Quality Control and Improvement with MINITAB Prof. Indrajit Mukherjee Shailesh J. Mehta School of Management Indian Institute of Technology, Bombay

Lecture - 37 Blocking in Factorial Design

Hello and welcome to session 37 on our course on Quality Control and Improvement with MINITAB, I am Professor Indrajit Mukherjee from Shailesh J Mehta School of management IIT, Bombay. So, the previous session what we have done is that we have seen 2 to the power 5 design like that. So, 5 factors are 2 levels.

Now, we will move ahead with the number of factors k number of factors, but number of levels is more than 2 there is let us assume that 3 level designs. So, 3 level 3^{*} and in this case we can assume that simple example let us say 3 square design we which we can consider over here.

(Refer Slide Time: 00:54)

Quality Control and Improv	vement using MINITAB
32 Full Factorial Design	
• Number of Factors :	2
• Number of Levels :	3
• Possible Runs :	$3^2 = 9$
• Min number of experiment to carry out :	(9) × Y = 36 .

So, one example we have already done into a analysis of variance that we will represent and how it is to be analyzed in MINITAB factorial design and how to create the design that is important to over here ok. So, this is a 3 square design we want to create the design in MINITAB, where 2 factors at 3 levels so minimum number of trial is will be equals to 9 that is written over here and if we want to replicate that one so that will be the multiplication over here. If we replicate it 4 times each of these designs, so then total number of trials will be 36 like that ok.

(Refer Slide Time: 01:18)

The results of an experiment involving			,	Tempera	nture(B)	,
aunching mechanism of a shoulder-	Material (A)	Low (-1)	Mediun	n (0)	High (+1)
ired ground-to-air missile are		130	155	34	40	20	70
resented in following table. Three	J _{1 (-1)}	74	180	80	75	82	58
he battery plates. The objective is to		150	188	136	122	25	70
esign a battery that is relatively	✓2 (o)	159	126	106	115	58	45
affected by the ambient	(-)	138	110	174	120	96	104
mperature. The output response	$\frac{\sqrt{3}}{3}(+1)$	168	160	150	139	82	60
1 hours. Three temperature levels e selected as controllable noise, and factorial experiment with four plicates is run. 20	2	Data Sou statistics & Sons	rce: Mc and pro	ontgomery obability f	I, D. C. (or engir	(2005). Aj neers. Joh	<i>pplied</i> In Wile

We will take one example that was previously discussed also and here also we will just show you how to create the design in how to create the factorial design when we have 3 k scenarios. When we have 3 k scenarios or k factors are 3 levels like that. So, here a material type is what are the factor let us say this is factor A over here and this is factor B over here and this is having 3 levels material type 1, 2 and 3 and this is having temperature range this is also 1, 2 and 3 like that.

So, 3 level design and 2 factors over here that is considered. One is material type one is temperature and the CTQ that response variable is considered is the effective life battery effective life over here so in hours like that. So, we want to see that how to analyze create the data sheet and how to analyze this data into MINITAB ok. We are interested in to AB and AB interaction.

So, over here so in this case and what should be the final conclusion based on the experimentation that we want to see ok. So, how do we create the design that is important 3 k design how we are creating in MINITAB.

(Refer Slide Time: 02:19)

Hie Edit Data Calc Stat Gri Edit Data Calc Stat Gri Besic I I II II II Repr ANO ADDE Cont Quat Refer	aph View Help A :Statistics ession VA rol Charts ity Tools bility/Survival	ssistant fx fx fx Fa Fa Re M	Additional Tools	ジ 点 当 、 日 、 日 、 日 、	Create Facto Define Casto Select Optim	ć 🔶 改 函 rial Design om Factorial D nal Design	eugn	Qu vY g	1							-	8 ×
Pred Mult Tanke Non Equi Pow	ictive Analytics ivariate Series Is parametrics valence Tests er and Sample Size	та , щ м , щ п	ıguchi lodify Design isplay Design		Pre-Process Analyze Fact Analyze Bina Analyze Vari Predict Factorul Pio Cube Piot	Responses for corial Design ny Response ability	Analyze V										
				8		L., ntour Plot., stimizer											
<u> </u>	C4 C5	0	6 (7	68	Contaur Pio Surface Piot Overlaid Coi Response Op	tu ntour Plotun ofimizerun C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	2
C1 C2 C3	C4 C5	C	6 C7	68	Contour Plo Surface Plot Overleid Con Response Op	tu ntour Plotun primizerun Ct0	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	Q
G Q G	64 (3	C	6 C7	C3	Contaur Ple Surface Plot Overleid Cor Response Op	tu, intour Plotun pfimizer C10	CII	C12	C13	C14	C15	C16	C17	C18	C19	C20	2
CI CZ C3	C4 C5	C	6 C7	C3	Contaur Pio Surface Piot Overlaid Co- Response Op	ntour Plotum primiterum Ctio	CII	C12	CI3	C14	C15	C16	C17	C18	C19	C20	2
C C C	C4 C5	C	6 C7	63	Contaur Pia Surface Piat Overleid Co- Response Oy C9	ta ntour Plota primiter	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	02
a a a	C4 C3	C	6 C7	C8	Contaur Pilo Surface Piot Overleid Con Response Op C9	ta ntour Plot printer C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	22
C1 C2 C3	C4 C5	Ci rksheet 3	6 C7	C3	Contaur Pilo Surface Plat Overlaid Con Response Of C9	ter ntour Ploten primizer	C11	C12	C13	C14	CIS	C16	C17	C18	C19	C20	2

So, I will open a blank excel blank MINITAB sheet over here and we will create the design. So, this is stat over here and design of experiments. So, what we will do is that factorial design create factorial design.

(Refer Slide Time: 02:30)

And in this case we cannot select 2 level factors over here, we have to select general full factorial over here number of factor is 2 there is no problem with that.

(Refer Slide Time: 02:39)

And in design what we have to do is that we have to mention the number of levels over here, so this can be changed I have made it 3 and this is also 3 over here. A, B factors so A can be we can mention this as material and the next one can be considered as temperature over here this is temperature ok.

So, a number of replicates if you see the experimental trial that is done over here. So, here you will find that there are 4 trials that is done for a specific combination. So, this is material type 1 and this is low temperature and I have 4 observations over here. So, this is 4 number of replicates 130, 155 74 and 180.

So, this is a 4 replicate design like that. So, what we can do is that we can just see this one and mentioned that number of replicate is there. We are not consider what blocking over here, so we will just ignore that one at present scenario so this is ok and then factors what we can do material type over here.

(Refer Slide Time: 03:32)

So, either I code this one as minus 1 0 plus 1 that is in coded terminology. If you are; if you are using the arbitrary symbols like minus 1 plus 1 what we have used earlier also and only thing we will mention whether it is take. So, this is categorical variable so we can mention material type and temperature was considered as low, medium and high like that. So, this is also categorical it has 3 levels.

So, either I keep what is the level that is mentioned 1, 2 and 3 and low medium high we can write over here we can also write minus 1 0. So, coded variable we can also mention like that. So, this is 3 levels but in this case this is categorical variable both are considered as categorical variables. So, I click OK and in the factors this is done.

(Refer Slide Time: 04:16)

And in options what we will do we will not randomize this one. So, we will not randomize the design. So, this we will click OK, so number of factors so everything is done.

(Refer Slide Time: 04:26)

So, design is created over here. So, you see standard order and run order is same because we have not randomized. So, 36 number of trials this is the summary of the design this is created. So, whenever this is created we can just put the CTQ values over here which is the battery life and then we can analyze this one. So, I have created I have shown you how to create the design, then what we will do is that with this data is already with me. So, unnecessary we are not creating another we will not write down the CTQ values over here.

(Refer Slide Time: 04:54)

So, we have the data set and this is the data set that we are having and we have entered all the 36 data points over here. So, now we have to only analyze. So, first combination is minus 1 minus 1 that is 130 that is the data set that you have seen is 130. So, this data set is recorded over here. So, this we want to analyze. So now I will go to stat I have created the design.

(Refer Slide Time: 05:17)

And this I will go to factorial design then go to analyze factorial design over here, then you mentioned which is the response variable this is mentioned over here.

(Refer Slide Time: 05:22)

Then in terms I want to see all up to interactions over here. So, I will mention 2 over here in 2 terms and so this will be OK.

(Refer Slide Time: 05:30)

And graph we will have Pareto plots to see this one which is effective which is not effective like that A, B or AB interactions like that. So, other things we will keep as default, so we are not changing anything we are not using stepwise regression; so we will click OK over here.

(Refer Slide Time: 05:42)

When we do that so A is 3 levels and this is the factor information analysis of variance table.

(Refer Slide Time: 05:47)

We can see so over here that will tell me that which is significant which is not also Pareto plot is there.

(Refer Slide Time: 05:56)

File	Home	Insert	Page Lay	out	Formulas	Data	Review	Vie	w ACR	XOBAT R	ormat 🕻	Tell me what y	ou want to	do						Sign in	₽, Sha
Paste	Cut Copy • Format P	ainter B	I <u>U</u> -	· ·	• A*	* =	= = » = = •	- 8	F Wrap Teo Merge 8	tt Center =	General	€ S	nditional Fr matting -	ormat as f Table - St vies	Cell Inse	et Delete F	iormat	AutoSum Fill - Clear -	Sort & Filter - Se	P nd & dect *	
licture	2 *	i x	v fe											,							
	4	8	c	D	ε	F	G		4	1 1 3	K	L	м	N	0	P	Q	R	s	т	
									Ca												
				0									0								
-				-																	
-				-	Ana	lysis (of Vari	ance	e				-								
													-								
					Sour	ce		DF	Adj SS	Adj MS	F-Value	P-Value									
					Mode	el		8	59416	7427.0	11.00	0.000									
				_	Line	ar		4	49802	12450.6	18.44	0.000									
-				-				2	10694	52/11 (7.01	0.002	-								
				9	^			4	10004	3341.3	7.91	0.002	9								
					В			2	39119	19559.4	28.97	0.000	:								
					2-W	ay Inte	ractions	; 4	9614	2403.4	3.56	0.019	6								
					A*1	в		4	9614	2403.4	3.56	0.019									
-				_	Errer			27	10001	675			-								
				-	Entor			21	10231	0/5.			-								
				-	lotal			35	77647				-								
				0-					-0-				-0								
1																					
																			1	6	
	-	_	-	_			_	_	_												1
-	5	sheet1	۲																-		6
de la	10																III			10	-

So, in excel we can just paste this one to enhance the image and try to see what is important what is not. So, factor A is having a P-value which is less than 0.05 A is significant B is also significant over here and AB interaction is also significant over here less than 0.05 ok. All the factors and their interaction is significant over here.

(Refer Slide Time: 06:15)

So, in this case what we will do is that we will go down and try to see R square adjusted value is 69 maybe some other factors we are missing over here ok, but that is not of concern to us.

(Refer Slide Time: 06:24)

And we at this stage these 2 factors are important or not that is important.

(Refer Slide Time: 05:27)

So, in effect analysis Pareto chart what we are seeing is that A, B and AB interaction significant, because this is 2.05 and every standardized effect is more than these values like that. So, all the variables are important A,B and AB interaction. So, first order interaction is important.

(Refer Slide Time: 06:44)

So, then what we can do is that we can just see graphically analyze this one. So, what we can do is that either go by this ANOVA analysis and see the interaction plots like that.

