Quality Control and Improvement with MINITAB
Prof. Indrajit Mukherjee
Shailesh J. Mehta School of Management
Indian Institute of Technology, Bombay

Lecture - 35
Factorial Experiments (Contd.)

Hello and welcome to session 35 of our course on Quality Control and Improvement
with MINITAB. I am Professor Indrajit Mukherjee from Shailesh J Mehta School of
Management, IIT Bombay. So, we are discussing about Factorial Design and we have
taken one example where we have seen that if we do not get the replicates in that case
what happens is that estimation of because of scarcity of the degree of freedom for the

€1ror.

What we faced is that we cannot do ANOVA analysis like that ok, but we can make an
estimation of factor A, factor B, and interaction effects like that. And based on that, we
can also see the regression equation because we are doing the factorial experimentation
and for that regression equation, it is easy to develop. So, we have seen that regression is
possible, but effect estimation and coefficient determination is not possible like that. So,

one example that we are discussing; simple experimentation like that.
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So, this is the experimental trials that we have considered factor A and factor B and this

is the response variable which is the CTQ and these are the first experimentation that we

1193



this is the all at low level. Then A is at high level and then B is at high level, then A B is
both A and B at high level that experimentation, we have seen how it is to be done ok

and how the design is developed in MINITAB that also we have done ok.

So, now, I am just adding the some of the parts over here. So, I have added one replicates
over here. So, one so, there are two replicates basically over here. So, this is replication
first replicates that is kept as these replication one and this is kept as replication two over
here. So, I have just changed the data sets like that. This is basically arbitrary or

hypothetical scenarios that we are considering over here.

And just I have added the replicates to see whether the MINITAB can estimates a
ANOVA analysis, it can do and what more we can do in MINITAB like that ok. This
surface plot is also possible over here in MINITAB like if A B is continuous variable, we
treat them as continuous variable and then Z dimension we can put at CTQ and then we

can plot that one.

And interaction effects can be we can see it without replicates also we can do that and
with replicates is always possible with replicates we can have the interaction plots also
interaction plots is possible. And let us try to see this when I use this data set over here,

what happens?
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So, what I will do is that how to create this with replicate. So, what we can do is that this
was last time when we have one replication and this is the second replicates we have
done let us say. And we can just eliminate this one with this analysis over here. Now

with replicates, we want to make the design over here.
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So, in this case design of experiment factorial design, create factorial designs so, two
level factors. Then we will mention 2, this i1s 2 over here in design matrix nothing is
changing; only number of replicates I will make it 2. So, if you make number of
replicates other things remain same. So, I am not changing anything so, I will click OK.
So, I have just changed the number of number of replicates as 2 over here and factors

remain same, we are not doing anything with the factors.

Then options over here we do not want to randomize like that you can randomize this
one. When you randomize, it will generate random designs like that. So, that is during
experimental trial, it is required actual experimentation. But for the time being, we are
assuming that we are not doing this for sake of just illustration over here. So, in this case

if you click OK and do not fold, we have to use these options of do not fold.
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If you click OK over here and click OK the design matrix will be created. So, this is the
standard order, this is the run order center point by default is taken as 1, block is taken as
1. So, in this case this, we are not touching center point and block we are not defining
over here. So, in this case this is by default what we are taking. So, A at low level and
high level so, this CTQ measurements what we are doing over here; can be placed over

here.

So, in this case, there is no problem design is created; then these 8 trials values we can
put over here. So, I have already this file with me. So, in this case so, I do not want to
replicate that one that doing it same time again. So, this data set is given over here, this is

the data set that is given over here.
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And it is already created over here.
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So, in this case what is required is that I want to do

the analysis over here design of experiments. So, I want to see factorial design.
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So, analyze factorial design over here. So, then in this case what I have to mention is that
which I have to analyze, then I will mention that A B interaction effects I want to
estimate. So, I will click OK. So, and then covariance is not there other options. So,

stepwise regression, we have not done anything over here. So, everything remains same.

