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Welcome back my dear friends, a very good morning, good afternoon, good evening to

all of you and this is the TQM-II lecture under the NPTEL MOOC series and we are in

the 37th lecture; that means, we are in the second day or the second class for the last

week. And I am Raghunandan Sengupta from IME department IIT Kanpur.

So, if you remember you in the last class we did not cover much of the slides, but they

were lot of discussions which you are basically given and hope it is clear to all of you.

So, we were discussing in the multiple linear regression and did mention in very few

words why multiple linear regression means the linear part of the betas and not the non-

linear part of the betas.

Because we are going to partially differentiate the sum of the square of the errors with

respect  to the unknown parameters with the betas,  put them to 0,  find out using the

normalized linear equations, find out the betas, use this betas to estimate the values of y

for the nth plus, nth plus 2, nth plus 3, nth plus 4 reading, then find out the difference of

the using those errors; sorry using those errors, errors means the difference between the y

actual value and the predictive value and where using the values of beta hats; whatever

there is beta naught, beta 1 beta 2 till beta k.

So, those hats we utilize to predict the values of a y which have the y hat values find out

the difference between the actual y and the y hats, predicted values of y hats; find out the

errors, sum of the errors. In the long run should be 0 because the expected value of the

errors is 0, the variance should be 1 or sigma square as the case may be and then we

proceed. 

And then we find found out and we did discuss that how we can find out the betas using

the simple concept of matrix notation? How we can find out the sum of the squares?

How we can find out the sigma square? And at the fag end of the class of the 36th lecture

I did not mention that de concept of degrees of freedom; that means, you are losing set of



information’s.  So,  if  there  are  2  betas  you  will  you  will  basically  use  those  set  of

observations to find out beta naught, beta 1. If you have 3 betas you will basically use

them for 3 times to find out beta naught, beta 1, beta 2.

So, hence you are losing the degrees of freedom. Hence the sum of the square whatever

the formulas which you use main part of the discussion was basically you are going to

divide by n minus p; p was basically k plus 1, where k plus 1 is the number of betas you

are going to estimate. So, you are losing information’s. Hence the degrees of freedom

would be n minus p or n minus in the bracket k plus 1 and n is the set of observations. 

(Refer Slide Time: 03:00)

The  method  of  the  least  squares  produces  an  unbiased  estimator.  I  did  mention  the

unbiased estimate in the 36th lecture. So, produce an unbiased estimate of the parameter

beta in the linear regressions. So, what we mean by unbiased estimation is the expected

values of the beta hats in the long run should be exactly equal to the values of betas

which is the example 2, very simple examples which I gave was keep tossing a coin;

number of heads for each such set of tosses which you have.

If you have say for example, 200 tosses find out the and the chances of heads in the first

200, then chances of head on the second 200, third 200 so and so forth, add them up

divide the number of 200 such tosses you have done, find out the average of the average.

It should be exactly be equal to 0.5. So, each actually means the unbiasedness. 



So, by unbiasedness we mean that the expected value beta hat should be equal to beta.

Now the variance property of beta is expressed in the covariance matrix. So, we if you

basically have the so, betas are what? In the in the vector notation the first I would beta

naught, beta 1, beta 2 till the last term is beta k. So obviously, they would be covariance

between them. So, if you want to find the covariances and use simple algebra matrix

notation,  the  covariance  structure  would  be  like  this,  your  sigma  square  which  you

already found out now here the term which we have.

So, if you have what was basically explain. So, if you know comes let us come to X

basically X was n cross k plus 1 and X prime was k plus 1 cross n. So, X prime cross X

if you multiply them you will basically have k plus 1 cross k plus 1, transpose of inverse

of that will also be k plus 1 into k plus 1. So, when you find multiply sigma square sigma

square is a scalar. So obviously, the actual matrix of the covariance of beta is basically

matrix  of k plus 1 k plus 1.  So,  of which would be right  because as we have been

discussing.

So, what we have the covariance of betas, the primary or the or the principal diagonal

would basically the covariance of beta naught with beta naught, itself which is the first

element  here.  The  second  element  cross  along  the  principal  diagonal  would  be  the

covariance of beta 1 with respect to beta 1; which is basically the variance of beta 1. The

third element along the principal diagonal would be the covariance of beta 2 with respect

to beta 2; which is the variance of beta 2 and the last element which come along the

along the principal diagonal which is the k plus 1 comma k plus 1 cell number would be

the covariance of kth beta with respect to the of itself which is the variance of beta k and

off the diagonal element with the covariance’s.