(Refer Slide Time: 06:51)

And in that case battery life you have to enter and factors you have to mention and which are the factors A and B factors over here, display full interaction plot and you click OK.

(Refer Slide Time: 06:59)

(Refer Slide Time: 07:01)

Then you will get the same graph what we have seen in 2 way analysis of variance over here. So, the same data can be used for interaction plots like that. So, over here what you are observing over here is that and this is the best combinations.

So, minus 1 combination so this is the highest battery life what we are getting. So, minus 1 combination which is basically A at level 0 over here. So, that is material type 2 over here and then what we have is the temperature this minus 1 means this is the low temperature combination.

So, the material type 2 and low temperature is the best combination, but what we mentioned earlier also in our lectures like that and this is more stable what we are seeing over here this is more stable. So, material type 3 is more stable. So, minus this 1 means 3 over here. So, this is green line what you are seeing over here and this is stable throughout the range of this is low-temperature range to medium.

And also high temperature and what we are seeing is the battery life is always higher than any other materials that we considered.

So, we may select material 3 in case we are unable to consider temperature we cannot control the temperature and this is the most robust material we can use which will take protection against this change in temperature like that. So, this is one combination and this graph that you are seeing on the below part of this will also lead to same conclusions over here.

(Refer Slide Time: 08:19)

1	linitab - Untit	led						_														8 >
Fil	Edit Dat	a Calc	Stat Graph Basic Str	View He	lp Assiste	fx]= -	onal Tools © A PP 12	1 20	2													
	1 <mark>0</mark> III III		ANOVA	on		Screenin	◎ 撇 未 光 □ レ ↓	-Y	2086	(★ 均 图	0" (do rA	4.12									
in B	eraction Plo 3-SQUARE DO teraction	t for Batte DE(CODED) n Plot	Control Quality Reliability Prediction	Charts Tools ty/Survival re Analytics	* * *	Factoria Respons Mixture Taguchi	d Ise Surface		Create Factor Define Custo Select Optim Pre-Process F	ial Design m Factorial D Il Design esponses for	esign Analyze Vi											•
			Multivar Time Sei Tables Nonpari Equivale Power a	iate irretrics rice Tests nd Sample Si		Modify Display	Design		Analyze Facto Analyze Binau Analyze Varia Predict Factori Plot Contour Plot. Contour Plot.	rial Design y Response bility												•
	~	0	0	61		-	1	2 1	Overlaid Con Response Op	iour Plot						64		60	640	640	630	v
•	StdOrder	RunOrder	PtType	Blocks	A	B	Battery Life						-	LIS	C14	CIS	CIO	Ci/	C18	CIY	620	
1	1	1	1	1	-1	-1	130															
2	2	2	1	1	-1	0	34															
3	3	3	1	1	-1	1	20															
4	4	4	1	1	0	-1	150															
5	6	6	1	1	0	1	130															
7	7	7	1	1	1	-1	138															
8	8	8	1	1	1	0	174														0	
H 4	рн +	3-squar	e DOE(code	d).mwx			~				4										TR	
Ø	3-square	DOE(code	f).max														6			1	Ph.	
N	,O Ty	pe here to	o search			c		-		4 🔞	-	Q				×B	3	^ ĝ	900 <i>/</i> /2 0			

So, this graph also you can see from this way if you go to design of experiment factorial plot.

(Refer Slide Time: 08:24)

And factorial plot when you do this and you click this one.

(Refer Slide Time: 08:26)

(Refer Slide Time: 08:28)

You will get the interaction plots this is given over here what we have seen earlier also. So, this is the same graphical interpretation.

(Refer Slide Time: 08:32)

Now you can predict the behaviour what will be the response on this. So, I can predict also over here.

(Refer Slide Time: 08:38)

So, if you say which is the level I will choose over here let us say I choose material type 3 over here and I am for the B combination over here I take minus 1 low range that is the combination I want to see and I click OK.

(Refer Slide Time: 08:50)

(Refer Slide Time: 08:51)

Then I will get the settings and I will get the mean effective live that is generated over here. So, that is the prediction values over here.

(Refer Slide Time: 09:00)

	-					() ionate	A CHARGE I	anea)														
ile	Home	Insert	Page Li	iyout	Formulas	Data	Review	View	ACRO	IBAT R	ormat	Q Te	ill me what y	ou want to	dö					_	Sign in	₽ Sha
h	X Cut				· A* A	==	= 2	. 8	Wrap Text		General			展	IV 1	2 2	X	Ϊ	AutoSum	AT	Q	
te	Copy *	B	TU.	Lin .	0.A		ज स	41 E	Marra R	Center -	G2 . 0		8 M Co	ditional Fi	ermat as (iell Inser	Delete	Format	Fil-	Sort & I	Find &	
	Format P	ainter			-				, marge or				For	natting *	Table - Sty	ies- •		•	Clear *	Filter - S	elect *	
1	heodde	9		Font			A	agnmen			N	unber		50	pes		Cells		Ed	ting		
tur	e3 *	I X	√ fx																			
	A	8	c	D	E	F	G	Н				к	L	м	N	0	Р	Q	R	s	T	
					A		C									(C)						
					Analy	SIS O	r varia	ance			0					I						
					Course				di cc	Adi MAG											1	
					Source			UF P	(u) 33	Auj Wis	D F	Dra	distis									
					Model			8	59416	7427.0		Pre	aictic	n								
					Linea	r		4 .	49802	12450.6	5 0	-									0	
					A			2	10684	5341.9	9 T	FIT	SEI	-it	95%	6 CI		95	% PI			
					R			2	20110	10550	1	144	12.99	24 (11	7.342.	170.65	58) (8	4.3903	, 203.6	10)		
										155555		20							50.7			
					2-Wa	y Inter	actions	4	9614	2403.4	+ 0-					0					0	
					A*B			4	9614	2403.4	4 3	3.56	0.019									
					Error			27	18231	675.2	2											
					Total			35	77647													
					Totol			55	11041													
																					6)
(, ,	Sheet1	(4)					-		-	-			1.4					1	-	-	
1	1		0															m	m p		-	no.
¥	1						_			_	_	_			_	_	_	1,020	ww. La			

So, the predicted value will be 144. So, predicted value will be and these are the prediction interval confidence interval that can also be seen over here ok. So, this is what we wanted to discuss some of the aspects of 3 square design or 3^k , we can create the design and we can see other examples on this also.

(Refer Slide Time: 09:18)

But we will skip this and we will go to a important topic which is known as local control ok.

(Refer Slide Time: 09:21)

So, I mentioned that 3 things are important in design of experiments one is randomization one is replication and the third one is local control which is also known as blocking principle which is also known as blocking principle over here. And that is that deals with noise or nuisance variable you can think of ok and we are not interested in those variables basically. So, sometimes what happens is that while learning design of experiments.

We are not able to learn the complete batch and not a single supplier provides all the materials like that. So, we may have batch wise materials and based on that we have to; we have to do the experimentation in sequence like that ok. So, different batch of material may not be homogeneous.

So, there can be heterogeneity in the batches in that case what happens is that this variation in the raw materials can impact my CTQ values like that. So, in that case we will try to block this variation, we will try to block this variation and then we use a principle of blocking in while we are doing analysis of variance.

So, we can separate this variation and we can see actually the factors that we are the controllable factor which we have considered whether it is affecting CTQ or not. So, until and unless we block this what may happen is that the factor may not be showing significance although it is significant for the CTQ like that. So, that can happen and I will show you the examples ok.

So, sometimes what happens operator to operator variation is there, but we are not interested to study operator to operator variation we are interested in study studying the factor A whether it is significant to the CTQ or not. So, while screening the factors we will try to see that ok, but we are not interested in but this can operator can influence the results like that.

So, we have to block that operator influence or remove the variability that is due to the operator and then we will study whether the factor is important or not. So, ANOVA analysis can be used for that, so blocking principle is used for that to understand the variation for blocks and if we can isolate that one then actual factor whether it is influencing CTQs or not that will be clear ok.

So, here also some examples time of the shift can also create trouble and so we may have to deal with that and block that variations due to shift or due to particular time of the day like that ok. And test samples that is used that can also be also can vary, so that can also be a blocking factor like that. So, that can be these are nuisance variables.

So, you have to understand these are nuisance variable where we are not interested into this, but we will if we do not block this one that will impact the results that is why we are blocking this one ok. So, some more examples like when we are advertising like that, so it is effectiveness and its impact on customer purchase intentions like that. So, if you are type of advertisement, but that will also there will be some variations due to men and female response like that.

So, that is we are not interested into that we are interested into whether the advertisement is affecting the customers purchase intention that is our objective, but men and female men and female can respond differently. So, that variation we have to isolate and then see whether that advertising is effective or not. So, that is also another example where we can apply these blocking principles like that.

(Refer Slide Time: 12:31)

And whether it is manufacturing or service people can use blocking principle while using design of experiments like that ok. So, there are basic things that we try to do when we are using the blocking principle, if the nuisance variable or noise variable is known and controllable we try to block this like what material to material variation or supply to supply variation it is known and we can control that one in real life.

So, in that case we will use blocking principle and sometimes what happens is that it is known and uncontrollable. So, we have no control in the environments or certain other scenarios, but we have to deal with that. So, if it is known if I know about that variation and it is uncontrollable.

Sometimes the concept of Taguchi's robust experimental design is used and we will discuss about Taguchi's experimentation after few sessions over here ok. So, Taguchi's robust design so that can be used when known and uncontrollable, when it is uncontrollable and unknown like that I have no information or clues about these nuisance variable or noise variables like that which impacts the CTQs like that randomization to minimize the effect of that what we do is that randomization.

So, that it is uniformly distributed throughout the experimental results like that. So, we try to balance the impacts like that. So, that is the objective of randomization that we are mentioned earlier also ok. So, here we are dealing with blocking principle where we it is known and controllable that is the scenario.

(Refer Slide Time: 13:57)

So, I will take one example to illustrate this one example. So, there are 4 different tips 4 different tips, so our objective is to study these 4 different tips which is measuring the hardness of a Rockwell hardness tester of this material like that and there are different test coupons that are used over here.

So, I have a different test coupons 1, 2, 3, 4 like this and each of these test coupons we can measure the hardness by using any of these different types of tips over here and this test coupons can also vary. That means, homogeneity between the test coupons is we are in doubt like that. So, in that case what we will do is that we will try to block this test coupon variations over here.

We will try to block this one and we want to see whether the if I change the types of tips whether the readings are changing basically or a hardness concentration hardness reading is changing or not or Rockwell hardness measurement is changing or not.

So, what we can do is that each of these test coupon we can assume that this is 1 block, this is 2nd block this is 3rd block and this is a 4th block like that each is treated as a block over here. So, blocks this test coupons are blocks over here and there are 4 levels of this block this is 1 level, 2 level, 3 level, it is like 2 factor experimentation basically.

So, block is another factor we can consider over here although this factor we are not so much concerned about that we want to see influence of this factor on the hardness reading, whether it is differing due to different types of tips that is our concern like that. If it is not then any of the tips can be used to measure the hardness like that is the overall objective of experimentation over here.

So, test coupon is a nuisance variation that because of the heterogeneity between the test coupon. So, we have to block this in experimentation we are not interested in the block variables we are interested in the factor which is considered over here which is type of tip like that ok.