So, graphical plots over here, normal plot and Pareto plot; these two plots, we want to
see and then standardized residual normal plot of residual, we can see. And storage, at
this moment, is not required. So, we can store it afterward when a final model is

developed. So, in this case, I click OK.
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And what will happen is that you will get the ANOVA analysis, this is ANOVA analysis.

So, I can copy this over here and I can paste that and try to see enlarge this what is

happening.
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So, in this case factor A is significant, what we are observing over here and factor B is

significant, but interaction effect is not significant that is 0.773. So, that is not significant

over here. So, interaction effect is not significant; factor A and factor B is significant

over here.
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So, in this case and then R square values over here is very high, R square predicted is
now about 93 percent, 93 percent like that very good models, we have developed. So,
these two are the critical factors which we have; which we have screened over here, but

interaction effect is not prominent they are independent and they influence the outcome
like that ok.
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And then the equations for this is generated over here, regression equation will be

generated the like the same way what we have shown the basic calculations, how the
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interaction coefficient and all these coefficient of mean effects and interaction effects can
be calculated. A factor effects and the interaction effects can be calculated that from the

experimental results, we can do that, that we have seen earlier also.
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And the normal plot over here what it says is that A and B is on the right hand side of
this graph over here and that means, it has a positive effect like that and coefficient will

also tell you that it has a positive effect. So, coded coefficient what do you see over here,
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coefficient A and B is positive over here, C is also positive, this AB interaction is also

positive over here; but in this case, it is not significant. So, we are concerned about AB.

So, in this case, what happens is that AB is only shown in the normal plot to be
significant because this is red dotted over here. Anything that is red shows that this is
significant and the side that it takes will indicate that whether it has a positive effect,

whether it has a negative effect on the CTQ.

So, this has a positive effect over here and this Pareto chart also indicates that A and B is
only significant. So, AB is not significant over here, AB is not significant. So, and the
regression equation from the regression equation, we can drop the interaction effects like

that because interaction is not significant.

So, why to include that one in the model, but if you want to retain that one for your
prediction behaviour if it is more if it is giving R square predicted is quite high. So, in
that case we can retain that one. So, but I am showing you in general how you can

eliminate this one interaction effects if it is not so much making impact in the model.
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So, what I will do is that analyze factorial design, I will go over here. In terms what |
will do is that I will remove this term AB interaction because A B, I have seen already
that A B is not making such amount of impact. So, in this case I will click OK over here

and everything remains same, I will click OK over here.
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So, when you do that coefficients are there calculated over here, only thing is that I lose
something on the predictive behaviour over here. So, earlier it was 96, now it is 95 like

that.
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And the analysis of variance shows that there is no lack of fit over here. So, AB because
we have multiple, we have replicated. So, we can calculate the lack of fit that we have

mentioned in regression class; so, in this in regression session sorry.
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So, in that case what we have told is that if lack of fit is not there so, the model linear
model seems to be adequate and this is the model that we can use. So, this is the CTQ is

y=37 + 11*A + 5.25* B over here.
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So, and normal plot over here because interaction, we have eliminated now. So, AB is

quite significant that is also shown over here in Pareto chart like that. So, this is also

evident over here. So, this is an evident over here.
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And we have saved this, this is standardized residual, residual plot is given over here; we
have not saved the residuals. So, we can save the residual and check whether normal
distribution assumption holds seems to be ok because all points are near to the line. So,
there is no problem as such over here. So, this is the equation we can use and this is the

final model that can be recommended over here.
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Now, if we want to draw graphically I want to see that surface plot let us say of this. So,
I can use wireframe over here and I will click ok over here and then Z axis, I will say

CTQ, let us take CTQ in the Z axis and let us take A in Y axis and B in this.
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And then surface options in this case maybe I will customize this with 20 number of
meshes over here; 20 number of meshes over here if I assume this one and then click
OK; other things remain same as default, I will click OK. So, what will happen is that
you will get the surface that is generated over here. So, this is the surface over here that

is generated and this can be rotated also that I showed know.