So, the so the element 1 comma 2 and 2 comma 1 would be mirror image would to

would with which would be the covariance of beta naught with respect to beta 1 in the

element 1 comma 2 and in the element 2 comma one it would basically the could be the

covariance of beta 1 with respect to beta naught, so obviously, there are mirror image So,

this will be a give us a covariance’s.

So, if it sigma square in the equations as we have just for discussed that in the end of the

35th  lecture  is  replaced with  the estimated  of  values  of  sigma square,  we obtain  an

estimate of the covariance matrix of beta naught, beta hat. The square root of the mean



diagonal elements of the matrix, as I just mentioned few seconds back, it is the standard

errors of the model parameters or standard errors which basically; standard error is the

word which we are using first time but it basically means the standard deviation of the

sample.

So,  when  we  are  talking  about  the  standard  deviation  we  are  talking  about  the

population, when we are talking about the standard error which basically the standard

deviation of the sample and we are talking of the variances; it will basically the variance

of the population and we are talking about the variance with the word sample variance it

basically would be the corresponding to the sample. So, the principal diagonal if is the

covariance variance matrix and they you have found the square root. So, the principal

diagonals with the standard errors of beta naught, beta 1, beta 2 till the last element and

off the diagonal element are would basically with covariance’s of the beta i and beta j;

where i and j basically where changed from 0 to k. 

(Refer Slide Time: 07:44)

So, let us consider the example, 16 observations on the viscosity of the polymer. So,

what  is  the y value?  Is  the viscosity  of  the polymer which you want  to  estimate  of

focused and 2 process variables are being utilized which is x1 is the temperature and x2

is the feed rate of the catalyst. So, these are the parameters based on which we will try to

find out the viscosity of the polymer. The equation which we want to basically estimate,

is the multiple linear regression of the form y is equal to beta naught plus beta 1 x1 plus



beta 2 x2 plus epsilon; where why I am again repeating is the viscosity of the polymer;

x1 is basically the reaction temperature and x2 is the feed rate of the catalyst.

So, the observations are given 1 to 16, the temperatures are given which is x1 in degree

centigrade from starting from 80 to 87. The catalyst feed which is given in the rates of

pound per hour is from 8 to 12. So, I am just reading the first value and the and the last

value. So, there are 16 readings and the viscosity values which is the y values are given

from values from 2256 to 2328. So, this is the viscosity data for the example and the

viscosity is given in stocks. So, this is the in centistokes; which is stokes into 10 to the

power minus 3 and when we have this so the matrix are, if you remember the metric x

because there is beta naught.

(Refer Slide Time: 09:16)

So,  the  first  column would be the  one ones.  So,  how many ones  they would be  20

observations.  So,  on  and  the  observations  on  the  second  column  would  be  based

basically corresponding to x1, observation in third column would be corresponding to the

x2 and the y’s are the centre stoke values of the viscosity starting from as I mentioned

2256 is the first value which is y1 till y20 which is 2328. So, once we have that we can

find out very simply in the x matrix; then you can find out the x transpose matrix because

it transpose would be rows would be columns, columns would be rows. Once we find

then so, x cross x matrix is given and then we find out the x so, the if you check it, the

size is 3 cross 3.



Why 3 cross 3? Because beta naught, beta 1, beta 2 and x transpose into y the value is

given. So, again the size would be 3 cross 1 as we have been mentioning. So, once you

find it, then put them in this equation. What was the equation? Equation was basically x

into x prime x sorry x prime into x that multiplied find its transpose multiplied by x

prime multiplied by y. In the sequence you will find out the 3 cross one values which is

corresponding to beta hat.

So, that beta hat comes out to be this; which means beta naught is equal to I will not read

the decimals. It would be 1566 is the value of beta naught, 7.6 let me bring the decimal

values for beta 1. So, it would be 7.6 for beta 1; which means that for the change of the

temperature the rate of change of the viscosity for that that polymer, in centistokes would

be of the unit of 7.6. So, one unit change in the degree centigrade temperature would

increase or decrease the value of the viscosity level by 7.6. Similarly, if you have the

polymer a catalyst values, so there the this values are given which is basically beta 2

would be of d of a value of plus 8.5.

(Refer Slide Time: 11:47)

So, the least square fit with the regression coefficients as given here; would be y hat.

Now this is y hat remember that it is not y actual value and also remember that the error

terms would not come now until unless you find out the difference between y and y hat.

