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Welcome back my dear friends. Very Good Morning, Good Afternoon and Good Evening

to all of you and this is the TQM II class under the NPTEL MOOC series and I am

Raghunandan Sengupta from the IME department IIT Kanpur. So, if you remember we

are in the last week; that means, we are going to start the last 5 lectures we will have in

the sequence and if you remember in the 35th lecture because we are still left with 36th,

37th, 38th, 39th, 40.

So, in the 35th lecture fag end we are discussing about multiple linear regression and

what is the concept of multiple linear regression; mainly being the parameters should be

linear because that is what you want to estimate. And using that concept of estimation

you want to basically put them in the future forecasting or prediction models and then try

to find out how good or bad are models are.

If you remember the simple linear regression was y is equal to alpha plus beta 1 x 1 plus

epsilon; where alpha was basically, intuitive feel you can have if you consider the very

simple equation we learned in class ten; y is equal to m x plus c. So, alpha and c were are

similar in nature. So, we basically where it cuts the y axis and the beta 1 is basically the

rate of change of y with respect to x 1. That is basically the marginal rate. So, similar is

that the concept of y is equal to m x plus c that m value and this epsilon is basically the

error which you have.

So, that the white noise. Then we I will come to the later parts of how we do that and

how we find out the betas and their beta hats, hats are the estimated values. Then we

have the multiple linear regression model, where rather than having only one x you have

multiple x. So, it is the equation is equal to given as y is equal to beta naught plus or

alpha whatever is said. I am considering beta naught for ease of understanding. So, you

basically have beta naught plus beta 1 x one plus beta 2 x 2 plus beta 3 x 3 plus dot till

beta k x k, where is the number of variables which are used to predict y plus epsilon

again the white noise.



Now, in this case the intuitive feel of beta 1, beta 2, beta 3, till beta k with actually means

they are the marginal rates of increase of x 1, x 2, x 3, till  x k considering the other

variables are constant. In the sense that when I am considering beta 1, we will consider

beta 2, x 2 to x k as constant, they are not changing. Hence we try to find out the partial

derivative or the rate of change of y with respect to x 1.

Then  when we basically  go  to  x  2,  then  in  that  case  beta  2  is  basically  the  partial

derivative or the rate of change of x 2 of y with respect x 2 keeping x 1, x 3, x 4 till x k

as constant  and then we do the modeling part.  Now when you are considering these

model, both the simple linear regression and the multiple linear regression, we always

consider  few  very  simple  assumptions,  which  intuitive  which  may  not  be  absolute

practically possible, but they give you a very good feel of about the model. So, they were

basically the x 1 to x k or even if there is only one x that is x 1. They are all normally

distributed  and hence  any convex combination  or  normal  distribution  we know it  is

normal; hence y would also be normal point 1.

Point number 2 will consider that the errors and independent of each other; that means,

the errors do not change or do not affect the errors of the next time period or one period

of t period, errors is not effected by t minus 1 period. Number 2 the covariance’s between

the,  which means basically  the covariance’s between the  errors  is  0,  variance  of the

errors  is  fixed;  is  sigma  square  or  one  depending  the  simplicity  on  the  model  will

consider the errors as the main value of 0. Will also considered the covariance’s existing

between the error and the x values x 1 or x 2; where x 3 till  x k are all 0 will  also

considered.

The relationship of the covariance is existing between the x is are also nonexistence; that

means, they are independent. So, if they are independent it will, if you basically use the

concept of matrix we will comes come to the con concept that rank of a matrix. So, the

rank of the matrix depending on, there are n number of observations; that means, y 1, y

2, y 3, y 4 till y n. Hence corresponding to x 1 there were also be n number observations,

x 2 also there would be n number observations,  till  x k also there will  be n number

observations. And obviously, there will be epsilon 1 till epsilon n. And when we basically

denote it has a matrix multiplication, so like y is a matrix, capital X is a matrix, cap beta

is a matrix, epsilon is a matrix. We are a trying to basically denote is an a matrix fast

multiplication, this multiple linear regression. Will consider that the rank of x as k. So, if



it is not k it will mean that one or more than one of the columns or the rows of x is can be

expressed  as  a  convex  combination  of  the  other  rows;  which  means  then  it  will  be

difficult to find out the exact values or the inwards would not exist and hence trying to

find out the values of betas, which are the estimates based on which you are going to

predict the future values would not be possible.