So, last time we have seen that this can be rotated and we can see from any given
direction what is happening. So, surface plot is possible over here. So, this gives you
more or less flat surface because interaction is not so prominent. So, surface is flat. So,
this is possible and this can be also seen like that. We can also see the contour plot over
here so, because if [ am assuming continuity over here, I can also see the contour plot

over here.
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So, in this case Z axis will be CTQ and Y axis let us say, A and B like that and this
contour plot is also possible. We can see that one and in this case, we will figure out that
where it is maximized if I say that CTQ has to be maximized. So, in this case what I see

is that B at plus level and A at plus level is giving me the because both have positive

coefficients also what we have seen in regression.

So, as I increase A and B, it will increase the CTQ values like that. So, that is also

prominent over here in the contour plot. So, contour plot, I told that the top view of the
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surface plot that you have seen. So, that will be given in contour plot like that. So, in this
case I click OK so, I get the contour plot over here and we can also see some more

optimization.

So, we will take some real example that will be easier for you to understand why we
when we take a real case like that. So, let me take one more one or few case studies over

few cases that we can analyze.
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So, I will go to the PPT’s and try to figure out what is the next case that we have on these
aspects like that. So, this is the graphical plot that that I have already generated like that.
So, you see factor A is significant over here, factor B is significant AB interaction is not
significant. So, in this case, this is not significant coefficient. So, we can drop this one

and develop the regression equation again. So, that we have seen so, we have eliminated.

So, these two factors are only prominent in normal plots. So, that will give me indication
which factor to drop which interaction to drop like that. So, that will give me some hints
about that ok. And because of replications what we have seen the error degree of
freedom is calculated over here and error degree of freedom, we are having over here
and that is allowing us to estimate the mean square values. And then we can calculate the

F values over here and the corresponding P values can be calculated over here ok.
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So, Lenth’s pseudo standard, I told that this is the thing that is used to find out these cut
of values over here 2.78 and beyond that anything is there that effect has basically

statistical significance that is the formulation says like that.
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And that we have seen. So, let us take one example from the chemical process over here.
So, factors are coded over here what do you see coding values over here. So, actually
they may have certain values which has two levels basically so, but I have coded this

variable over here; what is the (Refer Time: 12:14).

When we code the variables like this, it becomes easier to compare the effects estimation
and the coefficients that we get. So, effect which is larger effect which is smaller effect
that is possible, but how people code that also we will the formulation for coding also

can be seen from any books like Montgomery’s book it is given, how it is done.

So, anyhow we have coded, let us assume the actual value is coded over here. So, this is
minus 1 minus 1 and we have three replicates over here and this is chemical recovery
why values of CTQ is taken as chemical recovery. So, it is recovery let us assume that
we have to maximize the outcome and we have this A B factors only with us and A is
changed in 2 levels, B is changed in 2 levels. So, this is basically a 2*2 square design

over here.
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So, minimum number of trials is 4, but I have taken 3 replicates over here so, 12
experimentation is done. So, total number of experimental trials is 12 over here. So,
based on these data that is generated over here, we want to analyze what should be the
level of A reaction concentration and what should be the level of B that is catalyst
amount over here. So, both are assumed to be continuous over here. So, I am assuming

continuity continuous.

So, in this case I want to analyze this experimentation and figure out that how I can
maximize the recoveries over here. So, this is replications over here. So, now, we can
create this design like what I have told like earlier lectures that we can just add the

replicates and then based on that we can do the analysis like that.

So, I have this data set with me where already the data is the experiment, this MINITAB
excel sheet was prepared like that and trial was done and these are the C5, C6 column of
experimentation that we have with 3 replicates so 12 experimental trials. And these are
the recovery values already, I have noted down over here. So, what I will do is that then I
will run the trials. So, to figure out whether the factor A and B how it is; how it is like

that. So, I will go to design of experiments factorial design, analyze factorial design.
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So, here I mentioned if it is not mentioned over here, you have to mention recoveries
over here; many time I has taken it automatically. So, if you want to see interaction
effects over here, you just include that into the model. So, I have this is 1. So, if you
click 2, AB interactions will come over here. So, because we have three replicates so, in
that case it is not difficult to calculate the mean square error. So, there will be no