So, we are need to find out the values of the predicted values. Why predicted values

because we using the beta hat values. So, beta naught value which you have already



found  out  is  1566.08.  I  am just  reading  till  the  second  place  of  decimal,  beta  1  is

basically beta 1 hat is basically the value of 7.62; beta 2 hat is basically values of 8.58.

So, beta naught multiplied by x1. So, what is x1 you will try to find out? It will be the

21st reading. So, beta naught plus beta 1 beta naught hat plus beta 1 hat multiplied by x1

which is the 21st value, then plus beta 2 hat multiplied by x2 which is the 21st value; that

will give me the y hat value of the 21st value. So, y actually for the 21st value minus the

y hat for the 21st value would give me the error for the 21st value.

Similarly, when I multiply beta naught plus beta 1 hat plus x1 for the 22nd value plus

beta 2 hat into x2 for the 22nd value that will give me the y hat for the 22nd value. So, y

actually for the 22nd value minus y hat for the 22nd value would give me the error for

the 22nd value. If I continue doing that I will find out the errors. If I find out the sum of

the errors,  it  should technically  be 0 because as the assumption we can find out the

errors, the variance is a errors and do all the calculations as needed. So, the first three

columns in the given the table represents the actual observations y y i’s. So, predicted or

fitted values of y hats are given and the residuals are also given; residuals mean the

errors.

Now, if you plot the this errors. So, the normally plot of the residuals can be done. So

obviously, they should be normal because the reason is that we have assume the x is are

normal y is a normal. So, if there are normal the error term would also have a normal

distribution with the 0 mean and a standard deviation which a fixed. Lots the residuals

versus the predicted values of y hats and versus the 2 variables x1 and x2 are shown

which is going to come to that. Just as in a design experiments residuals plotting is an

integral part of the regression model building.

These plots indicate that the variance of the observed viscosity tends to increase with the

magnitude of the viscosity and figures later on will suggests that the variability in the

viscosity is also increases on the temperature increases. So, what I have just discussed I

am going to now show it in a table or the other graph plot.



(Refer Slide Time: 14:37)

Ok my mistake if they were 16 readings, my mistake I just mention that 20 values. So,

observations are basically 16 in number. These are the y values which have said. So,

basically they start from 2256 to 2328. The predicted values we have found out. So, the

first predicted value is 2244. 5, then the second values it 2352.1, the last value is 2332.1,

the error residuals ah errors are found out.

So, technically when I mean that if it sum up the errors it should be should be 0. Then I

find out the students is residuals if I find out, then I find out the R values and find out the

degrees of freedom and I can do the calculations accordingly. So, the normality plot of

the residuals. So, normality plot would be let me mention it I think I have mentioned it,

but I will just repeat it. 

So, what you do is that, this will take about 5 minutes. So, let me discuss. So, consider I

am of the discussion and I am just stepping out of the discussion and coming out to how

we do the q q plots of the quantile-quantile plots. Consider you have a distribution and

for the time being consider it is normal distribution which we know. What we know is

basically is mean and the and the variances and we know all the readings, so for the

normal distribution and that is basically from a population; that means, there in financial

of solutions, that is kept on one side. 

On other  side you have  a  unknown distribution  which  you want  to  fit  and find  out

whether is it actually equal to the normal distribution. So, consider that distribution is get



the observations given that is kept on the other side on the right hand I consider and the

normal distribution a take I long them from the least to the highest and plotted along the

x axis.  So,  these  are  all  marked  on the  x  axis’s theoretically.  Now I  take  the  other

distribution unknown distribution which is on the right hand side, rank them from the

least to the highest. One when I mean the rank them, when I rank them I also have the

probabilities obviously. Now what I to do is that I find out the quantile values. So, 10

percent value, 20 percent value, 30 percent value so and so forth.

Now, also an I basically plot them along the y axis. Now draw a 45 degrees line in the

graph. Now if the normal distribution quantile, so each step I am going to take for the

normal  distribution,  if  the  same  properties  being  covered  in  the  in  the  unknown

distribution also; so obviously, those one to one correspondence would basically mark

the plots along the 45 degrees line theoretically; which means the distribution based on

which I am trying to plot is quantile-quantile plot and trying to compare that unknown

distribution with the normal distribution as they match. Hence we can say the unknown

distribution is also normal distribution. 