Now, whenever you are considering this we are considering that you want to basically

minimize that error with respect to the unknowns; unknowns being beta naught, beta 1,

beta 2 till beta k. Now the question is that how we do that? I have already discussed, but

I will still repeat it. It means actually that you want to basically minimize the deviations

and the deviations can be of many times. It can be minimum absolute deviations, it can

be basically square of the deviations, it  can be cube of the deviations,  it can be only

mode of the deviations, it can be some convex combination, the waited deviations.

But generally we consider is that we consider the square of the divisions, sum them up,

find out the errors, totals sum of the square of the errors and then differentiate partial

differentiate, remember that. Because the partial differentiation means that we can going

to consider other factors are constant. What are the other factors; that means, when we

cons we can be considered that the partial derivation of beta of the of the sum of the

square of the errors with respect to beta 1 we consider beta 2 to beta k as constant.

When we partially different differ differentiate the sum of the square of the error with

respect  to  beta  naught,  then  we  consider  beta  1  to  be  k  the  as  constant.  When  we

basically considered partial derivative of the sum of squares of the errors with respective

beta i, then will consider beta naught, beta 1 till beta i minus 1, as constant plus beta i

plus 1 till beta k are also constant; that means, that is why when I mentioned that few

minutes back that we that What is beta naught? What is beta 1? What is beta 2? They are

the partial derivative of the rate of change of y with respect to those access. So, that is

what I mean once we say that we are trying to basically partially differentiate that. So,

with this will start this 36th lecture. 



(Refer Slide Time: 07:55)

So, now we want to estimate the parameters we differentiate as I mentioned few seconds

back with differentiate with respect to the betas. Now, if you basically do that you will

find out, another thing which I have completely forgot that I did not mention as we are

discussing introduction for the past 5 minutes that it is the linear equation; In the sense

that it is not a square or cube with of with respect to the values of betas.

So, you can have for example, a multiple linear regression of this form; say for example,

we can have y is equal to beta naught plus beta 1 x 1 plus beta 2 x 2 plus beta 1 2 x 1 x 2.

So, in that case you have 3-4 parameters which you need to estimate which are beta

naught, beta 1, beta 2, beta 12; suffix the 1, 2, 3, 4 whatever I am mentioning are the

suffixes. And here in place of x 1, x 2 which you have been multiplied we can considered

a new variable as x c and a consider beta 12 as a new estimate we want to find out which

is basically beta 3.

But,  so  this  is  allowed,  but  what  is  not  allowed  is  like  this  equation  which  would

basically take us in the realm of non-linear regression, which we are not going to discuss

here. It will be y is equal to beta naught plus beta 1 x one plus beta 2 x 2 plus beta 3 cube

x 3. So, in that case if when you try to find out and differentiate the sum the square of the

error with respect to beta 3, it would not give us a term by which you are able to find out

the  values  of  beta  3.  So,  this  type  of  non-linear  regressions  are  not  allowed  to  be



discussed here; obviously, there are the different ways you can tackle those problem, but

we are going to avoid that.

So, to estimate the parameters if you differentiate with respect to the beta so, we have are

the set of equation. So, if there are beta naught to beta k, you will basically have such k

plus 1 betas, you will have basically k plus 1 equation; partial derivatives put to 0 based

on that you can find out the values of beta naught hat, beta 1 hat, beta 2 hat till beta k hat.

So, this is what we have. So, this is the background which I gave if you differentiate. So,

the equation so you have basically sum of the y values; that is basically will be equal to.

So obviously, when you are adding of the sum, it will be sum of all the values of x 1 to x

k. So, the left hand side so, this have been just written in the reverse direction.

So, the first variable on the right hand side of the equation was basically beta naught. So,

how many times you have adding beta naught? If you add up all the n values, it will be

adding n number of beta naught. That is why it is n. So, when I go to summation of x 1;

so x 1 would basically x11, x12, x13 till x1k x1n sorry. So, the first one basically denotes

the variable number and the second suffixes basically denotes the reading number.