	Quality Control and Imp	rovement using M	IINITAB	
	Y11 Y12 Y21 Y22 Ya1 Ya2	$ \begin{array}{c} \cdots \\ \cdots \\ y_{2b} \\ \vdots \\ \cdots \\ y_{ab} \end{array} $		
66		Test Coup	on (Block)	
$MS_{\text{Treatments}} = \frac{SS_{\text{Tr}}}{MS_{\text{Treatments}}}$	reatments 1	2	3	4
	— 1 Tip 3	Tip 3	Tip 2	Tip 1
$MS_{\text{Blocks}} = \frac{SS_{\text{B}}}{T}$	locks Tip 1	Tip 4	Tip 1	Tip 4
biocks b -	- 1 Tip 4	Tip 2	Tip 3	Tip 2
$MS_E = \frac{1}{(a - b)}$	$\frac{SS_E}{-1(b-1)}$ Tip 2	Tip 1	Tip 4	Tip 3
() Notae	Prof. Indrajit Mukherje	e, SJMSOM, IIT Bon	ıbay	

(Refer Slide Time: 15:52)

So, how to analyze this one? So in this case what will happen ANOVA analysis will be used like that. So, treatment effects of for this factor over here what we have concerned different types of tips 1, 2, 3, 4 like that and these are the block variables these are the blocks that is considered over here. So, in this case what our theory says is that we can also estimate what is the mean square block effects like that.

So, in that case mean square block effects like that and mean square error can be calculated and these can be isolated. So MS Treatment MS Block, so SS Treatment SS Blocks and SS Error can be calculated like that and MINITAB will do it automatically for you and then it will show whether the factor is important or not.

(Refer Slide Time: 16:29)

So this is the analysis that was done in MINITAB and then we will see that whether type of tip is significant or not. Yes it is influencing the mean values all the means are not same, if I use the different types of tips and block which we have considered that variation is also I have isolated over here. So, in this case what happens is that when we have isolated this one this is coming out to be significant; that means, test coupon to test coupon there is variation like that.

But we are not interested in the block variable over here and only we are interested into this and that is this is coming out to be significant. Now let us try to see these data set and try to see the analysis how do we do it in MINITAB.

(Refer Slide Time: 17:12)

File																	- 1	8 X
	Edit Data	alc Stat Graph	View Help As	istant Additio	nal Tools													
° F	a e x B	Basic Stati	stics	fx 3:	1.8 44.													
111	mmirt	Regression	n 1	. 179 1 44 2	111 # # VY 15	av	4 X. 59	-0 -0 -	N LY M. D									
		ANOVA	1	- One-Way		eva.	M N EF	0.000	1.1.1.1	24								
	6	DOE		📬 Analysis (of Means													
		Control CI	harts	At Balanced	ANOVA													
		Quality To	ols	GeneralL	inear Model													
		Reliability	/Survival	Mixed Eff	ects Model													
		Predictive	Analytics	E Fully Nes	ted ANOVA													
		Multivaria	te	A Gunnalk	111000	ai .	1.1	1	100	11								
		Time Serie	5	aca General N	MAROVAL.	In	PP2	ah										
		Tables		σ ² Test for E	qual Variances	uu	1160	JN										
		Nonparam	netrics	Interval P	lot													
		Equivalen	ce Tests	🗠 Main Effe	cts Plot													
		Power and	d Sample Size	🔀 Interactio	n Plot		Open	Ctrl+O										
6	C1 (2 C3 g	C4 C5	C6	a	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	4
+ c	C1 C1	2 C3 g ric Strenght	C4 C5 Type of	C6 Tip Hardness	C7 Block (Test Coupon)	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	
ь С	C1 C1 hemical Fa	2 C3 g pric Strenght 1 1.3	C4 C5 Type of	C6 Tip Hardness 1 9.3	C7 Block (Test Coupon)	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	
* C	CI C hemical Fa 1	2 C3 z vric Strenght 1 1.3 2 1.6	C4 C5 Type of	C6 Tip Hardness 1 9,3 1 9,4	C7 Block (Test Coupon) 1 2	C8	C9	C10	C11	C12	C13	C14	CIS	C16	C17	C18	C19	
* C 1 2 3	C1 C hemical Fa 1 1 1	2 C3 g rric Strenght 1 1.3 2 1.6 3 0.5	C4 C5 Type of	C6 Tip Hardness 1 9.3 1 9.4 1 9.6	C7 Block (Test Coupon) 1 2 3	C8	C9	C10	C11	C12	C13	C14	CIS	C16	C17	C18	C19	
4 C 1 2 3 4	CI Ci hemical Fa 1 1 1 1	2 C3 g vric Strenght 1 1.3 2 1.6 3 0.5 4 1.2	C4 C5 Type of	C6 Tip Hardness 1 9.3 1 9.4 1 9.6 1 10.0	C7 Block (Test Coupon) 1 2 3 4	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	
4 C 1 2 3 4 5	Cl Cl hemical Fa 1 1 1 1 1 1	2 C3 g vic Strenght 1 1.3 2 1.6 3 0.5 4 1.2 5 1.1	C4 C5 Type of	C6 Tip Hardness 1 9,3 1 9,4 1 9,6 1 10,0 2 9,4	C7 Block (Test Coupon) 1 2 3 4 4	C8	C9	C10	C11	C12	C13	C14	CIS	C16	C17	C18	C19	(*
4 C 1 2 3 4 5 4	C1 C1 Fa hemical Fa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 C3 g vic Strenght 1 1.3 2 1.6 3 0.5 4 1.2 5 1.1 anced ANOVA and B	C4 C5 Type of locking Che	C6 Tip Hardness 1 9.3 1 9.4 1 9.6 1 10.0 2 9.4	C7 Block (Test Coupon) 1 2 3 4 1	C8	C9	C10	C11	C12	C13	C14	CIS	C16	C17	C18	C19	
4 C 1 2 3 4 5 0 4 0	C1 C1 C hemical Fa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 C3 c ric Strenght 1 1.3 2 1.6 3 0.5 4 1.2 5 1.1 anced ANOVA and B WX and Blocking Ch	C4 C5 Type of locking Che	C6 Tip Hardness 1 9.3 1 9.4 1 9.6 1 10.0 2 9.4	C7 Block (fest Coupon) 1 2 3 4 1	C8	C9	C10	C11	C12	C13	C14	CIS	C16	C17	C18	C19	14
* C 1 2 3 4 5 0 0 0	C1 C1 C hemical Fa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 C3 2 5 Crenght 1 1.3 2 1.6 3 0.5 4 1.2 5 1.1 mmced ANOVA and B WX and Blocking Ch	C4 C5 Type of locking Che	C6 Tip Hardness 1 9,3 1 9,4 1 9,6 1 10,0 2 9,4	C7 Block (fest Coupon) 1 2 3 4 4 1	C8	C9	C10	C11	C12	C13	C14	CIS	C16	C17 -	C18	C19	(4

So, in this case what we will do is that we will see that example where we have selected. So, this is the example where we have already created. So, type of tip hardness measurement and this is blocking these are the block factors that is test coupon is considered as block over here, we can analyze this is a balanced design over here. So, in this case what we can do is that we can just analyze this one using analysis of variance and balanced analysis of variance over here.

(Refer Slide Time: 17:33)

So, we have taken the hardness as the over here and in this case what we have done is that type of tip and this is block which we have considered over here.

(Refer Slide Time: 17:45)

And this graphically we want to see, if we want to see the residual plot that is possible.

(Refer Slide Time: 17:48)

Minitab - Unf	itled																	-	9 ;
File Edit D	ata Calc	Stat Graph	View	Help Assista	nt Additio	nal Tools													
	x lb n	500	14.0	00	fx 30 -1	1. 3 42 4													
1 13 mm	Inn	HIWNE			177 E als P	HE ALL IN INC.	av	+ ¥. 5		10 LV 14	59								
1.0 m -0						10 W W W	e e a	Y D	0.0	1 1 V	0.9								
	: @ .	D T KE	125	× 157	C III S	Б. ж													
ANOVA: Hard	ness versu	s * X																	
BALANCED	ANOVA AND	BLOCKING CH	EMICAL T	ST COUPON.N	WX														
ANOVA:	Hardne	ss versus	Туре	of Tip, Bl	ock (Tes	t Coupon)													•
Factor In	formatio	n																	1
Factor		Type Lev	vels Value	в															
Type of Tip		Fixed	4 1, 2, 1	3, 4															
Block (Test	Coupon)	Fixed	4 1, 2, 1	3, 4															
Analysis	of Varia	ve for Ha	dness																
Analysis	UI Valla	ice for man	uness																
Source		DF	SS	MS F	: p														
Type of Ti	P	3 0.38	500 0.1	28333 14.44	0.001														
Error	it Coupony	0 0.02	000 0.2	198880	0.000														
Total		15 1.29	000	00007															
																			٧
CI	C2	C3 👩	C4	C5	C6	C7	C8	C 9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	
Chemical	Fabric	Strenght		Type of Tip	Hardness	Block (Test Coupon)													
1	1	1.3		1	9.3	1													
1	2	1.6		1	9.4	2													
1	1	0.5		1	9.6	3													
	1	1.2			10.0	4													
1																	-	100	
1		1.1		2	9.4	1												0	
1 1 1 н н	Balance	i 1.1 d ANOVA and	Blocking	2 Che	9.4	1			4										
1 d.b.н.н d.b.н.н	Balance	i 1.1 d ANOVA and and Blocking O	Blocking Themical t	2 Che	9,4	1			4					F	7 #	Π -		R	
1 1 1 1 1 Balance	Balance	1.1 d ANOVA and and Blocking (Blocking Themical t	2 Che	9.4	1	_		4					6	3				

And what we are seeing is the type of tip when block variables are considered. The assumptions over here is that type of tips and block does not interact like that. So, interaction is not significant over here that is the basic assumptions that we are making when we are doing this blocking principle.

When we are implementing the blocking principle we try to minimize the effects of blocks and the interaction between types of tips and blocks over here. So, that is why I have not considered interactions over here. So, in this case what we will do is that this is blocks.

(Refer Slide Time: 18:26)

Now, if you do not consider these as blocks and consider randomized experimentation, so here we are not randomizing that is why we are blocking and if I consider random experimentation we will just drop the block variables over here. So, what I will do is that ANOVA analysis 1 way analysis of variance we will go, because there is one factor we are considering.

(Refer Slide Time: 18:33)

Monte-United File Edit Das Okt Stat Graph View Help Austante Additional Image: State	(★ ●●● 从丙酮合同单分因: 每個 每 从分回 150 八寸 每	- 8 ×
BALANCED ANOVA AND BLOCKING CHEMICAL TEST COUPON MWX	One Was Analysis of Visiones	
ANOVA: Hardness versus Type of Tip, Block (Test	One-way Analysis of Variance	•
Biocriterstrugger Need 4 1, 2, 3, 4 Analysis of Variance for Hardness Source DF 55 MS F P Source DF 30 0.03500 0.03500 10.44 0.00 Biost (res Crusper) 3 0.03500 0.0364 0.000 Freer 9 0.0000 0.00889 0.000 Model Summary 5 1.2000 85.64%	C3 Poor Description C3 Poor C4 Poor C5 Poor C5 Poor C6	×
+ C1 C2 C3 z C4 C5 C6	Help QK Cancel	C14 C15 C16 C17 C18 C19
Chemical Fabric Strenght Type of Tip Hardness br	ock (rest coupon)	
1 1 1 1.3 1 9.3	1	
2 1 2 1.6 1 9.4	2	
3 1 3 0.5 1 9.6	3	
4 1 4 1.2 1 10.0	4	
5 1 5 1.1 2 9.4	1	
H 4 5 H + Balanced ANOVA and Blocking Che	4	
Balanced ANOVA and Blocking Chemical test coupon.mwx		
Type here to search O	🗖 🖻 😭 🐿 🥘 💻 🔍 📵 📴 🔢	x]] 🧧 🔺 🖗 🖉 🖉 📕 📕

Let us consider this is the hardness one and factor is type of tip.

