remain the same you do not have to worry ones, actually the basic

concept is sum of the squares difference partially differentiate with respect to betas put it

to 0 those are the orthogonal equations find out the hats and after that your job is done

you proceed with the calculations.

The values of beta naught is given as beta naught hat is 50.49 I am only reading till the

second place of decimal beta 1 hat is 5.40, beta 2 hat is 10.16, beta 3 hat is equal to 1.07.

The fitted regression model now would be y hat is equal to 50.49 plus 5.40 into x 1 plus

10.16 into x 2, plus 1.07 in to x 3. So, this is what is given, comparing this is with the

original model where the factor levels were exactly those specified by the design.

We note a very very little  difference,  the practical interpretation of the results of the

experiment  would not be seriously affected by this, hence we are able to utilise  this

model convincingly. So, even you even if there is inability on the experimental side like

missing get was there or the machine was not working to measure rate of the temperature

difference were there still there is no problem, because errors are very small errors with

respect to the betas and the error terms. And; obviously, we would difilt for all these

things I am, I am skipping it for the last example we will draw the q q plots draw the

error term on the y axis with be respect to x 1, x 2, x 3 and do all the comparison to find

out the mean of the errors is 0.



The variability of the errors should be norm a sigma square hat which want to find out

and the normality conditions would also hold true we will also find out the covariance of

the beta vector. So, where the principle diagram would be the square of the standard error

of the betas and of the diagonal element with the covariance existing between the betas.

(Refer Slide Time: 14:09)

We observed that is possible to de alias the interaction in the fractional factorial design

by a process called folded over.

So,  you  fold  it  and  try  to  basically  consider  in  using  blocks,  block  design  also  for

resolution of 3 degrees or 4 degrees a full fold over is constructed by running a second

factorial  in  which  the  signs  are  reversed  from  those  in  original  factors.  Then  the

combined design can be used to de alias all main effects from the 2 factor interactions

and basically have a better picture on how the effects are being done. Now, a difficulty

was the, with a full fold over is that it requires a second group of runs of identical sizes.

But there that data size may not be applicable because the number of observations which

we have for the sample is low, it is usually possible to de alias certain interaction of

interest by augmenting the original design with fewer runs than required in a full fold

over, the partial fold over technique was used to solve this problem because we would

not to do the folds in at one go for considering all of the observations at 1 go, we need to

partially break into samples and then do the folds.



The regression methods are an easy way to see how the partial fold over technique works

and in some cases find even more efficient fold over design methods.

(Refer Slide Time: 15:25)

To illustrate suppose that we have a model of 2 to the power 4 minus 1 and 4 third design

model and it shows the that in which we considered the I a matrix or I value as the as the

factors ABCD, suppose that after the data from the first 8 trials were observed the largest

effects were basically ABCD.

So,  we ignore  the  3  factor  interactions  and A plus  B,  AB plus  CD alias  chains  are

ignored, the other 2 aliases can also be ignored, but clearly the AB or AB or both of 2

factors  are  large  hence  they  cannot  be  ignored,  to  find  out  which  interactions  are

important we could of course, run the on the alternative fraction which would require

another 8 trials. Then all these 16 trials could be used to estimate the main effect and the

2  factor  interaction  and  alternative  would  be  to  use  a  partial  fold  over  involving  4

additional runs and we can complete the task accordingly. 

So, again now, as we are considering the partial fold model so; obviously, the multiple

linear regression would be larger in size and what is that please pay attention to here, it is

possible to de alias AB and CD in fewer than 4 additional trails. Hence, we will assume

the model as such initially what we had we had y is equal to because it was there was no

fold. So, it was y is equal to beta naught plus beta 1, x 1 plus beta 2 x 2 plus beta 3 x 3

plus epsilon.



Now, the model is changing, what is it  please pay attention it will be y is equal beta

naught plus beta 1 what beta 1 into x 1 plus beta 2 x 2 plus beta 3 x 3 this remains as it is.

Now, we are basically considering those extra factors as it should be as per the fractional

factorial modules considering the partial folds, the fifth term would be x 4 into beta 4

plus beta 1 2 where you are combining the effect of A and B which is be x 1 into x 2 and

the and th last term would be apart from the error term would be beta 3 into beta 3 4

which will be x 3 into x 4 plus epsilon. 

Where the the factors x 1, x 2, x 3, x 4 are the coded variable represents ABCD and the

combination of x one x 2 or x 3 x 4 with the combination of AB and CD. Using the

design the x x matrix now be given by n remains the same, but the factors which is n

cross m k plus one or n cross k plus 2 whatever it is would now depend on the factors.