problem in my opinion.
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So, then what we have done is that graph Pareto and normal plot, we can see what is the
effect of that. Normal probability plot later on we can see so, standardized. So, this is not
required at present. So, first we have to finalize the model, then we have to check all

those things. So, then what we do? We just click OK, ok.
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So, when we do OK over here, what we are observing is that A in the coefficient which
is coded over here. So, in this case what we are seeing is that reaction concentration and
catalyst they are basically significant over here, but interaction effect is not significant

interaction effect is not significant over here.

So, and R square predicted value is about 78.17 if interaction is also included. So, 78.17,
let us assume R square predicted more the R square predicted better is the model in our
opinion. So, what is unknown observations can be predicted like that so with more

accuracies. So, here it is 78.17 quite adequate.
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And in this case two way interaction is not prominent, what we have seen. And so, and
then we go to the Pareto effect plot standardized effect plot. So, in this case, also I see A
B is significant, AB is not significant. So, in this case and here what you see is that A is

having a positive effect and B is having a negative effect.

Although they are significant one sign convention will be different over here. So, A is
having plus coefficient and B is having negative coefficient. So, if I increase catalyst

amount, it will decrease the recoveries basically if I increase the reaction concentration,
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it will increase the recovery basically. So, this is contradicting with each other. So, we

have to be careful when we are adding or reducing the amounts like that.

So, in this case what is possible is that because what we have seen is that interaction
effect is not significant. So, let us finalize the model. So, in this case and we have to
remember that the predicted R square value what we have got is approximately around 9,
78.17. So, we will now I am reducing the model. So, in this case what I will do is that

factor factorial design analyze factorial.
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So, in case of term, I will not include the interaction. So, I have given include terms in
the model up to order of 1. So, AB interaction is taken away over here. So, in this case, I
will click OK and I will click OK what happens is that prediction behaviour does not

change.

So, in this case I lose something on the R square adjusted value, but I do not miss lose
much on the predicted value that is around same values what we are getting. So, this

model seems to be adequate in this case reaction concentration and catalyst amount p-

value is less.
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So, if you want to see this final graphically when I place this one so, if I can place this
one chemical recovery what I am getting is that I am getting a value; that means, reaction
concentration is significant catalyst amount is significant. But there is no lack of fit in the

model. So, 0.183; that means, linear model is quite adequate to express this one.
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And then what I see is that equation is given over here and this standardized effect plot

also shows that AB is significant over here

and both are on the opposite side. So; that

means, sign convention that I told one is effecting positively, one is effecting on the

other side. So, when you run this, I do not know whether the residuals are saved or not.

So, I can rerun these experimental trials and save the residual so, analyze factorial.

(Refer Slide Time: 17:53)

[i]
Fle Edt Dua Colc Stt Goph View Hep Asitant Additonl Tool
SEBXBLOC0NL Q0 f il
O um T8 RS TR R AR ) BE PEFYHE
y 0 6 AT |
factorll egression: Reco.. ~ X
) 25QUARE DOE (RECOV) MWX
Factorial Regression: Recovery versus reaction conc. catalvst amount
% /
il e Remorses:

AnalyzeFacteralDesign tonge

]
™ Readuals
¥ Standardzed residuak
™ Deleted
[~ Leverage
I Codk's dstance.
[~ oFms
' Lo |

o 2

I Hfects
™ Cotffcents
™ Desgnmatix

I |yl

Standardized Effect

(] @ a (<] 2] [ a5y G
Stdorder RunOrder ConterPt Blocks ~ reaction conc catalyst amount Recovery| !
1 1 1 q Bl »

(<]

1
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1

2
3
4
5
+ Zsguare DOI (Recovlmwx

1224

<o

WE O -
ol

oW 2d



(Refer Slide Time: 17:55)

8 Miniab - United
Fle Edit Data Calc Stat Graph View Help Assistant Additional Tools
HE®XDD9|0(NK Q0! K-t
OREROLE Y*OE® K o i