(Refer Slide Time: 18:41)

If IS IN C. C.K. Sen Gray Nove Nets Assesses Nets If IS IN C. C.K. Sen Gray Nove Nets Assesses Net IN C.	le Edit L	Data Calc																-
	日愛		Stat Graph	View Help As	sistant Addition	nal Tools												
		XDA	500	1 H M 0 6	fx 3=	18 24 2												
	16 11 0		CI Y XO		收回 # *	● ● ● ● ●	BK	*私間	d" (8 d	a Ly XA								
$\frac{1}{2} + \frac{1}{2} + \frac{1}$		100	L LY DO	R. + W	Y N	IK +												
				tor the ministra														
Buildees allow and Buildees determines the provide of the intervence of the range of t	ne-way AN	IOVA: Hardin	es • x															
Dec-way ANOVA: Hardness versus Type of Tip Method With spontain the mans are equal Standards hypothesis Anonaco Hypothesis All mens are equal activity of the Anopas Applicative the anopas a - 63 Core Information Image: Anopas Page Tip 4 1, 2, 3, 4 Analysis of Variance Image: Anopas Core Information Image: Anopas Page Tip 4 1, 2, 3, 4 Analysis of Strenght Core Col	BALANCED	ANOVA AND	BLOCKING CH	EMICAL TEST COUPO	DN.MWX													
Method Withpohotisis All means are equal. Specificance law and Generation for the angles. Constraints Part of the angles Constraints Mathod Specificance law Constraints Part of the angles Constraints Prove of To 4.12.3.4 Constraints Constraints Const Const <th>ne-way</th> <th>ANOV</th> <th>A: Hardne</th> <th>ess versus Ty</th> <th>pe of Tip</th> <th></th>	ne-way	ANOV	A: Hardne	ess versus Ty	pe of Tip													
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Method																	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Nullina	sharis	All means	are equal														
Significance level a = 0.03 Departmentors are estatumed for the analysis. Factor Information Party in Levels Values Type of Tip 4 1, 2, 3, 4 Analysis of Variance Common Information Informatio	Alternativ	e hypothesi	s Not all me	ans are equal														
Batter Information Image: Control of the analysis States Information Image: Control of the analysis Analysis of Variance Image: Control of the analysis States Information Image: Control of the analysis States Information Image: Control of the analysis Control of Fabric Strength Control of the Analysis Image: Control of the Analysis States Information Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Control of the Analysis Image: Contrelead Contrelead Control of the Analysis <td< td=""><td>Significan</td><td>ce level</td><td>a = 0.05</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Significan	ce level	a = 0.05															
Textor Information Image: Sector Information Prior Tip of Tip 1, 2, 2, 4 Image: Sector Information Control Field Control Fiel	Envelue	ciances users	second for th	a analasia														
State Levels Values Type of Tip 4 1, 2, 3, 4 Analysis of Variance Events Events <th>equar va</th> <th>nances were</th> <th>assumed for th</th> <th>e energio.</th> <th></th>	equar va	nances were	assumed for th	e energio.														
Carcol Information Image: Control Information Prior The Units Values Image: Control Information Image: Control Information Analysis of Variance Image: Control Information Image: Control Information Image: Control Information Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information Image: Control Information																		
Return Levels Values Type of Tip 4 1,2 1,4 Analysis of Variance Common No L 64 50 K Extra relation A 64 50 K Chemical Fabric Sterring C 4 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 4 1 3 1 3 1 3 1 3 1 4 1 3 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 </th <th>Factor In</th> <th>nformatic</th> <th>n</th> <th></th> <th></th> <th>N</th> <th></th>	Factor In	nformatic	n			N												
Type of Tip 4 1,2,3,4 Analysis of Variance Common Common <thcommon< th=""> Common Common</thcommon<>						63												
Construction Difference Construction Construction <th>Factor</th> <th>Levels</th> <th>Values</th> <th></th> <th></th> <th>48</th> <th></th>	Factor	Levels	Values			48												
Characterization Constrained Constrained <thconstrained< th=""></thconstrained<>	Factor Type of Ti	Levels	Values 1, 2, 3, 4			L¢												
Conva Dir. L. Molte Builden Cit	Factor Type of Ti	Levels	Values 1, 2, 3, 4			la ^s												
C1 C2 C3 C4 C5 C6 C7 C8 C9 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 Chemical Fabric Strenght Type of Tip Hardensse Block (fest Coupon) Image: Calification of Calification o	Factor Type of Ti Analysis	Levels	Values 1, 2, 3, 4			4												
Chemical Fabric Strenght Type of Tip Hardness Biola (frest Coupon) 1 1 1 1 3 1 63 1 2 1.6 1 9.4 2 1 2 9.4 1 1 1 1 1 2 9.4 1 1 1 1 1 1 2 9.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Factor Type of Tr Analysis	Levels ip 4 s of Varian	Values 1, 2, 3, 4	AC E-Malina D-M	tshia	45												
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Factor Type of T. Analysis Course CI	Levels p 4 s of Varian ns 4 C2	Values 1, 2, 3, 4 NCC HI CC AHI N C3 12	45 E-1/shite D-1 C4 C5	C6	67	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19
1 2 10 1 34 2 1 3 0.5 1 56 3 1 4 1.2 1 10.0 4 1 5 1.3 2 9.4 1 1 + + 1 - - 1 + + 1.0 - - 1 + + 1.0 - - 1 + + 1.0 - - - 1 + + 0.0 + 0 - - - 1 + + 0.0 + 0 - - - - 1 + + 0.0 + 0 -	Factor Type of T Analysis Course Cl Chemica	Levels ip 4 s of Varian nr 4 C2 d Fabric	Values 1, 2, 3, 4 NCCE C3 12 Strenght	ис с. изана в. т С4 С5 Туре о	C6 Tip Hardness	C7 Block (Test Coupon)	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19
1 3 0.5 1 9.6 3 1 4 1.2 1.10 4 1.11 <td< td=""><td>Factor Type of T Analysis Source C1 Chemica</td><td>Levels ip 4 of Varian ne 4 C2 il Fabric 1 1</td><td>Values 1, 2, 3, 4 CC LHI CC AHI M C3 12 Strenght 1,3</td><td>45 E-I/ahira D-1 C4 C5 Type of</td><td>Tip Hardness 1 9.3</td><td>C7 Block (Test Coupon)</td><td>C8</td><td>C9</td><td>C10</td><td>C11</td><td>C12</td><td>CI3</td><td>C14</td><td>C15</td><td>C16</td><td>C17</td><td>C18</td><td>C19</td></td<>	Factor Type of T Analysis Source C1 Chemica	Levels ip 4 of Varian ne 4 C2 il Fabric 1 1	Values 1, 2, 3, 4 CC LHI CC AHI M C3 12 Strenght 1,3	45 E-I/ahira D-1 C4 C5 Type of	Tip Hardness 1 9.3	C7 Block (Test Coupon)	C8	C9	C10	C11	C12	CI3	C14	C15	C16	C17	C18	C19
1 4 12 1 100 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Factor Type of T Analysis Source Cl Chemica	Levels ip 4 s of Varian nc 4 C2 il Fabric 1 1 1 2	Values 1, 2, 3, 4 CC C3 g Strenght 1,3 1,6	ис с.и/аниа D-1 С4 С5 Туре о	Astroa C6 f Tip Hardness 1 9.3 1 9.4	C7 Block (Test Coupon) 1 2	C8	C9	C10	C11	C12	C13	C14	CIS	C16	C17	C18	C19
1 3 13 13 2 2 24 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1	Factor Type of T Analysis Course C1 Chemica	Levels	Values Values 1, 2, 3, 4	C4 C5 Type of	25/100 C6 f Tip Hardness 1 9.3 1 9.4 1 9.6	C7 Block (Test Coupon) 1 2 3	C8	C9	C10	CII	C12	C13	C14	CIS	C16	C17	C18	C19
1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 >	Factor Type of T Analysis Cource C1 Chemica	Levels ip 4 s of Varian DE 4 C2 al Fabric 1 1 1 2 1 3 1 4	Values 1, 2, 3, 4 CC CC CC CC CC CC CC CC CC C	C4 C5 Type of	C6 Tip Hardness 1 9.3 1 9.4 1 9.6 1 10.0	C7 Block (fest Coupon) 1 2 3 4	C8	(9	C10	C11	C12	C13	C14	CIS	C16	C17	C18	C19
Se Balanced MXDM and Blocking Otemical test coupon mina	Factor Type of T Analysis Source C1 Chemica	Levels ip 4 s of Varian ns 4 C2 1 1 1 2 1 3 1 4 1 5	Values 1, 2, 3, 4 CCE C3 zz Strenght 1,3 1,6 0,5 1,2 i 1,1	K E-Malue D-A C4 C5 Type of	C6 Tip Hardness 1 9.3 1 9.4 1 9.6 1 10.0 2 9.4	C7 Block (Test Coupon) 1 2 3 4 4 1	C8	C9	C10	C11	C12	C13	C14	CIS	C16	C17	C18	C19
	Factor Type of T Analysis Course C1 Chemica	Levels ip 4 s of Varian ns 4 C2 d Fabric 1 1 1 2 1 3 1 4 1 5 8 Balance	Values 1, 2, 3, 4 CC C3 z2 Strenght 1, 3 1, 6 0, 5 1, 2 1, 1 1, 2, 3, 4 C3 z2 Strenght 1, 3 1, 6 0, 5 1, 2 1, 2 1, 3 1, 4 NOVA and I	K E-Uslua D-A C4 CS Type of Blocking Che	C6 Tip Hardness 1 9.3 1 9.4 1 9.6 1 10.0 2 9.4	C7 Block (Test Coupon) 1 2 3 4 1	C8	C9	C10	C11	C12	CI3	C14	CIS	C16	C17	C18	C19
	Factor Type of T Analysis Course C1 Chemica	Levels ip 4 s of Varian nc 4 C2 d Fabric 1 1 1 1 2 1 3 1 4 1 5 + Balance ccd ANOWA	Values 1, 2, 3, 4 CC C3 z2 Strenght 1, 3 1, 6 0, 5 1, 2 1, 1 1, 2, 3, 4 C3 z2 Strenght 1, 3 1, 6 0, 5 1, 2 1, 2 1, 3 1, 4 1, 2 1, 2 1, 4 1, 2 1, 2 1, 4 1,	IC E-Male D-A C4 C5 Type of Blocking Che	Ahna C6 Tip Hardness 1 9.3 1 9.4 1 9.6 1 10.0 2 9.4 https://www.	67 Block (Test Coupon) 1 2 3 4 1	C8	C9	C10	C11	C12	CI3	C14	CIS	C16	C17	C18	C19

(Refer Slide Time: 18:42)

So, let us try to see what comes out of this analysis. So, when we make this analysis over here the ANOVA analysis that you will see copy pictures and we can paste this one. So, this we can eliminate.