Which we have consider, what are the factor it is x 1, x 2, x 3, x 4, x 1 and x 2 which is

the fifth one and x 3 x 4 which is a sixth one. So; obviously, it  would be n cross 7

because the 7 may, seventh means which is the first one would be beta naught. So, there

would be beta 1, beta 2, beta 3, beta 4, beta 1 2 beta 3 4, where we have written the

variables above the columns to facilitate better understanding noticed there is that x 1 x 2

column is identical to x 3 x 4 column ah, because AB or alias CD are coded as x 1 x 2

and x 3 x 4 respectively  implying a linear  dependence  model.  Therefore,  we cannot

estimate both x 1, x 2 and x 3, x 4 in the model, I was suppose that we add additional run

and basically consider the x 1 x 2 as different levels.

We can basically have alternate fractions to the original 8 model, 8 runs and basically be

able to estimate beta not beta 1, beta 2, beta 3, beta 4, beta 1 2 and beta 3 4. 



(Refer Slide Time: 18:58)

Once you have the other matrix it is again of size n cross, I am repeating the word n in

order  to  me basically  denote  the  number  of  observations,  n  cross  7.  Notice  that  the

column x 1, x 2, x 3 and x 4 are no longer, are now no longer identical and you can fit

the model increasing and find to try to find out the estimates of beta 1 2 hat and beta 3 4

hat 3 4 basically this is a suffixes, the magnitude of the regression coefficients will give

inside regarding which interactions an important.

So, once we do, do that we can basically do the same methodology we are trying to

basically find out the beta hats, try to find out the errors, try to fit in the model to find out

the  average  of  the  errors,  try  to  fit  and  find  out  the  distribution  of  the  errors  and

everything and would basically remain the same. And; obviously, we will come into the

main  table  which is  for the ANOVA over where the reading on the variables  of  the

attributes,  I  am  using  the  attributes  because  it  can  be  attributes  and  variables  also

depending on what type of model you are considering any of the sum of the squares you

have the degrees of freedom you have the f values, the mean square value and values the

f value and basically you have the level of significance.



(Refer Slide Time: 20:09)

We have assume the block factors were at the level of minus in the first 8 runs then at the

high level of during the ninth run it is easy to see that the sum of the cross product of

every column with the block columns does not sum to 0, meaning the block are longer

orthogonal to treatment or that the block effect.

Now, effects the estimate the model regression coefficients, to block orthogonality we

must add an even number of runs for example, we have extra 4 runs where it will give us

because there are what, there are x 1, x 2 and x 3, x 4 combined which is AB and CD. So,

hence  we basically  add up more number of combinations  for  that,  such that  we can

basically do the calculations and try to basically differentiate the effects in much better

fashion.

So, with the analysis for AB which is x 1, x 2 and CD which is x 3, x 4 and for allow

orthogonal blocking this is equivalent to a partial fold over in terms of the number of

runs and that are required in order to estimate. 



(Refer Slide Time: 21:08)

Now, you want to do that hypothesis testing, again we are going to come back to the

ANOVA table. So, the test of significance for regression is a test to determine whether

the  linear  relationship  exists  between  the  response  variables  y  and  a  subset  of  the

regressor variables x 1, x 2, x till x k. Now, the actual hypothesis would be stated which

is in h naught case we will consider beta 1 to beta k all to be 0 and in h 1 which is the

alternative 1 one cases we will consider that that for at least one of these j, j is 1 to k they

are not 0.

So, in this case 0 means that the effects of them are 0; that means, we need you to the

partial differentiation the rate of change of y with respect to beta 1, x 1, x 2, x 3 whatever

is 0; that means, they are not being affected. So, rejection of h naught in equation in this

equation implies that are at least one of the regression variables x 1 to x 3 contribute

significance so; that means, if you are rejecting h naught been basically b tech taking

cognizance of the fact that h a is true. 

So, if h a is true; that means, one of the betas are definitely not equal to 0, which means

that there is a linear relationship between y and that particular  x. The test procedure

involves an analysis of variance exactly as ANOVA table where we find out the total

number of squares into the sum of the squares due to the model and due to the sum of the

errors total sum is equal to sum of the variables plus sum of the errors. So, this is the, this



is the main thing which you have been discussing and from there we will decide we do

the ANOVA table. 

(Refer Slide Time: 22:48)

Now, if the full a null hypothesis which is H naught is 2 then SS R which is for the

regression models  divided by sigma squared is distributed to chi square,  because chi

square  is  basically  distribution  will  consider  with  respect  of  sigma  square  and  the

standard error distribution, which we are considering where the number of degrees of

freedom of chi square is equal to the number of degrees variables in the model.

Also we know that the sum of the squares of the errors by sigma square is distributed,

again chi square with the certain change in the degrees of freedom and that sum of the

squares of the errors and sum of the squares of the total effects are independent. That is

what is very important to note down, considering the fact that we are considering normal

days, normal distribution to be true for all the x s errors and y, this is very important to be

noted by all of you for basically listening to this lecture and who are taking this course.