Similarly for the x, it will be x 2 21, x22, x33 till x2n, for the third one it x 31 till x 3n,

for the last one it will xk1 to xkn. So, this is what they are denoted. This is for the first

one. I am just putting a tick mark. So, you basically have a note. This is for the second

one, similarly you have 3rd, 4, 3, 6 till the kth one. Now we just note down I am just

highlight use a different ink color. So, just note down these hats. So, these hats are the

estimated value based on which you are trying to minimize the sum of the squares of the

errors. 

So, this beta 1 hat is basically the estimated values of beta 1 and obviously in the long

run, as I keep repeating in many of the examples. If you toss a coin,00 times say for

example, you will get for head 45 times, then you again toss it00 times you get heads 55

number of times, if you keep repeating it then find out the averages of this head. So, in

the first case it will be 45 by 100, second case it will be 55 by 100, third case it will be

anything whatever value. And if we keep finding on the averages of the averages in the

long run for an unbiased coin it will be 0.5.



Similarly, if you do roll the die and the actual probability of getting a 1, 2, 3, 4, 5, 6 in an

unbiased die, it will basically be 1-6. If you keep running it, say for example, 200 times,

you get some number of once. Again you roll it for two 200 number times of the second

set  you  will  get  some  other  number  of  one’s.  If  you  basically  find  out  the  radio

frequencies of the day or the chances of the number of ones in the first role of 200,

second role of 200, third role of 200 and basically add them up and find out the averages

it, in the long run it should come out to be 1 by 6.

So, actually what we mean is that there, there are they should be unbiased; in the sense

that the expected value of the beta j is j is equal to 1 to k should be exactly equal to the,

so expected value of the hats sorry. So, they should be exactly equal to the values of beta

j. Similarly, you have beta 2 hat and similarly for the last one will be beta k hat. So, the

expected value what I mean is the expected value of beta no let me this quite difficult to

use it. I will use the not a highlighter, but the pen. So, you have basically expected value

of beta hat j should be equal to beta j, where for all j is equal to 1 till k. So, you want

basically have this and this is what would be true for beta naught here, beta 1 here, beta 2

here till beta k. So, all this should be hold. 

So,  when  we  basically  the  multiply  it  with  now  when  we  differentiate  it  and  then

basically do the same thing for beta 1, then beta 2 till beta k and we have the k equations.

Because the first one is the total number of equations are k plus 1; for the first one for

beta naught, second for beta 1, third for beta 2 and the k plus 1 for the k plus 1 for the kth

one beta k. 

So, the first equation which where we have highlighted is basically with respect to beta

naught. Similarly if you have the other equations; obviously, you will see that you will be

multiplying, in the first case as with x11 multiplied by y1 one y1, then it will be x12

multiplied by y2, then x13 multiplied by y3; multiplied them sum them up and then

when you basically put it in the equations you will have the equations as given which I

will denote as say for example 2. So; obviously, this is the 1. 

Then we do it  for the third equations.  So,  in third equations  you will  basically  have

which is not return here. I am just reading, it will be beta naught hat summation of I is

equal to 1 to n because there are n number of readings. It will be x11 and then it will be a

corresponding  to  that  it  will  be  x12  then  beta12,  then  you  will  basically  have  a



summations i i is equal to 1 to n and correspondingly we will basically have the second

term, third term. So, it will be x11 square, then the third term, fourth term till the last

term.

So, will basically have the third equation and the last equation if we note down, it will be

exactly the same just replace; in the first case x 1was being multiplied for all terms. In

the second equation x 2 were basically multiply for all the terms, in the last equation it

will be x k be multiplied for all the terms as it is. So, it will be x 1k multiplied by beta

naught hat, then x 1k into x1 i1; so i i11, 12, 13, 14 so on and so forth. So, the third the

third term would basically be beta naught hat and x ik into x i2.

So,  it  will  be basically  if  we sum them up, it  will  be x the kth variables  first  term

multiplied  by  the  second  variables  first  term.  Then  the  kth  variables  second  term

multiplied by second term of the second variable and it will go on like this. So, you will

basically have the k plus 1th equation.