So that that case, now in the case if the values are above this 45 degrees line or below

this 45 degrees line would give me the idea, whether this is cued on to the left or the

right  with  respect  to  the  normal  distribution.  So,  this  known distribution  or  normal

distribution which I said that we should be kept on the left can be in place of normal

distribution, can be exponential distribution. So, we can compare a known exponential

distribution  with  an  unknown  distribution  and  if  it  matches,  then  we  can  say  the

unknown distribution is normal. So, they can be done we can do the q q plots or the

quantile-quantile  plot  for  the  exponential  distribution,  the  gamma  distribution,  the

Poisson distribution and so and so forth.

So, in this case we assume and rightly so, that the residuals have a normal distribution.

So, if you plot them this is a 45 degrees line which we are talking about. So, this is the

residuals and this is the normality plot. So, this can be done on the on the x axis and the y

axis whatever. I did mentioned we do it on the x axis, but it can be done on the y axis and

the residuals plots are there. So, if we find out this point which are there they are almost

falling; obviously, they are not exact. They are along the 45 degrees line. So, we can

safely assume that the assumptions and normality wholes for excess as well as for the

errors. 



Now, if you plot the residual versus the predicted viscosity, so obviously that will give

me the errors. Now why I am plotting that, because if you remember I have said sum of

the error should be 0 in the long run. Because as the expected value of the errors. So,

here I have the predictor viscosity in centistokes predicted y hat and this is the residuals.

So, basically I have the residuals being plotted. So, this is plus minus plus minus, if I add

up the sum of the errors.

Obviously, they in the long run should be 0 because the expected values 0. These are the

way of trying to  basically  double check the overall  concept  which I  am doing. Two

important things which I did mention time and again; the expected value of the error

should be 0, not may not be exactly 0, but it should be as close as possible to 0. So, if I

find out the error terms of this plotted would be almost equal to 0 value, where would the

0 value would be somewhere here. So, this is what it should be and the error should be

basically normal distributed. So, if I basically do the q q plot it should be along the 45

degrees line. 

(Refer Slide Time: 20:19)

Now, I will do the plot of the residual versus x1; which is the temperature. Then I do the

plot of the residual with respect to feed rate; which is pound per hour. So, here also you

find out. So, I this is the average value which I am plotting. These are the deviations. So,

in the long run should be 0 as it is, it should be also 0.



So, this is with respect to x1, this is with respect to x2 and you can do it for y hat and so

on so fort. I am plotting the errors on the y axis y axis, in the x axis I am taking the

predicted values of y once the x1 values, once the x2 values and so on so forth. So, these

are basically double checking; the assumptions are which are expected value of the errors

and the concept of normality plot.

(Refer Slide Time: 21:23)

Now it is basically the Regression analysis of 2 to the power 3 Factorial Design. So,

there  are  3 factors  of  the  level  each  being of  level  2  plus  minus  0112 whatever. A

chemically engineering investigating the yields of a process. Three process variables are

of interest. That is why it is 2 to the power 3 those, that 3 basically means x1, x2, x3;

which are temperature, pressure and catalyst concentration. 

Each variable can run at a high and a low value. That means what we say low and high 0,

1, 1, 2 whatever. So, if it was basically 3 to the power 3; so that means, 3 catalyst values

at 3 different levels. Each variable can be run at low and high level as I mentioned and

the engineer decides to run a 2 to the power 3 design with 4 center points.

The design and the resulting yields are shown in the figure 10.65 which are the variables

and the values; where you have shown both the natural levels of the design factor and the

plus 1 minus 1 coded variable notation, normally implied to root as in the 2 to the power

k; factorial fractional design concepts. So, the runs are given, the temperature are given.

So, temperature is basically the one of the variables. So, if I go to the so, the pressure is



given. So, the pressure in pound to per squares inch, if I go to the catalyst concentration

catalyst concentration is given.

So, now this variables are coded. So, the codings are done as so, plus minus of 0 1, 0 1, 0

2, 0 2 and then 01 and 10. So, the variables are given. So, this is at a low lower level x1,

low level x2, low level x3. So, this is the first one. Let me use a black color. So, it will be

easier for me to; so, this one is basically are at low level, this one is that first one is high

level, the second two are in low levels and so and so, forth and then we have the yields.

So, yields is basically the y variable we are trying to find out.

So, the temperature is the average value is basically given; the pressure average value is

given, the concentration is given and we basically draw the relationship between the 3

variables in a 3 dimensional figures. So, where along the x y x axis, y axis and z axis;

you will basically plot x1, x2 and x3. So, now the question is of the form y is equal to

beta naught plus beta 1 x1 plus beta 2 x2 plus beta 3 x3 because there are 3 variables

corresponding to x1, x2, x3 and beta naught for the case where you want to find out that

the concept that if you remember y is equal to m x plus c. So, that concept where trying

to fit plus epsilon.