The test procedure would be basically for H naught would be to find out if F statistics is

a sum of the squares of the product of the case that by k, with k is the degree of freedom

depending on the number of variables divided by sum of the square of errors is divided

by it is degree of freedom. That will give me the mean square of r by divided by mean

square of the errors and we will reject if it H naught, F naught under h naught exceeds



that value F alpha, alpha is the level of significance which you have alternatively we

could use the p values to approach to test the hypothesis.

And reject F naught with p value of the statistics F naught is less than or if it is greater

than alpha we accept that alpha can be 1 percent, can be 5 percent, can be 10 percent so

on and so forth. The test statistic is usually summarized again in same ANOVA table. So,

what  we have is  this  here the regression errors  in  the residual  are  given in  the first

column, sum of the squares is given, degrees of freedom is given divide SS R by k is

given, then the mean squared errors SS e by n minus k minus 1 will give me the mean

squared  errors  based  on  that  you  can  find  out  the  SS  F  statistics  and  then  we  can

comment with whether it is right or wrong depending on the alpha value which is the

level of significance. 

(Refer Slide Time: 25:08)

The regressions on the squares by the formula is given by beta hat transpose. So, beta hat

what  basically  of  size  k  plus  1  plus  1.  So,  it  transpose  would  be just  the  opposite,

multiplied  by x transpose y minus the overall  effect  of y s,  y s  are  the actual  value

divided by this.

So, this is the basically the best fit line which you have for the actual value and the sum

of the squares would be given by, this is the total error minus this would give me the

error sum of the square of the error. So, total value would be given by addition of them

and you can find out the calculations calculate the values accordingly.
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So, in the in the this following slide it will shows the sum of the output mini tab for the

viscosity  regression  model  for  the  upper  portion  of  the  displays  is  the  analysis  and

variance for the model.

The test of significance of the regression in this example involves the hypothesis, that

beta 1 is equal to beta 2 is given 0 and either and in the alternative one would be at least

one of them is not 0, the p value of the table for the f statistic very small. So, you would

conclude that at least one of the variables which is temperature or feed rate have a non 0

value hence the linearity relationship holds.
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The table also gives a R square value, which is that adjusted R square and adjusted R

square, R square would be the sum of the squares which are we are able to predict from

the variables divided by sum of the total of the total errors. So, that would also be equal

to 1 minus, because the ratio is always one for the total was the total minus the sum of

the square by the error by the total.

Just in design experiment R square is major amount of deduction the variability of y

obtained by using the regression variables x 1, x 2, x 3 to x k; however, as we have noted

previously a large value R square does not necessary imply the regression model is a

good one. This is interesting and listen to it adding a variable in the model will always

increase r square; obviously, because we are adding more and more variables we are able

to think that we are able to think more and more. Regardless of whether the additional

variable in statistically significant or not, thus is it is possible for models that have large

R values to yield poor prediction of the new observation or estimates of the mean values

as we proceed for the n th plan predictions to n th predictions and so on and so forth.

So, basically we should take the minimum number of x s try to predict the maximum,

basically have a value of R square where it will be able to give us the predicted errors as

least as possible for the for the n th plus 1 n th plus 2, n th plus 3 data.



(Refer Slide Time: 28:00)

Because  R  square  always  increases  as  we  had  terms  in  the  model  some  regression

models  builders  prefer  to  use  adjusted  R  square  which  I  mentioned  is  basically  by

dividing by the degrees of freedom. So and adjusted r square would be given 1 minus so,

initially it was sum of the square of the errors divided by same squares of the total.

Now, it will basically be n minus 1 by n minus p p is basically k plus 1 depending of beta

not  is  there  or  not  multiplied  by  R 1  minus R square  in  general  adjusted  R square

statically R not always increases variables are adjusted to the model. In fact, if necessary

terms are added, the value of R square adjusted would often decrease and basically give

us an actual value of the prediction level of the model.
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So, now we will basically start of the test and individual regression coefficient and the

group of coefficients. So, adding a variable regression model always causes the sum of

squares for regression module. So, increase in the errors of the sum of of of the squares

to decrease.

So, obviously, we want as x s are increasing R square would basically be give us the

maximum output, but; obviously, the question remains that to what level are we able to

predict for the n th plus 1 n th plus 2 data points that is point number 1. Whether the

errors as per the assumptions have normally distributed with the 0 mean and certain

variance whether the non on normality assumption holds and the covariance of the beta

which you want to find out are really small or not.

Because  if  they  are  very  large;  obviously,  apart  from  un  biasedness  the  consistent

property would not hold, we must decide whether the increase in the regression sum of

the squares is sufficient to warrant using additional variable in the model. So, we will try

to basically find out the hypothesis that other than testing the significance of any of them

collecting as a group, we will  try to take them as an individual and try to predict  as

maximum as possible.

With this  I will end the 38 lecture and try to continue with this combinations of the

hypothesis  testing  such that  we take  individually  the  beta  and try to  predict  with H

naught is true or H a is true and basically pass judgement accordingly.



Thank you very much and have a nice day.


