## Quality Control and Improvement with MINITAB Prof. Indrajit Mukherjee Shailesh J. Mehta School of Management Indian Institute of Technology, Bombay

## Lecture - 30 Two-factor symmetric Design, Robust setting, Two–way ANOVA

Hello and welcome to session 30 of course on Quality Control and Improvement with MINITAB. I am Professor Indrajit Mukherjee from Shailesh J. Mehta School of Management, IIT Bombay. So, earlier in the last session what we have seen is that we have taken two categorical factors and we have seen the influence on the CTQs like adhesive strength and we have taken and we have seen that the interaction is not so significant.

So, we have experimented and we have analysed the data like this. So, and the same thing we will do for another experimentation to see that when there is a continuous variable what else we can do.

(Refer Slide Time: 00:52)



So, this case, battery life experimentation, is taken from Douglas Montgomery's books on Design and Analysis of Experiments and in this case engineer is interested to maximise the battery life and two factors are considered over here. One is the material type and another is temperature. Temperature is a continuous variable, but material type is a categorical variable. Battery life is also a continuous variable.

#### (Refer Slide Time: 01:39)



An experiment was conducted at three levels in each for material type which is factor A and this is a temperature which is factor B, is at three levels. This is a symmetric design because levels are same for material type and also temperature. So, this is a balance design we can also see that number of replicates is same. Total number of experimental trials is 9 over here and in each trial I have 4 replicates over here.

So,  $9 \times 4 = 36$ , number of observations we are having and everything is done keeping in mind that it is randomized experimentation. So, what we will do is that we will just see how to analyse this data. So, one is categorical, one is continuous variable in the predictor side and CTQ is continuous variable over here. So, all assumptions normality assumptions and everything is true whenever I am doing design of experiments. So, we have to verify that one whenever we get the residual and we have to cross check all the assumptions that we have done in regression also ok.

#### (Refer Slide Time: 03:08)

| Mi   | initab - Untitled |              |                             |           |            |                     |                   |                        |          |       |          |                         |         |     |            | 8 > |
|------|-------------------|--------------|-----------------------------|-----------|------------|---------------------|-------------------|------------------------|----------|-------|----------|-------------------------|---------|-----|------------|-----|
| File | Edit Data         | Calc Stat    | Graph View H                | lelp Assi | stant Ad   | ditional Tools      |                   |                        |          |       |          |                         |         |     |            |     |
| -    | 8 8 X 6           | 00           | Basic Statistics            | ,         | fx 3       | -1824               | 2                 |                        |          |       |          |                         |         |     |            |     |
| -    |                   | 11           | Regression                  | ,         | . 1971 1 4 | · P. III is at 1. V |                   | 1                      | 1.19     |       |          |                         |         |     |            |     |
|      |                   | +01          | ANOVA                       | )         | - One-     | Way                 | BUTWA             |                        | ¥ 0.5    |       |          |                         |         |     |            |     |
|      | : 6               | <u>e</u>   . | DOE                         | ,         | 幸 Anal     | sis of Means        |                   |                        |          |       |          |                         |         |     |            |     |
|      |                   |              | Control Charts              | ,         | AB Balan   | iced ANOVA          |                   |                        |          |       |          |                         |         |     |            |     |
|      |                   |              | Quality Tools               | ,         | Gene       | ral Linear Model    | •                 |                        |          |       |          |                         |         |     |            |     |
|      |                   |              | Reliability/Survival        | ,         | Mixe       | d Effects Model     | •                 |                        |          |       |          |                         |         |     |            |     |
|      |                   |              | <b>Predictive Analytics</b> | ,         | € Fully    | Nested ANOVA        |                   |                        |          |       |          |                         |         |     |            |     |
|      |                   |              | Multivariate                | ,         | 🔥 Gene     | ral MANOVA          | 1init             | ahl                    |          |       |          |                         |         |     |            |     |
|      |                   |              | Tables                      |           | o? Test f  | or Equal Variances  |                   |                        |          |       |          |                         |         |     |            |     |
|      |                   |              | Nonnarametrics              |           | t inter    | val Plots           |                   |                        |          |       |          |                         |         |     |            |     |
|      |                   |              | Equivalence Tests           | ,         | A Main     | Effects Plot        |                   |                        |          |       |          |                         |         |     |            |     |
|      |                   |              | Power and Sample S          | ire b     | × Inter    | action Plot         | Орг               | en Ctrl+O              |          |       |          |                         |         |     |            |     |
|      |                   |              |                             |           |            |                     |                   |                        |          |       |          |                         |         |     |            |     |
| 4    | CI                | C2-T         | G                           | C4        | CS         | C6                  | C7                | C8 5                   | C9       | C10   | C11      | C12 (                   | C13     | C14 | C15        | Ľ   |
|      | Primer Type       | Method       | Adhesive Force              |           |            | Plate material Type | Temp of Operation | Battery Life (In Hour) |          | Temp  | Pressure | Impurity (No Replicate) | RESII   |     |            |     |
| 7    | 2 1               | Dipping      | 5.6                         |           |            | 1                   | 70                | 80                     |          | 125   | 30       | 1                       | 22.75   |     |            |     |
| 8    | 2 1               | Dipping      | 4.9                         |           |            | 1                   | 70                | 75                     |          | 125   | 35       |                         | 17.75   |     |            |     |
| 9    | 2 1               | Dipping      | 5.4                         |           |            | 1                   | 125               | 20                     |          | 125   | 40       | 2                       | -37.50  |     |            |     |
| 10   | 2 5               | Spraying     | 5.8                         |           |            | 1                   | 125               | 70                     |          | 125   | 45       | 1                       | 12.50   |     |            |     |
| 11   | 2 5               | Spraying     | 6.1                         |           |            | 1                   | 125               | 82                     |          | 150   | 25       | 5                       | 24.50   | 1   |            |     |
| 12   | 2 5               | Spraving     | 6.3                         |           |            | 1                   | 125               | 58                     |          | 150   | 30       | (                       | 0.50    |     | 90         |     |
| 4    | PH + As           | ymetric Fa   | actorial Design and T       | Wee       |            |                     |                   |                        |          |       |          |                         |         |     | The second |     |
| P    | Asymetric Fa      | ctorial Des  | ign and Two-way AN          | IOWA.mwx  | 6          |                     |                   |                        |          |       |          |                         |         | 1   | 25         |     |
| Y    | O Type I          | here to s    | earch                       |           |            | 0 📮 🔒               | 🚖 📈 8             |                        |          | 10 20 | 53       | A 6                     | 90 6 46 | 1   | The second |     |
| NPT  | TEL. INPOT        | 10.0         |                             |           |            | •                   |                   |                        | <b>•</b> |       |          |                         |         | 100 | 200        | 100 |