(Refer Slide Time: 24:57)

So, now, if you are, if I find out the size of x so; obviously, the first column would be

corresponding to the 1; all the ones which is corresponding to beta naught. The second

column would basically be corresponding to all axis x1; the third column with respect to



x2; fourth column with respect to x3 and y values we are already noted down. So, if you

basically have x which would be n cross 4; n is the number of reading.

So, that can change and obviously, n has to be more than 4. Why 4 because beta 1, beta

naught, beta 1, beta 2 and beta 3. Similarly y would be the size of n cross 1. So, the 2 to

the power 3 is  an orthogonal  design and even with the adders central  runs it  is  still

orthogonal. Therefore, the 2 to the power 3 can be solved using the simple concept of

regression model. We find out x transpose x which is basically of size 4 cross 4.

Then we find out x prime y which will be the size of 4 cross 1 and once we find out the

values  of  beta  naught's  are  found;  beta  hats  are  found  out.  Because  the  design  is

orthogonal,  the x transfer  x  matrix  is  a  diagonal  matrix.  The require  inverse  is  also

diagonal and the vector of lead squares estimates the regression coefficient and we find

out the regression coefficient as beta naught as 51.00, beta 2 is basically 5.62. I am only

reading till the second place of decimal; beta 2 is basically 10 of these are hat sorry my

mistake.

So, be I will again repeat; beta naught is basically 51.00, beta 2 hat is basically 5.62, beta

3  hat  is  10.62  and  beta  3  is  basically  be  hat  is  basically  1.12.  So,  this  value  and

obviously, the errors would not be there. We fit find out the nth plus 1 reading of y; that

is y hat, suffix n plus 1, find out the errors, which is errors have n plus 1; find out the

errors for n plus 2; n plus 3 so on and so forth add them up, check with there is equal to

0.

And you can do the double checking on the normality plot, the q q plot, the residual

plots, check out the whether the q q plots sum matching with the 45 degrees line, check

whether the average of the errors are 0 because you are going to plot out the residuals

with respect to ones with respect x1, ones and with respect to x2, ones with respect to x3

and then you are trying to plot the q q plots of the values of the predicted values or y hat

values  or  the  error  terms  with  respect  to  the  values  of  a  of  a  theoretical  normal

distribution.



(Refer Slide Time: 27:28)

As  we  are  made  use  of  on  many  occasions,  the  regression  coefficients  are  closely

connected to the effect estimates that would basically be closely connected to the effect

estimates that would be obtained from the user analysis of 2 to the power 3 analysis

design. For example, the effect of temperature is to refer and we find out the temperature

values; it can be either plus or minus because that was on the variables. So, for all these

cases we can find the difference of the temperatures. So, notice the regression coefficient

of x1 which is respect to the temperature is given by 5.625. So, because you are you have

made  them orthogonal.  That  is  the  regression  coefficient  exactly  1  half  the  residual

effect.

This will always be 2 for the 2 to the power k design because there are 2 levels of for any

factors,  there  2  levels.  As  noted  above we use  this  result  to  produce  the  regression

models and fit in the values and residuals. This example demonstrates the effect estimate

for the 2 to the power k design on the least square values. So, from that we can find out

the errors of respect with respect to be the variance of beta naught hat, beta 1 hat, beta 2

hat, beta 3 hat and they come out to be as given the values. So, the beta naught hat have

seen the error is sigma square by 12. So obviously, sigma square is the actual variable. If

you estimated  we have to  replace  by estimated value.  While  the beta  1 hat estimate

variance, beta 2 hat variance, beta 3 hat variance all come out to be sigma square by 8.



Now, this variances when you find out the square root; this is the standard error if you

remember  I  did  mention  that.  The  relative  variance  can  be  found  out  and  we  can

basically solve it and basically have a nice idea how the regression models can be utilize

for this type of ANOVA models. Now obviously, we will again at the end of the day you

will have basically the number of readings, the sum of the squares, degrees of freedom,

the  f  values  and  whether  they  are  matching  with  the  p  p  to  what  level  degrees  of

freedom, what levels of confidential you are able to predict.

So, that the ultimate table is basically the ANOVA table, that will be can utilize here also.

So, with this I will end the 37th lecture and continue the discussion of the last 3 lectures

in  with  respect  to  the  more  further  models  of  regression  ANOVA models  and  few

remaining topics which are there in this TQM 2 course.

Thank you very much and have a nice day.