(Refer Slide Time: 18:52)

8 *		5 T F		Book1 - Exce	el (Product	Activation I	Failed)													
	Home	Insert	Page Layout	Formulas		Review		ACROBAT	Format										Sign in 👌	Q. Share
iste	6 Cut 9 Copy • • Format Pi pboard	ninter 12	IU-	• A • A	· = :		· Pri	Wap Text Aerge & Center	General General	s • %	- C - C - Fe	onditional Fo rmatting - Sty	mat as 1 fable - St les	Cell Inse	rt Delete F	ormat ∙	AutoSum Fill • Clear • Ed	A Z Sort & Fi Filter * Se iting	₽ nd & lect *	
icture	4 *	X	√ fx																	
A	4	B	C D	E	F	G	н	1.1	J.	К	L	м	N	0	P	Q	R	s	T	L
-																				
				A	lu ai	f 1	Vari													
-				Апа	iysi	SOL	vari	ance												
				Sour	ce	DF	Adj	SS Adj	MS F	-Valu	ie b	-Value								
_				Type	ofT	in 2	0.20	50.0.1	0022	1	70	0 220								
-				Type	011	ih 2	0.50		1033		0	0.220								
				Error	r	12	0.90	50 0.07	7542											
				Tata	í.	15	1 20	00												
-				1014	1	12	1.23	00												
																			-	
																			-	1
()	s	heet1	(+)									1 4						the second	1	
6	17															=	(0) (2)] -	40	
	and the second se																		and the second se	

And if we replace this one what happens is that what I am observing over here is that type of tip is not significant you see P-value is more than 0.05. So, if you are treating them in isolation and considering that all test coupons are homogeneous, in that case what is coming out the results that is coming out considering only type of tip. It is not coming out to be significant, but as soon as you consider as soon as you consider that the block variable yes it has influence. So, we should eliminate that variation.

(Refer Slide Time: 19:20)

	- Untitled																	- 6	
File Edit	Data Calc	Stat Graph	View Help	Assista	nt Addition	nal Tools													
28	BXDO	Basic Stat	istics		fx 3	18246													
TT 17 11		Regressio	n	1.1		III A AL IN ISE	ak	+ 社 四	de la	D LY 22									
		ANOVA		• 5	One-Way		er u				13								
	: 💇 .	DOE		• #	Analysis o	of Means													
One-way	ANOVA: Hardn	Control C	harts	>	Balanced	ANOVA													
E BALAN	CED ANOVA AND	Quality To	ols	,	General U	(hear Model)													
One-w	av ANOV	Reliability	/Survival	•	Mixed Eff	ects Model													٠
		Predictive	a Analytics	• 4	Fully Nest	ted ANOVA													
Type o	of Tip 4	Multivaria	ate	1	General N	AANOVA													٠
_		Time Serie	es	,	Test for La	wal Variancer													
Analy	sis of Variar	Tables			Interval P	lot													
Source	e DF A	Nonparar	metrics	, 1	Main Effe	ets Plot													
Type o	fTip 3 C	Equivalen	ice Tests	1	Interactio	n Plot													
Error	12 0	Power an	d Sample Size																
Total	15 1.3	900			ų.														
Mode	el Summary																		
Mode	S R-sq	R•sq(adj)	R-sq(pred)																
Mode	S R-sq 4621 29.84%	R-sq(adj) 12.31%	R-sq(pred) 0.00%																
Mode 0.274	S R-sq 4621 29.84%	R-sq(adj) 1 12.31%	R-sq(pred) 0.00%																
Mode 0.274	el Summary <u>S R-sq</u> 4621 29.84%	R-sq(adj) 1 12.31%	R-sq(pred) 0.00%																٠
• Ct	el Summary S R-sq 4621 29.84%	R-sq(adj) 1 12.31%	R-sq(pred) 0.00% C4	C5	C6	a	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	*
Mode 0.274 * Ct Chem	el Summary <u>s</u> <u>R-sq</u> 4621 29.84% L L C2 nical Fabric	R-sq(adj) I 12.31% C3 g Strenght	C4	C5 pe of Tip	C6 Hardness	C7 Block (Test Coupon)	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	*
Mode 0.274 + Ct Chem 1	el Summary <u>S</u> R-sq 4621 29.84% I C2 nical Fabric 1 1	R-sq(adj) I 12.31% C3 g Strenght 1.3	C4	C5 pe of Tip 1	C6 Hardness 9.3	C7 Block (Test Coupon) 1	C8	C9	C10	C11	C12	C13	C14	CIS	C16	C17	C18	C19	*
Mode 0.274 4 C1 Chem 1 2	C2 1 C2 1 1 1 2	R-sq(adj) 8 12.31% C3 2 Strenght 1.3 1.6	C4	C5 pe of Tip 1	C6 Hardness 9.3 9.4	C7 Block (Test Coupon) 1 2	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	•
Mode 0.274 4 Ct Chem 1 2 3	C2 1 1 1 1 1 2 1 3	R-sq(adj) 1 12.31% C3 2 Strenght 1.3 1.6 0.5	C4	C5 pe of Tip 1 1	C6 Hardness 9.3 9.4 9.6	C7 Block (Test Coupon) 1 2 3	C8	C9	C10	C11	C12	C13	C14	CIS	C16	C17	C18	C19	•
Mode 0.274 * C1 Chem 1 2 3 4	C2 1 1 1 29.84%	R-sq(adj) 1 12.31% C3 2 Strenght 1.3 1.6 0.5 1.2	C4 Typ	C5 pe of Tip 1 1 1	C6 Hardness 9.3 9.4 9.6 10.0	C7 Block (Test Coupon) 1 2 3 4	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	•
Mode 0.274 4 C1 Chem 1 2 3 3 4 5	C2 I C2 nical Fabric 1 1 1 2 1 3 1 4 1 5	R-sq(adj) 8 12.31% C3 22 Strenght 1.3 1.6 0.5 1.2 1.1	C4 Typ	C5 pe of Tip 1 1 1 1 2	C6 Hardness 9,3 9,4 9,6 10,0 9,4	C7 Block (Test Coupon) 1 2 3 4 1	C8	C9	C10	C11	C12	C13	C14	CIS	C16	C17	C18	C19	
Mode 0.274 4 Ct Chem 1 2 3 3 4 5 5 1 4 5 H	Image: Second state state Condition state Image: Second state state C2 Image: Second state Fabric Image:	R-sq(adj) 8 12.31% C3 12 Strenght 1.3 1.6 0.5 1.2 1.1 ANOVA and E	C4 C4 Blocking Che	C5 pe of Tip 1 1 1 1 2	C6 Hardness 9.3 9.4 9.6 10.0 9.4	C7 Block (fest Coupon) 1 2 3 4 1	C8	C9	C10	C11	C12	C13	C14	CIS	C16	C17	C18	C19	
Mode 0.274 4 Ct Chem 1 2 3 3 4 5 5 4 b H	S R:sq S R:sq 4621 29.84% I C2 Inical Fabric 1 1 1 3 1 4 1 5 + Balanced Marced ANDWA ar	R-sq(adj) 8 12.31% Strenght 1.3 1.6 0.5 1.2 1.1 ANOVA and E st Blocking (1)	C4 C4 Bocking Che	C5 pe of Tip 1 1 1 2	C6 Hardness 9.3 9.4 9.6 10.0 9.4	C7 Block (Test Coupon) 1 2 3 4 4 1	C8	C9	C10	C11	C12	C13	C14	CIS	C16	C17	C18	C19	•
Mode 0.274 4 Cl Chem 1 2 3 4 4 5 5 1 4 1 1 2 3 3 4 5 5 1 6 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	S R:sq S R:sq 4621 29.84% I C2 Inical Fabric 1 1 1 3 1 4 1 5 + Balanced ANOWA and	R-sq(adj) 8 12.31% Strenght 1.3 1.6 0.5 1.2 1.1 ANOVA and B id Blocking Ch	C4 Typ Blocking Che	C5 pe of Tip 1 1 1 2	C6 Hardness 9.3 9.4 9.6 10.0 9.4	C7 Block (Test Coupon) 1 2 3 4 1	C8	69	C10	CII	C12	CI3	C14	CIS	C16	C17	C18	C19	•

So, in that case what we have done is that we have considered that also.

(Refer Slide Time: 19:22)

(Refer Slide Time: 19:25)

Factor Type Levels Values Type of Type Type I (Levels Values) Type of Type Type I (Levels Values) Type of Type Type I (Levels Values) Type of Type I (Levels Values) Send to Monoseth Word Send to Monoseth Word Send to Monoseth Word Copy Clarent Copy Clarent Copy Clarent Send to Monoseth Word Copy Clarent Copy Clarent Copy Clarent Copy Clarent Copy Clarent Copy Clarent Copy Clarent Copy Clarent Copy Clarent Copy Clarent																coupony	en (resi	ip, bie	if he of th		o reious	ur ur er e.	•	
Copy Definition 4 C1 C2 C1 C3 C4 C5 C6 Decimal Places * C10 C11 C12 C13 C14 C15 C17 C18 Chemical Natric Strength Type of Tip Hardness * Print 1													c	rd rerPoint ace ^{ne} Ctrl+	icrosoft® Wor icrosoft® Pow ompanion initab Workspa	Send to Mi Send to Mi Send to Co Send to Mi D Copy	P 0.001 0.000	5 F 3 14.44 3 30.94	Is Values 4 1, 2, 3, 4 4 1, 2, 3, 4 4 1, 2, 3, 4 Iness is MS 00 0.128333 00 0.275000 00 0.008889 00 0.000889	ardne \$\$ 38500 82500 08000 29000	n Type Len Fixed Fixed DF 3 0.38 3 0.82 9 0.08 15 1.29	ormatio isupon) f Varian Coupon)	actor Info actor ype of Tip lock (Test C nalysis o ource Type of Tip Block (Test rror otal	
C1 C2 C3 C4 C5 C6 DecemaPress C0 C11 C12 C13 C14 C15 C16 C17 C18 Chemical Fabric Strenght Type of Tip Hardness ∰ Priot Priot													٦.		imn	Copy Colu								
1 1 1.3 1 9.3 X Delete	C19	C18	C17	C16	C15	:14	Cla	C13	C12	1	C11	C10	•		laces	Decimal Pl	C6	C5	C4 (2 0	C3 Z	C2 Eabric	C1	,
																X Delete	9.3	1	1)14	3	1.3	1	1	ľ
1 2 1.6 1 9.4 2															2		9.4	1		5	1.6	2	1	
1 3 0.5 1 9.6 3															3		9.6	1		5	0.5	3	1	
1 4 1.2 1 10.0 4															4		10.0	1		2	1.2	4	1	
1 5 1.1 2 9.4 1		6													1		9.4	2			1.1	5	1	

As a factor and we when we analyze that one what we have found is that we have found that this when we consider this one.