4Bk BE PAFYLE

Factorh fegresson: feco., ¥ X
) 25QUARE DOE (RECOV).MWX
Factorial Regression: Recovery versus reaction conc, catalyst amount

Analyss of Variance

s OF Value
[ 2 0000

Unar H 000

rectoncone 1 208333 208333 0000

awlstomonnt 1 75000 75,000 0003

Error 9 0667 447

LadketiF 183 e a3 o [N
Pure rror LETEE I U

Total 1 2300

Regression Equation in Uncoded Units

Rernvan = 97,800 4167 reantinn eane- 2600 eatavas amavint

L - | (<] a a (5] [ a <] <] o o o o a4 s
Stdorder RunOrder CenterPt Blocks  reaction conc catalyst amount Recovery| SREST

1 1 1 1 1 1 - o

2 2 2 1 1 1 -1 3% 100837

3 3 3 1 1 1 ] 18 +1.55830

4 4 4 1 1 1 1 3100837

5 H 5 1 1 H 4 25| 045835

W4 bW+ desquare DO (Recov)mwx ‘

[ 2-squure DOE (Rec

7]

u omBgmyOmo®nuxulE

(Refer Slide Time: 17:58)

< o7 8 9 (-

B O -

A G

5 Minitab - Uniied
Fle Bt O Colc St Goph View Hep Asitant Additonl Tools

A XRG9|0(08 (00 fli-rhf|vdle

OBAROLEYHON@K x %@ * bl 4 v =Eek BB AT 8E
Tty o< [ |y =H

Factorlal Regression; Reco., ¥ X

) 25QUARE DOE (RECOV).MWX
Factorial Regression: Recovery versus reaction conc, catalyst amount

Nogel & oasss oy a0 uw
Linear 2 183333 141657 3114 0000

reaction conc 120833 208333 4127 0000

catalyst amount 175000 75000 1702  0.003

Error 9 30667 44

Lackef-Ft 18333 8333 PAERE A1 E]

Pure Errer 8 a3

Total 11323000

Regression Equation in Uncoded Units b

Recovery = 21500 4167 reaction conc- 2500 caayst amount

Alias Structure

fartor Name

+ a Q a =) 2] <6 a g =] <10 m o o o4 s
StdOrder RunOrder ConterPt  Blocks  reaction conc catalyst amount Recover

1 1 1 1 1 1 Bl

2 2 2 1 1 1 Bl %

3 3 3 1 1 gl 1 18/ 1.

4 4 4 1 1 1 1 3 1.00837

5 5 5 1 1 Bl Bl 25 045035

W4 bW+ desquare DO (Recov)mwx ‘

7]
OmMEBE®m~x®mo@®nxlE

1225

< o7 8 9 (-

B O -

AW gD



(Refer Slide Time: 18:01)

5 Minitab - Unitied

- 8 X
Fle Edit Data Calc Stat Graph View Hep Assistant Additional Tools
EE®XBG 90NN &l e
OB OLE WHEORSK « % * il EE BB fdd Y
& Ty HE e AR I
Factorlal Regression: Reco., ¥
) 25QUARE DOE (RECOVIMWX
Factorial Regression: Recovery versus reaction conc, catalyst amount
% / - bt T
@ b Gupteme
» / "
0
g 50
S0
0w
b i
0 /
5
LLALILTLLL
50 24 o 8 50 "
Standardized Effect Standardized Effect
] Q@ g o [} % O ol o | oo | en | cu [ on | ow [ o5 | ow | on | e [ om | e