So  based  on  that,  you  can  basically  find  out  the  beta  naught  to  the  beta  ks;  these

equations are called the least square normal equations. Why least square because, you are

trying  to  minimize  the  sum  of  the  squares  and  normal  equation  because  you  have

normalize them in such a way that, you want to find out the beta naught hat till beta k

hat. Note that there are yes, there are p is equal to k plus 1 equations as I have been

mentioning,  one  for  each of  the  unknown regression,  regression coefficient.  So how

many regression coefficients they are? Beta 1 to beta k, for all the axis and the first term

being beta naught. 

The solutions to the normal equations will be the least squares estimator of the regression

coefficients as I mentioned; beta naught hat, beta 1 hat till beta k hat, such that when you

find out the nth plus 1 value of y which is the estimated value of y which will be given

by y hat suffix n plus 1 and you already have the actual value of y n. So, the difference

would be the error. So, you write down the error for the nth plus 1, then again you use

this beta naught hats; remember the hats are being used. Then you find out the y hat for

the nth plus 2, write it down, find out the difference between y n plus 2 and y hat n plus 2

which is  the errors  n  plus  2.  Keep doing it  for  the third time;  that  means,  n  plus  3

reading. Then you do it for the n plus 4 reading, n plus 5 reading so and so forth.



Say for example, you collect 100 such errors. Now technically if errors means n plus 1

error, n plus 2 error, n plus 3 error till the n plus 100 error. Now, if you basically go back

to the assumptions which I did mention time and again, then the expected value of the

errors in the long run should be 0; which means the if you add up the sum of this error

for the for the nth plus 1 term, nth plus 2 term till the nth plus 100 term, then it should

technically be 0. 

And if you find out the variance of that you should also be whatever you assumed is

before starting of the solution, it  can be either 1 of sigma square. But obviously, this

sigma square is not changing with respect to time which I did mention as an important

assumption in multiple linear regression.

(Refer Slide Time: 19:22)

So, the equation now if you remember I did mentioned that it can be written as a matrix

1. I did not want to write it down there because it will be coming up soon as I thought

and here it is. So, the equation actually can be written as y is equal to. So, these are all

bolds. So, I am not as shown in the slide I am not mentioning them. So, they are bolds

so,  y is  equal  to x into beta  plus epsilon.  So, what if  we want  to basically  find out

whether is  a matrix and whether matrix  multiplication concept  is  valid.  So, this  y is

basically of size n cross 1.

This epsilon I am I am just for the time being skipping x into beta. I will come back

within few seconds. Epsilon is of size n cross 1, so obviously, if you have n cross 1 on



the left hand side and n cross 1 on the right hand side also. So, this x into beta should

also be of the size n cross 1. Now in this case we already have beta as so I am basically

writing beta. It is of the size k plus 1 because there is k plus 1 terms; beta naught till beta

k cross 1. And the value of x, obviously would be n cross k plus 1. So, n in cross k plus 1

into k plus 1 cross 1; so obviously, this and this would vanish so; obviously, and in the

end you have n plus 1 for the terms x into beta also.

Now, let us see whether it matches. I have not seen in going to the details of the matrices

look like. So, here this y will let me use a different color to highlight. So, this y is n plus

1. Yes it is matching. So, let me put a tick mark with the concept which I am mentioned.

Let me go to the epsilon first and then come back to x beta. So, this value of epsilon is n

cross 1 it is matching well good. Now the value of beta which I mentioned was k plus 1

cross 1. Now, let me see what is there? It is matching.

Why? Because there is beta naught is a 0th one or the first one. Then you have 1, 2, 3, 4

till k. So obviously, be k plus 1. So, this is also matching and let me put mark here also

so, this is matching. And when I come to the x matrix, so obviously, I say that it will be n

cross k plus 1. So, let this find out how many such rows and columns are there. So, this is

the first row second row third row till n number rows how many columns. So, this is the

first one, this is the second one, third one so on and so if the k plus 1. So, this is also

matches here.

So, on our discussions are in line with our with our concept  which we are basically

discussing. In general y is n cross 1 vector observations as mentioned few minutes back;

n is n cross p. So, here remember p is the size k plus 1. So, n is a n x is a n cross p matrix

of the levels of the independent variables as it is rightly so. And in case by the way in

case is beta naught is not there, the first column which you have for x would vanish. So

obviously, in that case beta would be of size k cross 1 and x would be size of n cross k

because that that the first beta naught is not there.