So, in this case what we will do is that this data is in MINITAB and I have already located this data over here C6, C7, C8 this is plate material temperature and battery life over here. So, first we can see that whether the variance is same throughout for every plate material and temperature combinations whether the variance whether the variance is same or not. So, that check or we can do that. So, we go to ANOVA analysis over here and test for equal variance. Response is battery life over here and the factor is plate material and temperature over here.

(Refer Slide Time: 03:33)



(Refer Slide Time: 03:49)



In options we will go for other than normality. So, we can also do normality test which will give me result by Bartlett tests.

# (Refer Slide Time: 04:01)

| File                                    |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |                         |                                                                        |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     | 0 : |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------|--------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|-----|-----|-----|
|                                         | Edit Data                                                                                                                             | Cale Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Graph View H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lelo Assi                                                   | istant Ade              | Stional Tools                                                          |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
| -                                       |                                                                                                                                       | Ra in It                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00                                                          | fr Se                   | 1. 1. B 1. 1                                                           |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
|                                         |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WNRER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             | 5 157 E als             | P. H. A. A. LV                                                         | V QUAN                                                           |                                                                          | 59    |                                                              |                                                     |                                                                |                                                                    |     |     |     |
|                                         | 0                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             | V Del 1 M               |                                                                        | COCAN                                                            | DE LU LO UNITA                                                           | × 0.9 |                                                              |                                                     |                                                                |                                                                    |     |     |     |
| _                                       | 1                                                                                                                                     | w r.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TELECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 121                                                       |                         | BER                                                                    |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
| Test                                    | t for Equal Va                                                                                                                        | riances: B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |                         |                                                                        |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
| B A                                     | SYMETRIC FAC                                                                                                                          | TORIAL DESI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GN AND TWO-WAY AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WWM.AWO                                                     |                         |                                                                        |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
| Tes                                     | st for Equ                                                                                                                            | al Varia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nces: Battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Life (I                                                     | n Hour                  | ) versus Plate n                                                       | naterial Type, T                                                 | emp of Operatio                                                          | n     |                                                              |                                                     |                                                                |                                                                    |     |     |     |
|                                         |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |                         |                                                                        |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
| ٨                                       | Aethod                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |                         |                                                                        |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
| N                                       | ull hypothesi                                                                                                                         | s A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dl variances are equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | al                                                          |                         |                                                                        |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
| A                                       | Vternative hyp                                                                                                                        | oothesis A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t least one variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | is differen                                                 | nt                      |                                                                        |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