StdOrder RunOrder ConterPt Blocks  reaction conc catalyst amount Recovery  SREST

1 1 1 1 1 1 Bl !ﬂm

2 2 2 1 1 1 1 36/ 100897

3 3 3 1 1 " 1 18 +1.55830

4 4 4 1 1 1 1 3100837

5 5 5 1 1 1 1 25 045835
+ | 2square DOE (Recovhmwx

R

So, in this case storage, let me try to see yes standardized residual is done over here. So,
in this case in this case so, I have saved the residual over here which is with 2 factors

only A and B, no interaction over here.
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So, in this case I can check whether this is following the normal distribution assumption.
So, I go to normal distribution, click the last residual over here and I do Anderson-
Darling test and what we are observing is that Anderson-Darling test says that P value is
more than 0.05. So, it is ok the model seems to be adequate over here and what we can

do is that we can also see in the design of experiment factor plots like that.
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So, in this case factor plots can be seen over here. So, A B which is in our model say AB
interaction is eliminated. So, we are not able to see that one, but if you click ok so, in this

case what will happen is that, you will only see without interaction plot over here.

So, if you see these diagrammatically what is expected is that if you have to maximize
the recoveries over here, then reaction concentration should be positive and catalyst
amount should be negative over here. So, combination is A at positive level and B at

negative level that is the combination that we are finding over here.
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So, if we want to see interaction effects like that. So, then you have to go to this again
analyze this one and you have to include the A B interaction terms over here and then

click OK and click OK over here.
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And then what I have to do is that design of experiments factorial, then we go to factorial

plots and then when you mention this one this will be in the model, then interaction plot

will come.

And then you can see the interaction plot its parallel lines you can see so, more or less
interaction is not prominent that it disclosed that there is no interaction is not prominent
over here ok. So, that is why we can eliminate that one from this. So, what we can do is

that again rerun this one experimental trial so, over here analyze factorial design.
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And in this case terms what we have included, this we will eliminate over here and click
OK and click OK like this. So, this is the final model that we are getting over here. And

then what we can do is that we can make a design of experiments over here, factorial

design.
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What we can do is that we can also make predictions so, that if it is 1 and minus 1 that is
what is expected value? So, in this case recovery, I want to maximize, but [ am getting
that this is the combination. So, this will be reaction time will be 1 and this will be minus

1 let us say.

So, this is the combination give me tell me that what is the expected value of the CTQ,
what is the expected recovery value of the CTQ. In options, you do not change anything
results we keep it as it is. So, storage we are not saving anything over here and view the
models that is with this. So, there is no interaction terms in this model that we have

considered and with this what is the prediction that [ want to see over here.
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So, then you will find that there is a; there is a MINITAB, MINITAB will give you what

is the prediction value over here.
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So, if you paste this one and enhance this one what will happen is that you will see that

the fit that you are seeing is 34.16. This is the prediction that if you run this combination

on an average, it is expected that you will get a fit value you will get a CTQ value on an

average is about 34.
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And there is a prediction interval and confidence interval calculation over here. So, your
prediction interval says that the value should lie between 28 and 39 mostly it will vary
because of uncertainties; that means, this value can be not exactly 34, it can vary

between 28 and 39. So, this value is the 95 percent prediction interval that we have

considered over here ok.

So, in this case this is possible over here and these are the residuals. So, we do not need
the residuals over here and then what we can do is that, we can we have seen the surface
plot also. And then what else we can do is that, we can make a response optimization; we

can well we can also see that what is the optimal value.
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If I go by formal way of optimization using one desirability function approach that
MINITAB uses. So, in this case desirability we will discuss afterwards. So, in this case
also you can get the optimal combination because if I assume both are continuous over
here and in that case MINITAB will work automatically and figure out which is the

optimal combinations like that using a desirability function over here.
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So, I want to optimize let us say what is the final optimize value like that. So, in this
case, I am using recovery to be maximized let us say and then set up what I will do is
that, I can change the lower recovery over here is to maximize over here. So, what is the
lower value higher value like these targets over here. So, you can change this one, I can
make it 50 also. So, whatever it is, how much it will reach that is up to the optimization

algorithm how much it can reach.
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So, in options what we can do is that reaction time, we can mention that constraints
within the region. So, this will be from minus 1 to plus 1, keep it within minus 1 or plus
1 and then second also, we can mention that catalyst amount also should vary between
these coded variables. So, this will be minus 1 to plus 1 over here and then we will say

ok over here.
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And graphs, this is the optimal graph over here; results will be mentioned over here,

storage we do not want to store this one so, then weightage because there is only 1
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response over here. So, we are putting a weightage and importance all importance to this

recovery over here. So, in this case [ will click OK and so, I will click OK over here.
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So, let us see what happens with this combination. So, MINITAB is recommending over

here reaction concentration as one same what we have interpreted earlier also, solution 1