(Refer Slide Time: 19:32)

B 2.	6.8. 1		Book1 - E	xcel (Product Activation	Failed)										
File	lome Insert	Page Layo	ut Formula	is Data Review	View ACROBAT	Format	V Tell me what	you want to	do					Sign	in A Shar
Paste	it ippy * rmat Painter	в <i>т</i> <u>ч</u> -	- A	 	Wrap Text	General	* % .0 Fe	anditional F	ormat as Table - St	Cell Inse	t Delete F	ormat ∙	AutoSum · Fill · Clear •	Arr P Z Find & Filter - Select	
Ciptor			ont		Augnment	S NU	nper	2	nyses.		Cells		Ed	ong	
Picture 5		V Jx			1.4.1.1.1					0		0			*
A	D			F U	n 1	,	N L	M	IN	0	R.	Q	R	2	
2				Source	DF Adi SS	Adi M	IS F-Valu	e P-V	/alue						
0															
1				Type of Ti	p 3 0.3850	0.1283	33 1.7	0 (0.220						
2				Error	12 0 0050	0.075/	12								
5				Enor	12 0.9030	0.0754	-2								
5				Total	15 1.2900										
6						(C)									
7				0											
8						0			Ĭ						
9				Analysis	of Variance	for Hard	Iness								
1									_						
2				Source	DF	SS	MS	F	P						
3				Type of T	Tip 3 (0.38500 0.	128333 14.	14 0.00	1						
4				Block (Te	rt Coupon) 3 (92500.0	275000 20	4 0 00	n Ĭ						
5				510000 (10	scoopon) sc		273000 30.	4 0.00	-						
6				Error	9 (0.08000 0.	008889								
8				Total	15 1	.29000									
9														-	
0				0		0			0						
()	Sheet1	۲						1 4							4
6.11												Ħ	on e	-	10 Ann
							11 A. 19 19	-	-						

Then it comes out to be results seems to be very different. So, types of tips is now significant and earlier it was 0.22, now it is 0.001 that is significant it is coming out because we have considered this block has another variability that we have tried to isolate over here.

So, we have to apply blocking principle in case we feel that some of the variables are nuisance variables that can impact the results. So, blocking is one of the aspects that is considered in experimentation that is considered in experimentation like that ok. So, this is one example we can take there are other examples also that is given over here.

N	linitab - Until	tled																	-	8 >
File	Edit Dat	ta Calc	Stat Graph	View	Help Assist	ant Additio	nal Tools													
2	8 2 3	K D 6	Basic Sta	tistics	•	fx 31	12 24 2													
-		TTT I	Regressio	n		1971 I ats #	III at at I when	ak	- 私 四	-10 m	D LY IL									
1			ANOVA)	- One-Way	fen	er u.	US			1.13								
		: @ .	DOE		• 1	Analysis	of Means													
٨N	OWA: Hardn	iess versu	Control (harts	۰,	& Balanced	ANOVA													
	RALANCED &	NOVA AND	Quality T	ools	,	General L	nkear Model													
		lardno	Reliabilit	/Surviva	1 ×	Mixed Ef	fects Model													•
~	YOVA. I	arune	Predictiv	e Analyti	cs +	E Fully Nes	ted ANOVA													
	Factor Inf	ormatic	Multivari Time Ser	ate	:-	General I	MANOVA													*
	Factor		Tables			72 Test for E	qual Variances													
	Type of Tip		Nonnara	metrics		Interval F	lot													
	Block (Test	Caupon)	Equivaler	ice Tests		A Main Effe	ects Plot													
_			Powerar	ud Samuel	Sine 1	× Interactio	in Plot													
	Analysis c	of Variar	ce for Har	dness			*													
	Source		2 0.201	33	M5	E P														
	Block (Test	Coupon)	3 0.82	500 0.2	275000 30.9	4 0.000														
	Error		9 0.08	0.0 0.0	08889															
	Total		15 1.290	000																
																				Ŧ
	CI	C2	C3 😰	C4	CS	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	T
	Chemical	Fabric	Strenght		Type of Tip	Hardness	Block (Test Coupon)													
	1	1	1.3			1 9.3	1													
	1	2	1.6			1 9.4	2													
	1	3	0.5			1 9.6	3													
1	1	4	1.2			1 10.0	4											-	-	
	1	5	1.1			2 9.4	1													
4	DH +	Balances	ANOVA and I	Blocking	Che					4									1	
ñ	Balance	d ANOVA a	ind Blocking C	hemical	test coupon.m	wx										1 1		-	Sec	
2	1						<u> </u>	-			0			tin 1			-			
ДŤ	L V Ty	pe here	to search			0			1		Q. (×8	3	~ g	- m / d			

(Refer Slide Time: 20:14)

So, in this case we can takes another examples. So, this is chemical and fabric and strength like that, so in this case we can consider this and we can use the balanced ANOVA analysis.

(Refer Slide Time: 20:19)

N	linitab - Untit	ied																		Ø X
File	Edit Dat	a Calc	Stat Graph	View	Help Assistan	Additio	nal Too	ls .												
•			50	14.4	00	fx 30 -1	1.1	244 0												
		mai	I W M	800	1 - 12 1		36	# 先 \-y >>■	ak + A F	-	- P - y M									
			L V M	ak	+ 11/ LV		ale.	a second second				0.5								
_		· 025. +		EV LL																
AN	IOVA: Hardn	ess versu:	s * X																	
₿	BALANCED A	NOVA AND	BLOCKING CH	EMICAL TE	ST COUPON.MV	VX														
A	NOVA: H	lardne	ss versus	Туре	of Tip, Blo	ock (Tes	t Co	upon)					_							
								Balanced Analysis o	f Variance											
1	Factor Inf	ormatio	n					C1 Chenical	Responses: S	trenght			-							
	Factor		Type Lev	rels Value	5			C2 Fabric C3 Strenght	Model:											
	Type of Tip Block (Test ((neous)	Fixed	4 1, 2, 3	4			C5 Type of Tip C6 Hardness	Chemical Fabri			1								
	own from	raaberd	1040					C7 Block (Test Co	up				1							
	Analysis r	f Variar	ce for Ha	dness			*		Random factors:											
ľ	Course	- varia	Df.	ee								1	-							
1	Type of Tip		3 0.38	500 0.12	28333 14.44	0.001			1			-								
	Block (Test	Coupon)	3 0.82	500 0.2	75000 30.94	0.000														
	Error		9 0.08	000 000	98889			I			Options									
	I OCAI		15 1.29	000				Select	Graph	s	Results	Storage	1							
												-	1							w
Ł	CI	C2	C3 12	C4	C5	C6		Hep			- (a	Cance	C13	C14	C15	C16	C17	C18	C19	
	Chemical	Fabric	Strenght		Type of Tip	Hardness	Bloc	(Test Coupon)												
1	1	1	1.3		1	9.3		1												
2	1	2	1.6		1	9.4		2												
3	1	3	0.5		1	9.6		3												
4 c	1	4	1.2		1	10.0		4										1	0	
4	5 H +	Ralazzo	ANOVA and	Riveking	The .	1.4				4									-	
		Data in C	I MICH AND	book king t	ITEss					1		_	_				-			
2		Contraction of the local division of the loc	Design of the second	DOM DOM DO	100 million (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)															A
Ć	balance	s ne to the	ind biothing t		at cooperation									-	-			10	A 11	

So, strength is the variable let us say this is the y characteristics that we are and chemical and fabric is the block variables that we are using. So, different chemical types and fabric is the block variable that we are using over here. And in this case what we are not considering interaction effects, but we want to see.

(Refer Slide Time: 20:35)

And here what we are seeing is that both chemical and fabric. So, we have blocked the fabric variables like that then only chemical is coming out to be significance like that. So, you can do individual analysis or one way analysis of chemicals over here that may come out to be significant and may not come out to be significant. But when we have blocked the fabric variation due to fabric over here which is blocked over here.

In that case whether I want to see whether chemical is influencing the strength of that is the main relationship I want to see, I am not interested into fabric over here. So, that is the block variable we have considered over here. So, that way we consider the principle of blocking in our experimentation and this is used extensively.

(Refer Slide Time: 21:12)

Quality Control and I	mprovement using MINITAB
Blocking in 2 ^k Factorial Design	
Number of Fosters .	2
• Number of Factors :	2
• Number of Levels :	2
Possible Runs :	2 ²
• Min number of experiment to carry out :	2 ²
• Number of Block :	3
	Number of factors
	2 ^k
Number of levels	
Prof. Indrajit Mukh	erjee, SJMSOM, IIT Bombay

So, now how do we implement blocking in factorial design? How do we create that blocking in factorial design?

(Refer Slide Time: 21:21)

So, I am trying to take an example where the scenario can be we can use this one. So, there are let us consider factorial design you have done. So, factor A and factor B over here and these are the replicates. So, this is one replications that you are seeing this is 1 replicates, 2nd replicates, 3rd replicates.

And, but what we can do is that the condition that is given over here, therefore 3 batches of raw materials are used over here. So, this means only 4 from 1 supplier we have got like that 2nd is coming from 2nd supplier 3rd is coming from 3rd supplier like that. So, supplier to supplier variation is expected over here the material that raw material that comes while we are experimenting with the factors.

So, I am in doubt that the supplier to supplier variation will be there. So, in that case my objective is to basically block this variation, my objective is to block this variation block this variation. So, each of these replicates will be block like that. So, that how to create the design. So, there are 2 factors over here.

So, 2 square design so this is the 2 square design with 3 replicates. So, this will be multiplied by 3, 12 experimentation, but each of this 4 will be created as a block like that then only the analysis becomes meaningful when we are; when we are treating these. Because it is coming from different suppliers like that one batch is coming from different suppliers. So, factor A is reaction concentration factor B is catalysts over here and we want to see what is this influence on the yield like that.

(Refer Slide Time: 22:46)

So, let us create the design and then try to see analysis how we can do the analysis ok. So, how do we create blocks in factorial design? So, what we have to do go to stat design of experiments factorial design create factorial design.

(Refer Slide Time: 22:53)

So, let us say this is a 2 square factors like that number of factors over here.

(Refer Slide Time: 22:58)

Montan - United File Edit Data Celo Stati Graph View Help Asistantet Addational Tools See A Stational Tools	(네 <mark>)@</mark> 박전트용도★작업 관레관박작업	- θ ×
Design Summary Factors: 2 Replicares: 4 Base runs: 9 Tool non: 36 Base blods: 1 Tool blods: 1 Number of levels: 3, 3	Create Factorial Designs X Designs Rure Resolution 2*(% o) #4 factorial # #4 2*(% o) Number of anter pentitic per block: 0 • Number of factorial per block: 0 • Number of factorial per block: 0 • Number of factorial per block: 0 •	
4 C1 C2 C3 C4 C3 C6 C7 1 2 3 4 5 6 7 		C14 C15 C16 C17 C18 C19 C20 C2*
A + + + + Worksheet 1 Worksheet 2 Worksheet 3 Worksheet 4 Verstakeet 3 Verstakeet 3 Verstakeet 3 Verstakeet 3 Verstakeet 4 Verstakeet 3 Verstakeet 3 Verstakeet 3 Verstakeet 3	Worksheet 5 4	

So, then you have to mention over here that how many number of blocks. So, number of replicates over here is 3 and then number of block is over here I am creating is 3. So, when I create and center point we will keep as 0 over here we are not concerned our center point at this time point.

(Refer Slide Time: 23:15)

So, then we can write down the factor A and factor B whether it is numeric or text like that, so that you can mention like that.

(Refer Slide Time: 23:21)

Multilevel	Factorial Designeers	m × ×	qn																
Design Factors Base ru Base bl Numbe	2 Re 2 Re ns: 9 Tor odks: 1 Tor r of levels: 3,	alicates: al runs: al blocks: 3	4 36 1				Create Fa Fold Desig © Do not © Fold or © Fold Desig	torial Designs: C fold (all factors st on factor: 	Iptions Practio C Use C Use nerator:	principal fract	ion er:	*							
											enul		1	1					
+ C1	C2	C3	C4	CS	C6	C7	Help			- K	Cance	C14	C15	C16	C17	C18	C19	C20	G

And in options we will not randomize the run and also we will not fold the design like that. So, folding is when we are doing that fraction of factorial that will be used. So, randomize the run we are not randomizing this one. So, standard order and run order will be same.