| S                                       | ignificance le                                                                                                                        | rel c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                         |                                                                        |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
|                                         |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |                         |                                                                        |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
| 9                                       | 5% Bonter                                                                                                                             | roni Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | fidence Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | is for Sta                                                  | andard L                | Peviations                                                             |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
|                                         | Plate                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |                         |                                                                        |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
|                                         | Introducial                                                                                                                           | Temp of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |                         |                                                                        |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
|                                         | material<br>Type O                                                                                                                    | Temp of peration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N StDev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CI                                                          |                         |                                                                        |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
| -                                       | material<br>Type O                                                                                                                    | Temp of<br>peration<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N StDev<br>4 45.3532 (2.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CI<br>032, 2311.                                            | 85)                     |                                                                        |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
|                                         | material<br>Type O                                                                                                                    | Temp of<br>peration<br>15<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N StDev<br>4 45.3532 (2.90)<br>4 23.5991 (4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CI<br>032, 2311.1<br>1167, 453.6                            | 85)<br>57)              |                                                                        |                                                                  |                                                                          |       |                                                              |                                                     |                                                                |                                                                    |     |     |     |
| -                                       | material<br>Type O<br>1<br>1<br>1                                                                                                     | Temp of<br>peration<br>15<br>70<br>125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N StDev<br>4 45.3532 (2.90)<br>4 23.5991 (4.00<br>4 26.8514 (1.50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CI<br>032, 2311.1<br>1167, 453.6<br>678, 1559.1             | 85)<br>57)<br>82)       |                                                                        |                                                                  | la.                                                                      |       |                                                              |                                                     |                                                                |                                                                    |     |     | ٣   |
| -                                       | material<br>Type O<br>1<br>1<br>1<br>C1                                                                                               | Temp of<br>peration<br>15<br>70<br>125<br><br>C2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N StDev<br>4 45.3532 (2.90)<br>4 23.5991 (4.00)<br>4 26.8514 (1.50)<br>C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CI<br>032, 2311.1<br>1167, 453.6<br>678, 1559.1<br>C4       | 85)<br>57)<br>82)<br>CS | C6                                                                     | 67                                                               | C8 Z                                                                     | 09    | C10                                                          | C11                                                 | C12 g                                                          | C13                                                                | C14 | C15 | ¥   |
| -                                       | material<br>Type O<br>1<br>1<br>1<br>1<br>C1<br>Primer Type                                                                           | Temp of<br>peration<br>15<br>70<br>125<br>C2-T<br>Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N StDev<br>4 45.3532 (2.90)<br>4 23.5991 (4.00)<br>4 26.8514 (1.50)<br>C3<br>Adhesive Force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CI<br>032, 2311.1<br>1167, 453.6<br>678, 1559.1<br>C4       | 85)<br>57)<br>82)<br>CS | C6<br>Plate material Type                                              | C7<br>Temp of Operation                                          | CB 2<br>Battery Life (in Hour)                                           | 69    | C10<br>Temp                                                  | C11<br>Pressure                                     | C12 g<br>Impurity (No Replicate)                               | C13<br>RESI1                                                       | C14 | C15 |     |
| -                                       | material<br>Type O<br>1<br>1<br>1<br>1<br>C1<br>Primer Type<br>2                                                                      | C2-T<br>Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N StDev<br>4 45.3532 (2.90)<br>4 23.5991 (4.00<br>4 26.8514 (1.50)<br>C3<br>Adhesive Force<br>5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CI<br>032, 2311.1<br>1167, 453.6<br>678, 1559.1<br>C4       | 85)<br>57)<br>82)<br>C5 | C6<br>Plate material Type<br>1                                         | C7<br>Temp of Operation<br>70                                    | CB z<br>Battery Life (In Hour)<br>80                                     | 69    | C10<br>Temp<br>125                                           | C11<br>Pressure<br>30                               | C12 g<br>Impurity (No Replicate)                               | C13<br>RESI1<br>22.75                                              | C14 | CIS |     |