1S mentioned.
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So, if I click this one and copy this one as picture and if [ want to paste this one, we can
just do that and we can see that this is the final combination optimal combination what
MINITAB is mentioning this is equals to 1 and minus 1, this is the only solution. And

recovery will be around 34 and some desirability index it is showing.

So, we can ignore this one. So, if it is towards one that is the best scenario so, in this case
whatever is given, we have reached up to this using desirability index, but the
combination is 1 and minus 1 that we are getting over here. So, that is the combination
we have also seen in this case also. So, this is the so, that is also possible over here. So,
with this that is plus and minus 1 combination what we have seen is also prominent over

here.
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Coding makes effect and regression coefficient unit less. Thus,

comparison of magnitude of factor effect becomes easier.

Prof. Indrajit Mukherjee, STMSOM, IIT Bombay

And one important aspects that we have not told is that how they are coding basically to
minus 1 and plus 1 conversions like this. So, Montgomery gives you minus 1 to plus 1
so; that means, this is when [ am coding so, coding the variables like that. So, when we
have a high level and low levels like that each is having high level and low level like
that. So, this is the low level and this is high level. This can have actual values, this can

have actual value may be 40 and this may be 60 like that.

So, with actual value how do I convert into the minus 1 and plus 1? So, that I can
compare the effect estimations like that. So, there is a formulation that is given over here.
So, this is x concentration over here, actual concentration over here you have to take,
what is maximum minimum like this divided by 2 and then we can get the values that is

within minus 1 and plus 1 like that.

So, all the values will be converted into minus 1 and plus 1 similarly so, actual value. So,
this is for concentration one of the variables is used is concentration over here and this is
the catalyst amount. So, in this case second one is catalyst amount. So, these are the two
formulations which can be used to standardize is to standardize within or coding the

variables within minus 1 and plus 1.

So, we can convert that one. Why we convert that one? Because if we code this one the,
it becomes unit less. So, coefficient becomes unitless. So, we can compare the magnitude

of the factor effect basically then we can compare. So, when we do design of
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experiments, what we will see is that most of the time people are coding that one. So,
they are converting the variables in the coded variables, then it is easier to compare the

effects; it is easier to compare the effects.
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Prof. Indrajit Mukherjee, STMSOM, IIT Bombay

So, that is one aspects we have to understand and when we are replicating basically at the
corner points, what we what is happening is that we have a total values of this. So, this is
replicated 3 times over here, this is replicated 3 times and these are the 4 corner points

that is for these 3 replicated trials of recovery.

So, if you 2 dimensional view of this is that this is the reaction time in x axis let us say
and this is another y axis is given over here and z axis will be basically CTQ values that

you are observing over here. So, these are the values we can think of as Z axis over here.

So, this is symbolic notation minus 1 is arbitrary that I told and if it is continuous
variable, it will it can be coded like that way or if your qualitative factors if you are
considering also so, there is no as such meaning for quality factors which is plus 1 which

1S minus 1.

So, one can be taken as plus other one as. So, this is arbitrary completely like that ok. So,
qualitative and quantitative factors can also be considered in the experimentation. So,

that is possible like that.
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Statistical Testing - ANOVA

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Model 3291.667 97.222 2482 0.000
Linear 2283.333141.667 3617 0.000
reaction conc 1208333 208.333 5319 0.000
catalyst amount 1 75000 75.000 1915 0.002
2-Way Interactions 1 8333 8333 213 0.183
reaction conc*catalystamount 1 8333 8333 213 0.183
Error 8 31333 3917
Total 11 323.000

The F-test confirm if A, B, or AB effects are statistically important

Prof. Indrajit Mukherjee, SIMSOM, IIT Bombay
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Coded Coefficients