So, now, continuing the reading. So, beta is a size of p cross 1 which is an k plus 1 cross

1 vectors of regression coefficients and epsilon is the error of size n cross 1 vectors of

random errors and all obviously, all the assumptions which have been discussing holds. 



(Refer Slide Time: 23:27)

Now, the least square estimates. Now what we do you mean by least square estimates?

We have differentiate the sum of the squares with respect to beta naught, put it to 0, then

differentiate the sum of squares with respect to beta 1 put it 0. So, we have basically k

plus 1 equations,  we have k plus 1 unknowns find them and once we find them the

values of beta naughts or beta 1, beta 2, beta 3; all in the hat values. Then because there

estimated  values  would  basically  give  us  the  best  estimates  of  the  beta  values  with

respect to the concept of trying to minimize the sum of squares. So, when we find it out

the actual matrix notation is like this. So, this is the matrix notation. So, how do you find

out the values of beta hat? Beta hat would be you basically multiply.

So, now remember what is the actual size of beta hat? If there is beta naught it is of size

k plus 1 cross 1. So, let are let why I mentioning that let me basically give the concept in

a in to deform. So, it will make sense to you. So, this is of size if beta naught is there, k

plus 1 cross 1. So, let is let us see with this balances on the left hand side; on the right

hand side. Now we have already considered the value of x. So, what was X size? X size

was n cross k plus 1 and y. So, so X transpose would be of size k plus 1 cross n. 

Now, let us go by one by one. For the first term which is X transpose into X. So, X

transpose into X would be of size k plus 1 cross n into n cross k plus 1. So obviously, n n

n is not there it will be of size k plus 1 cross k plus 1. So, at an inverse of that would also



be of size k plus 1 cross k plus 1. So, the first step is done now you have again going to

multiply with X transpose.

So, what is this term the size of X transpose is k k plus 1 cross n. So, k plus 1 cross k

plus 1 into k plus 1 cross n would basically be of size k plus 1 cross n. So, this is also

taken care. So, this is now k plus 1 cross n. Now what is y? y we know is basically of

size n plus 1. So, n cross 1, so obviously, it will be cross n cross 1. So obviously, in the

end you will have the output as k plus 1 cross 1.

Now, let us see where is balances left hand side? You have already said beta where I am

highlighting with my highlighter is size k plus 1 cross 1 and it basically matches this one.

So obviously, the dimensions are maintained and the way of we have we have multiplied

the concept of betas are right. To estimate the variance is consider the sum of squares of

the residuals as I mentioned that we find out y whatever the value of nth plus 1, nth plus

2,  nth  plus  3;  that  actual  value  of  y  minus  the  estimated  value  of  y. Find  out  the

difference. It can be positive-negative. 

Then square them up, sum of the errors. To estimate the variance we considered the sum

of  the  squares  of  the  residuals  as  mentioned  here.  This  is  the  actual  value,  this  is

estimated value; we square them up sum them up. So, this is a square term which is

basically a vector multiplied by transpose. So obviously, the size would be of dimension

1 cross 1. It can be shown that the sum of the square of the errors can be written as, as I

have been explained you can find out the sum of the square of the errors and you can

find out the sigma squares. Sigma squares would be sum the square or errors divided by

the degrees of freedom.

Now, degrees of freedom like to spend one minute here total number readings is n, so for

each trying to find out the beta naught, you do is 1 degrees of freedom. So, the total loss

of degrees of freedom would be p which is k plus 1 because you have you lose 1 degree

of freedom to find out beta naught, 1 degree of freedom basically to find out beta 1 so on

and so forth. So, the total loss would be k plus 1. So, hence it will be divided by n minus

in the bracket k plus 1 or n minus p as you have been denote it.

So, with this I will end the 36 lecture and try basically continue with the discussions on

the multiple linear regression in more details. And basically see that the discussions we

had till now how to find out the sum those squares divided by the degrees of freedom,



find out the f values, they can be also utilize in ANOVA table for the regression models

and you can pass very nice judgment that whether the variables we are considering or

whether they are actually  required to find out the overall  level  of fractional  factorial

models which are there for the design of experiments and the quality control part.

Thank you very much and have a nice day.