| -                                       | material<br>Type O<br>1<br>1<br>1<br>C1<br>Primer Type<br>2<br>2<br>2                                                                 | Temp of<br>peration<br>15<br>70<br>125<br>C2-T<br>Method<br>Dipping<br>Dipping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N StDev<br>4 45.3532 (2.90)<br>4 23.5991 (4.00<br>4 26.8514 (1.50)<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CI<br>032, 2311.1<br>1167, 453.6<br>678, 1559.1<br>C4       | 85)<br>57)<br>82)<br>C5 | C6<br>Plate material Type<br>1                                         | C7<br>Temp of Operation<br>70<br>105                             | C8 m<br>Battery Life (In Hour)<br>80<br>73                               | (9    | Ct0<br>Temp<br>125<br>125                                    | C11<br>Pressure<br>30<br>35                         | C12<br>Impurity (No Replicate)<br>1                            | C13<br>RESI1<br>22.75<br>17.75                                     | C14 | CIS |     |
| 7                                       | material Type O 1 1 1 1 Primer Type 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                             | Temp of<br>peration<br>15<br>70<br>125<br><br>C2-T<br>Method<br>Dipping<br>Dipping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N StDev<br>4 45.3532 (2.90)<br>4 23.5991 (4.00<br>4 26.8514 (1.50)<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CI<br>032, 2311.1<br>1167, 453.6<br>678, 1559.1<br>C4       | 85)<br>57)<br>82)<br>CS | C6<br>Plate material Type<br>1<br>1<br>1                               | C7<br>Temp of Operation<br>70<br>125<br>125                      | CB 22<br>Battery Life (in Hour)<br>80<br>75<br>20<br>70                  | (9    | C10<br>Temp<br>125<br>125<br>125                             | C11<br>Pressure<br>30<br>35<br>40<br>45             | C12 g<br>Impurity (No Replicate)<br>4<br>2<br>3                | C13<br>RESI1<br>22.75<br>17.75<br>-37.50<br>12.50                  | C14 | C15 |     |
|                                         | material<br><u>Type</u> 0<br>1<br>1<br>2<br>Primer Type<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2              | Temp of peration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N SIDev<br>4 45.3532 (2.90)<br>4 23.5991 (4.00<br>4 26.8514 (1.50)<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CI<br>032, 2311,<br>1167, 453,6<br>678, 1559,1<br>C4        | 85)<br>57)<br>82)<br>C5 | C6<br>Plate material Type<br>1<br>1<br>1                               | C7<br>Temp of Operation<br>70<br>125<br>125<br>125               | CB 77<br>Battery Life (In Hour)<br>00<br>75<br>20<br>70<br>82            | (9    | Ct0<br>Temp<br>125<br>125<br>125<br>125<br>125               | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25       | C12 g<br>Impurity (No Replicate)<br>4<br>2<br>3<br>9           | C13<br>RESI1<br>22.75<br>17.75<br>-37.50<br>12.50<br>24.50         | C14 | CIS | •   |
| -<br>7<br>3<br>0<br>0<br>1              | material<br><u>Type</u> 0<br>1<br>1<br>2<br><b>C1</b><br>Primer Type<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | Temp of peration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N SIDev<br>4 45.3532 (2.90)<br>4 23.5991 (4.00<br>4 26.8514 (1.50)<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1<br>6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CI<br>032, 2311.1<br>1167, 453.6<br>678, 1559.1<br>C4       | 85)<br>57)<br>82)<br>C5 | C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1                | C7<br>Temp of Operation<br>70<br>125<br>125<br>125<br>125        | CB 52<br>Battery Life (In Hour)<br>00<br>75<br>20<br>70<br>82<br>58      | 69    | Ct0<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>Impurity (No Repicate)<br>4<br>2<br>3<br>9<br>6         | C13<br>RESI1<br>22:75<br>17:75<br>-37:50<br>12:50<br>24:50<br>0.50 | C14 | CIS | v   |
| 4<br>7<br>8<br>9<br>0<br>11<br>2<br>4   | туре 0<br>1<br>1<br>С1<br>Ргітег Туре<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2  | Temp of peration 15<br>70<br>125<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N SIDev<br>4 45,3532 (2.90)<br>4 23,5991 (4.00<br>4 26,8514 (1.50)<br>4 26,8514 (1.50)<br>5,6<br>4,9<br>5,6<br>4,9<br>5,8<br>6,1<br>6,3<br>6,3<br>6,3<br>6,3<br>6,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CI<br>032, 2311.1<br>1167, 453.6<br>678, 1559.1<br>C4       | 85)<br>57)<br>82)<br>C5 | C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1                | C7<br>Temp of Operation<br>70<br>125<br>125<br>125<br>125<br>125 | CB 25<br>Battery Life (In Hour)<br>80<br>75<br>20<br>70<br>82<br>58<br>4 | 69    | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 r<br>Impurity (No Replicate)<br>4<br>2<br>3<br>9<br>6<br>6 | C13<br>RESI1<br>22:75<br>17:75<br>-37:50<br>12:50<br>24:50<br>0.50 | C14 | CIS | Y   |
| +<br>7<br>8<br>9<br>10<br>11<br>12<br>4 | туре 0<br>1<br>1<br>С1<br>Ргітег Туре<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2  | Temp of peration 15 70 125 C2-T Method Dipping Dipping Dipping Spraying Spr | N StDev<br>4 45.3532 (2.90)<br>4 23.5991 (4.00<br>4 26.8514 (1.50)<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1<br>6.3<br>sctorial Design and<br>Tac way MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CI<br>032, 2311.1<br>1167, 453.6<br>678, 1559.1<br>C4       | 85)<br>57)<br>82)<br>C5 | C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | C7<br>Temp of Operation<br>70<br>125<br>125<br>125<br>125        | C8 72<br>Battery Life (m Hour)<br>80<br>75<br>20<br>70<br>82<br>58<br>4  | (9    | C10<br>Temp<br>125<br>125<br>125<br>125<br>150<br>150        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 g<br>Impurity (No Repicate)<br>4<br>2<br>3<br>9<br>6<br>0  | C13<br>RESI1<br>22.75<br>17.75<br>-37.50<br>12.50<br>24.50<br>0.50 | C14 | CIS |     |
| +<br>7<br>8<br>9<br>10<br>11<br>12<br>4 | туре 0<br>1<br>1<br>1<br>С1<br>Ргітег Туре<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                           | Temp of peration 15 70 125 C2-T Method Dipping Dipping Dipping Spraying Spr | StDev           4         45332         (2.90)           4         25591         (4.00)           4         26.8514         (1.50)           C3         Adhesive Force         5.6           4.9         5.8         6.1           5.8         6.1         6.3           ectorial Design and Toolspan and Tools | Cl<br>032, 2311,1<br>1167, 453,6<br>678, 1559,1<br>C4<br>C4 | 85)<br>57)<br>82)<br>CS | C6<br>Plate material Type<br>1<br>1<br>1<br>1                          | C7<br>Temp of Operation<br>70<br>70<br>125<br>125<br>125<br>125  | CB 57<br>Battery Life (m Hour)<br>80<br>75<br>20<br>70<br>82<br>58<br>4  | 0     | C10<br>Temp<br>125<br>125<br>125<br>125<br>150<br>150        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 Impurity (No Replicate)                                    | C13<br>RESI1<br>22.75<br>17.75<br>-37.50<br>12.50<br>24.50<br>0.50 | C14 | CIS |     |