(Refer Slide Time: 23:38)

	Intitled																		-	0 >
File Edit	Data Calc	Stat Graph	View He	Ip Assistan	Addition	nal Tools														
	XIN	50	1 46.06	001	fx 90 -7	1. 25 1	4.8	£												
	00 -0 -0	INN	ana	M B	N at P	38 4 4	LIVIN	In au	- M NC	1.00	- NY	50								
H .0 H	"C 11 10) 1	0 10			El : Nr *G	M W Y	e la K	- er c	T = >4 SP	0.10	0.14	103								
	. <u>.</u>	-Y 🖂 🛛	BK×	No N	808															
Full Factor	al Design 👻 🗄	6																		
WORKS	EET 6																			
Full Fac	torial Des	ign																		
Design	Summary																			
Factors	2 Base D	esign:	2.4																	
Runs:	12 Replica	tes:	3																	
Blocks:	3 Center	pts (total):	0																	
Block G	Poerators: re	olicates																		
Block G	enerators: re	plicates																		
Block G	enerators: re	plicates																		
Block G	enerators: re s are free fro	plicates maliasing.																		
Block G	enerators: re s are free fro	plicates m allasing.																		
Block G All term	s are free from	plicates m allasing. C3	C4	CS	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	G
Block G All term C1 StdOrd	s are free from C2 er RunOrder	C3 CenterPt	C4 Blocks	CS A	C6 B	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	G
All term	s are free from C2 er RunOrder	C3 CenterPt	C4 Blocks 1	C5 A -1	C6 B -1	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	c
All term	enerators: re s are free from c2 er RunOrder 1 1 2 2	C3 CenterPt 1	C4 Blocks 1 1	CS A -1 1	C6 B -1 -1	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	c
Block G All term + C1 StdOrd 1 2 3	enerators: re s are free from c2 er RunOrder 1 1 2 2 3 3	C3 CenterPt 1	C4 Blocks 1 1	CS A -1 1 -1	C6 B -1 -1 1	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	c
All term All term 4 C1 StdOrd 1 2 3 4	C2 RunOrder 1 1 2 2 3 3 4 4	C3 CenterPt 1 1	C4 Blocks 1 1 1 1 1	CS A -1 1 -1 1	C6 B -1 -1 1 1	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	G
Block G All term 4 C1 StdOrd 1 2 3 4 5	C2 RunOrder 1 1 2 2 3 3 4 4 5 5 5	C3 CenterPt 1 1 1	C4 Blocks 1 1 1 1 2	CS A -1 1 -1 1 -1	C6 B -1 -1 1 1 -1	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	c
Block G All term 4 C1 StdOrd 1 2 3 4 5 6	C2 RunOrder 1 1 2 2 3 3 4 4 4 5 5 6 6 6 6	C3 CenterPt 1 1 1 1 1 1	C4 Blocks 1 1 1 1 2 2	CS A -1 1 -1 1 -1 1 -1 1	C6 B -1 -1 1 1 1 -1 -1 -1	C7	C8	C9	C10	C11	C12	C13	C14	CIS	C16	C17	C18	C19	C20	C
Block G All term All term StdOrd S G G 7	RunOrder 1 2 3 4 4 5 6 7	C3 CenterPt 1 1 1 1 1 1 1 1	C4 Blocks 1 1 1 2 2 2 2	CS A -1 1 -1 1 -1 1 -1 1 -1	C6 B -1 -1 1 1 1 -1 -1 -1 1	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	c
Block G All term 4 C1 StdOrd 1 2 3 4 5 6 7 R	c2 er RunOrder 1 1 2 3 3 4 4 4 5 5 5 6 6 6 7 7 8	C3 CenterPt 1 1 1 1 1 1 1 1 1	C4 Blocks 1 1 1 1 2 2 2 2 2 2 2	CS A -1 1 -1 1 -1 1 -1 1 -1 1 -1	C6 B -1 -1 1 1 -1 -1 -1 1 1	C7	C8	C9	CIO	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	c
Block G All term 4 C1 5tdOrd 1 2 3 4 5 6 6 7 R 4 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1	c2 er RunOrder 1 1 2 3 4 4 5 5 6 6 7 7 8 % + Workst	C3 CenterPt 1 1 1 1 1 1 1 1 2 1 2 2 2 3 2 3 2 3 3 2 3 3 3 3	C4 Blocks 1 1 1 2 2 2 2 2 2 7 0forksheet 2	CS A -1 1 -1 1 -1 1 -1 1 1 -1 1 Vorkhee	C6 B -1 -1 1 1 -1 -1 1 1 t 3 Weet 3 Weet 3	C7 orksheet 4	C8 Works	C9 eeet 5	C10	C11	C12	CI3	C14	CIS	C16	C17	C18	C19	C20	G
Block G All term 4 C1 5 StdOrd 1 2 3 4 5 6 7 R 4 4 5 6 7 8 4 4 5 6 7 8 4 4 5 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8	C2 er RunOrder 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 + Weeksh csheet 6	C3 CenterPt 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2	C4 Blocks 1 1 1 2 2 2 2 2 1 orksheet 2	CS A -1 1 -1 1 -1 1 -1 1 -1 1 Workshee	C6 B -1 -1 1 1 -1 -1 1 1 t 3 We	C7 orksheet 4	C8 Works	C9 reet 5	C10 Worksheet 6	C11	C12	CI3	C14	CIS	C16	C17	C18	C19	C20	C
Block G All term 4 C1 5 StdOrd 1 2 3 4 5 6 7 R 4 4 5 6 7 R 4 4 5 6 7 8 4 5 6 7 8 8 4 5 6 6 7 8 8 8 8 9 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8	C2 er RunOrder 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 + Works ksheet 6	C3 CenterPt 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2	C4 Blocks 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CS A -1 1 -1 1 -1 1 -1 1 Workshee	C6 B -1 -1 1 1 -1 -1 1 1 tt 3 Wo	C7 orksheet 4	C8 Works	C9 ret 5	C10 Worksheet 6	C11	C12	CI3	C14	CIS	C16	C17	C18	C19	C20	C

So, in this case when you click OK what will happen is that blocks will be created in the design.

(Refer Slide Time: 23:42)

M	linitab - Unti	tled																			8 >
File	Edit Da	ta Calc S	tat Grap	View H	elp Assista	nt Additi	onal Tools														
2	8 👲 🖁	K 🖻 🔞	500	- A 4	00	fx }* =	5 4 B 1	1 26	2												
	10 II II		•Y ≥	0	云十時	图 # 1	百服 祭 州	ι чγ≥		≤★為臣	0" 0	di vy 🖏	1								
		1 🖉 🗄	-γ ≥∎	BK,	12 4	200	3K 🗶														
Ful	ll Factorial D	lesign ~ ×	1																		
	WORKSHEET	6																			
Fu	II Facto	rial Desi	qn																		٠
1	Design Su	ummary																			^
	Factors:	2 Base De	sign:	2.4																	¥
4	CI	(2	G	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	(
	StdOrder	RunOrder	CenterP	t Blocks	A	В	СТО														
1	1	1		1 1	-1	-	4														
2	2	2		1 1	1																
3	3	3		1 1	-1																
4	4	4			1																
5	6	6		1 2	1																
7	7	7		1 2	-1																
8	8	8		1 2	1																
9	9	9		1 3	-1																
10	10	10		1 3	1	-															
11	11	11		1 1	-1																
12	12	12		1 3	1																
13																					
14																					
16																					
4	н +	Workshe	et 1 V	forksheet 2	Workshe	eet 3 V	Vorksheet 4	Worksh	heet 5	Worksheet 6	4									-	
×.	Worksh	eet 6														1				Sec.	
1	Va.						-	A	A		-	0			un I	-				A. 1	
NP	TEL	pe here to	search			C				× ()		W.	v 🔽		×10	_	^ g	i m // c			

So, blocks will be created. So, you can see that a first experimental trial minus 1 minus 1 1 minus 1 minus 1 minus 1 plus 1 1 1 this 4 trials what you are seeing is in block 1 like that. So, 1 replica 1 1 set of observation is taken for complete trial is done by a let us say supplier 1 like that is treated as block 1.

Then block 2 and block 3 like this. So, when you have created the design and then mentioned the CTQs values over here. So, when you mentioned the values over here and then we can analyze the data like that. So, I have the data with me. So, we do not need to do this because we have already have these data sets.

(Refer Slide Time: 24:17)

So, let me try to see where it is. So, here it is data set is over here, so here if you can see this trials over here. So, all the data sets are so 12 data points that is collected over here. So, blocks you can see 1st block, 2nd block and 3rd block like that. So, block is already created like that now I have to only analyze the data, what we will do is that stat design of experiment factorial design.

(Refer Slide Time: 24:40)

And then we will analyze factorial design response is yield over here.

(Refer Slide Time: 24:42)

Term we want to consider A, B and AB interactions over here. So, here you will find that include blocks in the model, yes we want to include the blocks in the model that is tip like that.

(Refer Slide Time: 24:51)

And then Pareto plot all these things are possible and other things are default what we are not changing over here.

(Refer Slide Time: 24:57)

(Refer Slide Time: 24:59)

So, when we do that what happens is that I have a ANOVA analysis over here which will indicate that whether blocking has helped or not. So, in this case we can just copy paste this one and delete the earlier information.

> X Cut 矚 I Format as Cell Insert The second secon AT P = _ & Wrap Text En Copy -Conditional Formatting * Growal Painter B I リ・田・益・A ・ 三三三 相王 聞 Merge & Center Format as Table -& Clear Clipboard Picture 6 f_x A B C D E F G H I J K L M N O P Q R S T U Analysis of Variance Source DF Adj SS Adj MS F-Value P-Value 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Model 5 298.167 59.633 14.41 0.003 0.79 0.498 Blocks 2 6.500 3.250 2 283.333 141.667 34.23 0.001 Linear А 1 75.000 75.000 18.12 0.005 В 1 208.333 208.333 50.34 0.000 2-Way Interactions 1 8.333 8.333 2.01 0.206 8.333 8.333 A*B 2.01 0.206 Error 6 24.833 4.139 Total 11 323.000 Sheet1 ۲ P Type here to search 0 🚍 🖶 💼 🐿 🛞 💷 🐼 😰 🔝 🗷

(Refer Slide Time: 25:10)

So, we can just copy paste this information and we can just enhance this one. So, model is significant blocking is not significant although the we thought that supplier to supplier variation will be there. But the P-value indicates that the homogeneity in the. So, block to block variation is not so prominent over here and not statistically significant. But always we prefer to block because whenever there is in doubt you should block ok. So, then what happens is that because we have, so we have taken care of this blocking principle over here. Then whether factor A and factor B is significant yes it is significant interaction is not significant, interaction is not coming out to be significant and that will be also prominent when we study the when we study this Pareto plot when we study this Pareto plot. So, here where is that data points and this is yield and in blocks. So, this you can see.