Term Effect Coef SE Coef T-Value P-Value VIF
Constant 27500 0571 4814 0,000

reaction conc 8333 4167 0571 729 0.000 1.00
catalyst amount 5000 -2500 0571 -438 0.002 1.00

reaction conc*catalyst amount 1.667 0833 0571  1.46 0.1831.00

—_—

Regression Equation in Uncoded Units

Recovery = 27.500 + 4.167 reaction conc - 2.500 catalyst amount
+0.833 reaction conc*catalyst amount J/
____———-"_———

Model Summary

"
S R-sq R-sq(adj) R-sq(pred)
197906 90.30%  86.66% (78.17% A

Prof. Indrajit Mukherjee, SIMSOM, IIT Bombay

And this already we have mentioned that P values will indicate which is significant
which is not and if we have not lost much in the R square predicted so, whether to keep
this one or not to keep this one. So, we have drop this one because this is not making

significant impacts like that. So, P value is not significant.

So, in this case whether to drop this one or keep this one maybe R square predictor is the
criteria which can be used to see that whether it is improving or not, but everything

cannot be based on statistics sometimes real life interpretation is also required. So, in this
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case if I am placing more emphasize on the more emphasize if we are putting on the

prediction over here prediction model should be correct like that.

So, in that case to improve the prediction model maybe we can consider that one. But
most of the time we will see that they will drop some amount of information we will lose
well that is ok from the perspective of prediction and all these things considering all of

this ok.
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Prof. Indrajit Mukherjee, SIMSOM, IIT Bombay

So, this is the standard effects that we have seen. So, this is also we have seen like that
and then what we can do is that we can take another example where I have 3 factors.
When I have 3 factors over here so, complexity is increasing you see, I have taken 3
factors over here all at 2 levels. So, this will be 2 levels and 3 factors over here. So,

minimum number of trials is & over here.

So, I have a factor A, B and C like this and the trials will be like this all at low level like
that and then one will be at low level, then second one will be at low level then
interaction effects of this will be calculated, then ¢ will be like this. So, symbolically we
can develop this design matrix we can develop this design. Only thing is that earlier it

was in two dimension, now it is in three dimension.

So, there is a factor A, factor B and factor C which is at low level high level and this is
also at low level and high level, this is also at low level and high level like that. So, ABC
is the maximum interaction terms over here. There are three factors A, B and C. So, A B
and C all at high level so, this is the combination that was done and in the cube, this is

the extreme point that we are seen.

So, now it is a cube basically, earlier it was a surface and this is a cube that is generated
over here if I have three factors like that. So, the total surface that is generated over here

is basically a cube. So, ok and we cannot see 4 dimensions over here; that means, CTQ if
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I place it another dimension, it is not visible we are not able to visualize that one, but we

can visualize if there is 3 factors what is the surface.

So, earlier it was just flat surface that we are seeing like that in two dimensions A and B
factors like that. Now, it is a cube and we will experiment within this cube. So, you can
think of a cube as a an experimental ground basically. So, this within this cube, I can
move anywhere within this cube I can move anywhere. So, this is the cube views over
here that will be used over here. But only thing is that the analysis of this will we have to

SEe.

So, this is 2 cube factors. Similarly we can also see experimentation with when we have
3 levels over here instead of 2 levels. So, 3 levels 2 factors like that also we can see. So,
some another examples, we will take over here before we move on to some other topics
like that. So, we will take 2° design over here and we will also take let us say 3° design;

that means, level will be 3.

So, this will have 3 levels like that. So, maybe we can say minus 1 0 and plus 1 that are
the levels that we can think of and there may be 2 factors like that. So, k will be equals to
s0, this will be written as 3 square; that means, 9 experimental trial minimum is required,

we can replicate that one.

So, what we will do is that we will close this session over here and we will continue
discussing on 2°and 3° designs like that and how to analyze. So, C square we will place

more emphasis on 3* square design like that and then move forward with other topics

like that.

Thank you for listening.
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