# (Refer Slide Time: 04:03)



So, in this case if I go with this and this is the Levene's test and multiple comparison test that we have done.

## (Refer Slide Time: 04:05)

| ate material Type Temp | f Operation               |  |
|------------------------|---------------------------|--|
| 1                      | 15 - Multiple Comparisons |  |
|                        | 70 Leven's Test           |  |
|                        | 125                       |  |
| 2                      | 15                        |  |
|                        | 70- II                    |  |
|                        | 125                       |  |
| 3                      | 15                        |  |
|                        | 70                        |  |
|                        | 125                       |  |
|                        | 0 50 100 150 200 250 300  |  |

So, we can take any of this over here. So, I will go by Levene's test let us say and 0.608 is quite significantly more than 0.05. So, in this case we can say that there is no as such deviation, but at 15 although we are seeing, but overall results it is showing it is not so significant the variance is not changing significantly ok throughout the experimentation. So, we are satisfied with this. So, immediately what we will do is that we will go for ANOVA analysis or balanced ANOVA.

(Refer Slide Time: 04:32)

| N N  | Ainitab - Untitled             |                                                           |               |                   |                                                  |                                    |                    |      |     |      |          |                         |        |     |       | 8 | 5 |
|------|--------------------------------|-----------------------------------------------------------|---------------|-------------------|--------------------------------------------------|------------------------------------|--------------------|------|-----|------|----------|-------------------------|--------|-----|-------|---|---|
| File | e Edit Data Calc               | itat Graph View H                                         | lelp Assistar | t Addit           | tional Tools                                     |                                    |                    |      |     |      |          |                         |        |     |       |   |   |
| 2    | 8 8 × 0 0                      | <b>Basic Statistics</b>                                   |               | fx 30.            | 24824                                            |                                    |                    |      |     |      |          |                         |        |     |       |   |   |
| -    |                                | Regression                                                | * c. B        | 44.16             | The state of the                                 |                                    |                    | LY M | 19  |      |          |                         |        |     |       |   |   |
|      |                                | ANOVA                                                     | • 1           | One-W             | lay                                              | - our - v                          |                    |      | 0.5 |      |          |                         |        |     |       |   |   |
|      | : 🗠 🖓                          | DOE                                                       | • #           | Analysi           | is of Means                                      |                                    |                    |      |     |      |          |                         |        |     |       |   |   |
| Te   | est for Equal Variances        | Control Charts                                            | > .d          | Balanc            | ed ANOVA                                         |                                    |                    |      |     |      |          |                         |        |     |       |   |   |
| 8    | ASYMETRIC FACTORIAL            | Quality Tools                                             | ,             | Genera            | I Linear Model                                   | •                                  |                    |      |     |      |          |                         |        |     |       |   |   |
| Te   | est for Equal Va               | Reliability/Survival<br>Predictive Analytics              | , d           | Mixed<br>Fully N  | Effects Model<br>lested ANOVA                    | terial Type, Te                    | mp of Oper         | atio | n   |      |          |                         |        |     |       |   |   |
|      | Multiple comparisons<br>Levene | Multivariate<br>Time Series                               | : 13          | Genera            | I MANOVA                                         |                                    |                    |      |     |      |          |                         |        |     |       | ^ |   |
|      |                                | Tables                                                    | , o           | Test for          | r Equal Variances                                |                                    |                    |      |     |      |          |                         |        |     |       |   |   |
| fc   | or Equal Variances<br>Multipl  | Nonparametrics<br>Equivalence Tests<br>Power and Sample ! | size , 🖄      | Main E<br>Interac | ffects Plot<br>tion Plot                         | Opera 🎽                            |                    |      |     |      |          |                         |        |     |       |   |   |
|      | 2                              | 15                                                        |               |                   | Multiple Com<br>P-Value<br>Levene's 1<br>P-Value | sarisons<br>2.648<br>iest<br>2.608 |                    |      |     |      |          |                         |        |     |       |   |   |
| ŀ    | C1 C2-                         | C3                                                        | C4            | CS                | C6                                               | C7                                 | C8                 | 8    | C9  | C10  | CII      | C12 🛛                   | C13    | C14 | C15   |   |   |
|      | Primer Type Meth               | d Adhesive Force                                          |               |                   | Plate material Type                              | Temp of Operation                  | Battery Life (In H | our) |     | Temp | Pressure | Impurity (No Replicate) | RESII  |     |       |   |   |
|      | 2 Dippin                       | 5.6                                                       |               |                   | 1                                                | 70                                 |                    | 80   |     | 125  | 30       | 1                       | 22.75  |     |       |   |   |
| B    | 2 Dippin                       | 4.9                                                       |               |                   | 1                                                | 70                                 |                    | 75   |     | 125  | 35       | 4                       | 17.75  |     |       |   |   |
| 9    | 2 Dippin                       | 5.4                                                       |               |                   | 1                                                | 125                                |                    | 20   |     | 125  | 40       | 2                       | -57.50 |     |       |   |   |
| 0    | 2 Sprays                       | g 5.8                                                     |               |                   | 1                                                | 125                                |                    | 70   |     | 125  | 45       | 3                       | 12.50  |     |       |   |   |
| 11   | 2 Sprayi                       | g 6.1                                                     |               |                   | 1                                                | 125                                |                    | 82   |     | 150  | 25       | 9                       | 24.50  |     | (mar) |   |   |
| 12   | 2 Spraw                        | Q 0.3                                                     |               |                   | 1                                                | 125                                | Dor 1              | 28   |     | 150  | 30       | 0                       | 0.50   |     | 1     |   |   |
|      | Asymetric Factorial            | Design and Two-way AN                                     | IOWA.mwx      |                   |                                                  |                                    |                    |      |     |      | 53       |                         |        | X   |       |   |   |