(Refer Slide Time: 26:04)

Mi	nitab - Untit	led																		-	Ø
le	Edit Dat	a Calc St	at Graph	View Hel	p Assistan	t Addition	nal Tools														
Ę	3 @ 2	606	500	1 4 44	00)	x 32	古歌 :	1 de	2												
1	10		Y >	BBB	* 4	9 # 16	服业内	5 4Y 2		K+4	di d ^o c	d' 4 kg	10								
		ME	YN	RK*	14 LY	NER	K*														
	ural Fastari	al Degracel																			
	retai racuori	an Negressi.																			
5	neral Fa	factorial a	Perrocci	ion: Viel	dvorcus	Block	AR														
Ľ	rierai ra	ictorial r	regress	ion. nei	u versu:	DIUCK	, A, D														
								A 8	A 8												
						N															
						L.															
	A -																				
									1		1		1						1		-
	C1 StdOrder	C2 RunOrder	C3 PtType	C4 Blocks	C5	C6 R	C7 Z	C8	C9	C10	CII	C12	C13	C14	C15	C16	C17	C18	C19	C20	
	1	1	1	1	- 1	-1	28														
	2	2	1	1	-1	1	36														
	3	3	1	1	1	-1	18														
	4	4	1	1	1	1	31														
	5	5	1	2	-1	-1	25														
	6	6	1	2	-1	1	32														
	7	7	1	2	1	-1	19		_												
	8	8	1	2	1	1	30		-												
	9	9	1	3	-1	-1	27														
	10	10	1	3	-1	1	32														
	12	12	1	3	1	1	23												1000	0	
							.,				1										
	рн +	Blocking in	Factorial D	esign (Yeild).	**						4					_				1 AV	
	Blocking	in Factorial I	Design (Yeila).mnx												6		- 🗆			
	10 ×	a hara ta	rearch			0	-	-	-	N 10	1	0	n 5	100	¥8		A 6	i 0m /1	10		

(Refer Slide Time: 26:05)

So, this is standard effect plots that we Pareto plot say AB is not coming out to be significant over here.

(Refer Slide Time: 26:12)

File	initab - Untit Edit Dat	iled ta Calc S	at Graph	View Help	Assist	ent Additio	nal Tools															-	8 >
	8 & 3 8 8 3		Basic Sta Regressio ANOVA DOE	istics n		fx 2= -1	古田 雅奈寺	1 de 1 44	2	K *	4 昭	d" ("	d ^{n v} Y	专图									
Ger Ger	neral Factor BLOCKING IN Ineral Fa	ial Regres	Control Quality T Reliability Predictiv	tharts sols c/Survival a Analytics	> > > >	Factorial Response Mixture Taguchi	Surface		Create Fa Define Cu Select Op Pre-Proce	ctorial De istorn Fac timal Des	sign torial Des ign	ign											•
	•		Multivari Time Seri Tables Nonpara	ate es metrics	, 10 , 10 , 10	🦆 Modify D 🗄 Display D	esign esign		Analyze F Analyze B Analyze V	actorial D inary Res withbility	esign ponse												*
	A -		Equivaler Power ar	ice Tests d Sample Size	;			×	Factorial I	1Js													v
+	C1 StdOrder	C2 RunOrder	C3 PtType	C4 Blocks	CS A	C6 B	C7 12 Yield								C13	C14	C15	C16	C17	C18	C19	C20	(
1 2	1	1	1	1	-1	1	28	*	Overlaid (Response	Optimize	lot												
4	4	4	1	1	1	1	31																
5	5	5	1	2	-1	-1	25																
6	6	6	1	2	-1	1	32																
7	7	7	1	2	1	-1	19																
8	8	8	1	2	1	1	30																
9	9	9	1	3	-1	-1	27																
10	10	10	1	3	-1	1	32																
11	11	11	1	3	1	-1	23																
12	12	12	1	3	1	1	29															0	
н (рн +	Blocking in	Factorial D	esign (Yeild)								•						_			1	F	
	Blocking O Tu	ne here to	Search).mwx		0		-	-	~1	10		0		52		¥8			- L	16	1	

So, what we can do is that settings of this variable what we can do is that only by factor plots like that. So, if we want to set this one.

(Refer Slide Time: 26:18)

We will go to factor plots and click OK.

(Refer Slide Time: 26:20)

(Refer Slide Time: 26:21)

And then only the main effect plots can be used like that interaction is not prominent. So, we want to maximize the yield, so in that case combination will be minus 1 and this will be B will be at plus 1. So, that is a combination that we will use ok. So, that is the way we will analyze. So, in factorial design also we can implement the blocking principle, we can implement the blocking principle over here.

So, that is the one aspects I wanted to mention like that. And there is another aspects that when we are doing design of experiment another one aspects is coming several times there is known as center point that we have not discussed.

(Refer Slide Time: 26:50)

So, this is the block design what you have seen block 1 block, 2 block, 3 like this and this is the analysis that ANOVA analysis that we have shown.

(Refer Slide Time: 26:59)

And these are the interaction plots and we can also check the residual plots like that and these comes out to be normal. And because these lines are parallel no interaction this is the interaction plots that you are seeing and because A and B is only prominent. So, we can only see the main effect plot and that will give me the combination that will maximize the yield basically ok.

(Refer Slide Time: 27:17)

So, general guideline whenever the you are in doubt like you try to block that one and block the noise variable in case you know about it randomize in case it is unknown noise or unknown nuisance variables like that. So, it is good idea to conduct the experiment in blocks, where complete experiment cannot be finished. So, like what we say that it is coming from different suppliers like that, so in that case use the blocking principle like that ok.

(Refer Slide Time: 27:43)

So, blocking is one of the principle that I want to highlight and also one important aspects that is center point we try to add center points in the design of 2 k design let us say. So, how does it help we are moving in design of experiments, let us say sequential experiments from one region to the other region like that and whenever you are the optimal point what happens is that you will find curvature.

So, if this is the y variable and this is the x region like that, so you will find that optimal region maybe over here. So, this is the point which is the optimal over here, because whenever optimal region comes then there will be there will be some curvature in the model like that. So, that is expected let us say this is a function that we are seeing over here.

So, this concave function that we are seeing over here. So, in this case what happens is that we want to see that maximum point is over here. So, if this is the region that I am experimenting over here, so in that case it is expected the second order model will be more effective as compared to the first order model or response surface can be built like that.

So, in that case what is important is that we try to add center points, whenever I am in doubt that whether we are in the region of optimality. So, in that case what happens is that then the model x square terms become prominent like that. So, that can be studied if we are adding center points like that in the design like that ok.

So, what happens is that center points will be added over here. So, this is the experimental zone of factor A and factor B minus 1 plus 1 and for the factor B is minus 1 plus 1. There will be some 0 points over here that will be taken like this 0 points over here and some replications will be done in the center points over here. And in that case average of the corner points will be compared with the center point values over here so average of this.

(Refer Slide Time: 29:25)

And if there is a difference that will be reflected by this SS pure quadratic term whether it is required or not. So, that means, whenever there is a curvature it will be reflected like this, so whenever there is a curvature the average of this will be different from the average over here.

So, average of corner points will be different from the center points average like that. So, when it is significant when this difference is significant it will the P-value will indicate like that. So, here when I do the ANOVA analysis of curvature what I am getting is that P-value is significant over here and in that case that indicates that the model requires add, we need to add more squared terms on the in the model maybe A square maybe B square over here ok.

So, that is the term we need to add to get a better models like that. So, whenever I add a center point I want to see whether there is a curvature in the model, then we will use

certain other designs to get the get the fundamental models of adding the square terms like that ok, so those things we can see.

So, we are adding center points to understand that whether we are in the region of optimality whether we are in the region of optimality or not, that is the main idea. If we are in the region of optimality then we can use central composite design to get the response surface basically at that point. So, that is that comes under the purview of response surface designed.

Because when we are near the optimal point, then we try to use some high end design likes central composites designed to get the response surface equations like that. Which can consist of AB and AB interactions it can also consist of A square and B square terms also we can incorporate that one.

(Refer Slide Time: 30:59)

So, this center points we can create like that, so if you go to the center points like that.

(Refer Slide Time: 31:06)

			Basic Statistics Regression ANOVA DOE	* * * *	fx ===:	古 四 雅 来 1	2 4 % 4	2	×××₩	d ⁿ c	d ⁿ -y Xy	B								
Full Factorial Design → Contro WORKSHEET 6 Quality Full Factorial De Predict			Control Charts	•	Factorial		+ [Create Factorial Design Define Curven Factorial Design												
			Quality Tools Reliability/Survival Predictive Analytics	*	Response	esponse Surface														
				;	Taguchi			Pre-Process Responses for Analyze Variability												
D	esign Su	immary	Multivariate Time Series	• 1	Modify Design Display Design		L	Analyze Factorial Design Analyze Binary Response Analyze Variability				C14	C15					C20	* *	
4	CI C2	CZ	Tables Nonnarametrics	1	C6 C7		L				C13			C16	C17	C18	C19			
	E		Equivalence Tests				4													
1			Power and Sample Size	,																
2							f	Cube Plot												
3								Contour Plot												
4							- 2													
5																				
0																				
9																				
10																				
11																				
12																				
13																				
14																				
15																			0	
16	н +	Workshe	et 1 Worksheet 2	Workth	eet 3 Wo	rksheet 4	We	eksheet 5	Worksheet 6	4									-	
1		in the second	ALL HOMENALL	Tunga	at no	ingitier 4		TADITECT D	Hendileere			-	-	_			-		E.	
E.	menshe	ter o			_												- 1			

So, if you go to any fundamental design like that. So, in this case what we can do is that we can add center points. So, design of experiment factorial design and we create the factorial design.

(Refer Slide Time: 31:12)

Full	Factorial D	lesign ~ ×																			
III V	ORKSHEET	6																			
Ful	Factor	rial Desi	gn																		•
Design Summary							Create Factorial Design X														
Design summary								Type of I	Design												*
4	CI	C2	C3	C4	C5	C6	C7	2-level factorial (default generators) (2 to 15 factors)						C14	C15	C16	C17	C18	C19	C20	C *
								C 24ev	el factorial i el split-piot	specify generati thard-to-change	factors) (2 to 15 fac 2 to 7 facto	factors)								
1								Plackett-Burnan design (2 to 47 factors) General full factorial design (2 to 15 factors)													
2																					
3								Number a	of factors:	2 🔻	Displa	y Available	Designs								
4										Desig	esigny Factors										
5										Options Results											
6												_									
7								Help		0	OK Cancel										
8								-	-	-											
9																					
11																					
12																					
13																					
14																					
15																			_	-	

So, when number of factors let us assume this one 2 square design we are assuming over here.

(Refer Slide Time: 31:18)

So, in design what we can do is that number of center points. So, if I want to add 4 or 5 center points like that. So, that is and number of replicates over here number of blocks let us say we are not blocking anything.

(Refer Slide Time: 31:31)

So, if we create like that and we create like that what happens is that there will be some combination 4 points that will be the center points over here. So, AB combination we learn and also that 0 points will also run over here. So, this when I measured the CTQ values at 0 points also we can have an estimate on the center point y values and that will

be used to see the corner point average with the this one. So, this value will be calculated.

So, this SS pure quadratic will be calculated at that will tell me whether curvature is present this P-value will indicate whether the curvature is significant or not like that. So, this is also sometimes we try to check when we are near to optimality or not like that whether we have reached optimality.

So, mostly used in response surface methodology, mostly they will try out adding center points and then going to CCD design whenever we are near to optimality is that scenario is mostly we add center points like that ok.

So, we will stop over here we will continue in some other topics from here.

Thank you for listening.