## (Refer Slide Time: 04:36)



When I select balanced ANOVA, I will write which is the response. So, I will give response, I will give plate material and temperature over here and also plate material and interactions also I want to see. So, multiplication of this with temperature of operations over here.

(Refer Slide Time: 04:55)

| Minitab - Untitle<br>File Edit Data<br>☐ ☐ ⊕ 💥 | Calc Stat Gr                                               | aph View Help                                        | Assistant Add                          | Stional Tools<br>→ 古静 ジズ<br>応服来我   Y | ⋞<br>⋈∎≋⋉★⋡                                                | 11 <b>년 61 년</b> 14 15                                          | 2      |          |                         |               |     | ×   | đ |
|------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|----------------------------------------|--------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|--------|----------|-------------------------|---------------|-----|-----|---|
| Test for Found V                               | riances: R Y >                                             |                                                      |                                        | 1 EP 12. 08                          |                                                            |                                                                 |        |          |                         |               |     |     |   |
| ASYMETRIC FAI                                  | TORIAL DESIGN AN                                           | D TWO-WAY ANOVA                                      | <br>fe (In Hour                        | ) versus Plate n                     | naterial Type, Te                                          | emp of Operation                                                | h      |          |                         |               |     |     | • |
| Multiple com<br>Levene                         | parisons<br>Q                                              | - 0.648<br>80 0.608                                  |                                        | Balanced A                           | Responses: Model:                                          | Battery Life (in Hour)                                          | ×      |          |                         |               |     |     |   |
| for Equal Val                                  | iances: Batter<br>Multiple compar<br>ppe Temp of Oper<br>1 | y Life (In Hour<br>ison intervals for<br>ation<br>15 | ') vs Plate ma<br>the standard de<br>t | terial Tyr<br>viation, α =           | Type**Temp Balanced ANOVA: Opt Use the restricted for Help | of Operation' ions m of the model OK Cancel Options phs Results | X      |          |                         |               |     |     |   |
| + C1                                           | C2-T                                                       | C3                                                   | C4 C5                                  | Help                                 |                                                            | OK                                                              | Cancel | C11      | C12 🛛                   | C13           | C14 | C15 |   |
| Primer Typ                                     | e Method Adi                                               | nesive Force                                         |                                        | Plate material type                  | Temp or operation                                          | battery bie (in Hour)                                           | remp   | Pressure | Impurity (No Replicate) | RESII         |     |     |   |
| 1                                              | 2 Dipping                                                  | 5.6                                                  |                                        | 1                                    | 70                                                         | 80                                                              | 125    | 30       | 1                       | 22.75         |     |     |   |
| 3                                              | 2 Dipping                                                  | 4.9                                                  |                                        | 1                                    | 70                                                         | 75                                                              | 125    | 35       | 4                       | 17.75         |     |     |   |
| 9                                              | 2 Dipping                                                  | 5.4                                                  |                                        | 1                                    | 125                                                        | 20                                                              | 125    | 40       | 2                       | -37.50        |     |     |   |
| 0                                              | 2 Spraying                                                 | 5.8                                                  |                                        | 1                                    | 125                                                        | 70                                                              | 125    | 45       | 3                       | 12.50         |     |     |   |
| 1                                              | 2 Spraying                                                 | 6.1                                                  |                                        | 1                                    | 125                                                        | 82                                                              | 150    | 25       | 9                       | z4.50         |     |     |   |
| 4 D H +                                        | c Spraying<br>Asymetric Factori<br>Factorial Design a      | 6.3<br>al Design and Tw<br>nd Two-way ANOVA          | LITTWA                                 |                                      | 123                                                        | 38                                                              | 150    | 30       |                         | 0.50          | V   | T   |   |
| Р Тур                                          | e here to searc                                            | h                                                    |                                        | 0 📮 🔒                                | 💼 🖬 🕅                                                      | ) 🗩 🔍 (                                                         | 8 🔟 🛛  | 2        | 🦲 ^ 🖗                   | <b>10</b> 🔊 📾 | 1   | J.  | 4 |

So, in options I do not have to do anything.

## (Refer Slide Time: 04:57)



And in graphs where we can see normal plot and the residual plots versus fit and storage what we can do is the residual we can save and then we can click OK over here.

(Refer Slide Time: 05:02)

| File I  | idit Data Calc Stat                   | Graph View I              | Help Assir | stant Additional Tools | 1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                         | 0 i                   | 50      |      |     |                   |          |              |     |       | đ |
|---------|---------------------------------------|---------------------------|------------|------------------------|---------------------------------------------------------------|-----------------------------------------|-----------------------|---------|------|-----|-------------------|----------|--------------|-----|-------|---|
|         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | MBK                       |            | YEBR                   |                                                               |                                         |                       | r Da    |      |     |                   |          |              |     |       |   |
| Test fi | or Equal Variances: B                 | ▼ X                       |            |                        |                                                               |                                         |                       |         |      |     |                   |          |              |     |       |   |
| I ASY   | METRIC FACTORIAL DESIG                | N AND TWO-WAY AI          | XWM.AVOV   |                        |                                                               |                                         |                       |         |      |     |                   |          |              |     |       |   |
| Test    | for Equal Varia                       | nces: Battery             | Life (li   | n Hour) versus         | Balanced A                                                    | aterial Type, Ter<br>adysis of Variance | np of Operatio        | 'n      | ×    |     |                   |          |              |     |       |   |
| Lev     | ene                                   | 0.80 0.608                |            |                        |                                                               | Responses: 8                            | attery Life (In Hour) |         |      |     |                   |          |              |     |       |   |
| Pla     | e material Type Temp of 1 2           | Operation<br>15 - 1       |            |                        | Sek                                                           | F Ris<br>↓ Residuale<br>Heb             | s Results             | Storage |      |     | 60                |          | (1)          |     |       |   |
| P       | ci c2-i                               | C3<br>Adhesive Force      | C4         | CS Plate ma            | Help                                                          | TEND OF SOPERIOD I                      |                       | Cancel  | PIED | CII | C12               | Sicate)  | C13<br>RESI1 | C14 | CIS   |   |
| 7       | 2 Dipping                             | 5.6                       |            |                        | 1                                                             | 70                                      | 80                    |         | 125  | 30  | indeality (no net | 1        | 22.75        |     |       |   |
| 3       | 2 Dipping                             | 4.9                       |            |                        | 1                                                             | 70                                      | 75                    |         | 125  | 35  |                   | 4        | 17.75        |     |       |   |
| )       | 2 Dipping                             | 5.4                       |            |                        | 1                                                             | 125                                     | 20                    |         | 125  | 40  |                   | 2        | -37.50       |     |       |   |
| 10      | 2 Spraying                            | 5.8                       |            |                        | 1                                                             | 125                                     | 70                    |         | 125  | 45  |                   | 3        | 12.50        |     |       |   |
| 11      | 2 Spraying                            | 6.1                       |            |                        | 1                                                             | 125                                     | 82                    |         | 150  | 25  |                   | 9        | 24.50        |     | ( )   |   |
| 4 0     | 2 Spraving<br>+ + Asymetric Fa        | 6.3<br>ctorial Design and | fw         |                        | 1                                                             | 125                                     | 58                    |         | 150  | 30  |                   | 6        | 0.50         |     | N     |   |
|         |                                       |                           |            |                        |                                                               |                                         |                       | _       | -    |     |                   |          | -            | 100 |       |   |
| 6       | Asymetric Factorial Desi              | gn and Two-way Al-        | Xwm.AVO    |                        |                                                               |                                         |                       |         |      |     |                   | <b>H</b> | L            |     | 10.00 |   |

(Refer Slide Time: 05:07)

| Minitab - Untit | led                                   |                     |             |         |            |                  |         |                       |                |         |     |         |          |                |           |           |        |     | 8  |
|-----------------|---------------------------------------|---------------------|-------------|---------|------------|------------------|---------|-----------------------|----------------|---------|-----|---------|----------|----------------|-----------|-----------|--------|-----|----|
| le Edit Dat     | Cale Sa                               | Granh View          | Help Arrist | and Add | tional Tor | h.               |         |                       |                |         |     |         |          |                |           |           |        |     |    |
|                 |                                       |                     | 00          | 6 30    |            | h her af         | 1.      |                       |                |         |     |         |          |                |           |           |        |     |    |
|                 |                                       |                     | 00          | JA B    | *** PE E   | 8 27 46<br>m m 1 | 2       | (1) (1) M (1)         |                |         | 571 |         |          |                |           |           |        |     |    |
| ·•• II •a       | 101 10                                | YEDBS               | 11 1 19     | (四):章   | 10 M       | # 24 -Y          | 2       | 明氏末ち四日                | 0, 00 0        | a sh ed | 83  |         |          |                |           |           |        |     |    |
|                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | YMERK               | * 12        | Y 🖂 🗖   | 8K         |                  |         |                       |                |         |     |         |          |                |           |           |        |     |    |
| NOVA: Batter    | Ufe (In Ho                            | * X                 |             |         |            |                  |         |                       |                |         |     |         |          |                |           |           |        |     |    |
| ASYMETRIC F     | CTORIAL DESI                          | GN AND TWO-WAY A    | NOVA.MWX    |         |            |                  |         |                       |                |         |     |         |          |                |           |           |        |     |    |
| NOVA: B         | attery Lif                            | e (In Hour) y       | ersus P     | ate ma  | terial     | Type. Te         | mp      | of Operation          |                |         |     |         |          |                |           |           |        |     |    |
|                 |                                       | • (                 |             |         |            | .) [0 0] 10      |         | - operation           |                |         |     |         |          |                |           |           |        |     |    |
| Eactor Infe     | ormation                              |                     |             |         |            |                  |         |                       |                |         |     |         |          |                |           |           |        |     | 1  |
| ractor min      | ormation                              |                     |             |         |            |                  |         |                       |                |         |     |         |          |                |           |           |        |     |    |
| Plate materi    | Iyp<br>al Tune Eixe                   | e Levels Value      | _           |         |            |                  |         |                       |                |         |     |         |          |                |           |           |        |     |    |
| Temp of Op      | eration Fixe                          | d 3 15.70           | 125         |         |            |                  |         |                       |                |         |     |         |          |                |           |           |        |     |    |
|                 |                                       |                     |             |         |            | _                |         |                       |                |         |     |         |          |                |           |           |        |     |    |
| Analysis        | f Variance                            | for Rattery Life    | (In Hour    | 4       |            |                  | *       |                       |                |         |     |         |          |                |           |           |        |     |    |
| Analysis o      | variance                              | tor battery the     | (III HOU    | ,       |            | _                | Ser     | d to Microsoft® Word  |                |         |     |         |          |                |           |           |        |     |    |
| Source          | tel Trans                             |                     | DF SS       | MS      | F          | P                | Ser     | d to Microsoft® Power | Point          |         |     |         |          |                |           |           |        |     |    |
| Temp of Or      | peration                              |                     | 2 30110     | 10550.4 | 28.97      | 0.000            | Ser Ser | d to Companion        |                |         |     |         |          |                |           |           |        |     |    |
| Place mater     | rial Type*Tem                         | p of Operation      | 4 9614      | 2403.4  | 3.56       | 0.019            | Ser     | d to Minitab Workspac | e <sup>~</sup> |         |     |         |          |                |           |           |        |     |    |
| Error           |                                       |                     | 27 18231    | 675.2   |            |                  | Co      | ру                    | Ctrl+C         |         |     |         |          |                |           |           |        |     |    |
| Total           |                                       |                     | 35 77647    |         |            |                  | Co      | py as Picture         |                |         |     |         |          |                |           |           |        |     |    |
| CI              | C2-T                                  | C3                  | C4          | C5      |            | C6               | Co      | py Column             |                | 2       | C9  | C10     | C11      | C12            | 5         | C13       | C14    | C15 |    |
| Primer Ty       | pe Method                             | Adhesive Force      |             |         | Plate m    | aterial Typ      | De      | cimal Places          |                | lour)   |     | Temp    | Pressure | Impurity (No R | eplicate) | RESI1     | RESI2  |     |    |
|                 | 2 Dipping                             | 5.6                 |             |         |            |                  | Pri Pri | n                     |                | 80      |     | 125     | 30       |                | 1         | 22.75     | 22.75  |     |    |
|                 | 2 Dipping                             | 4.9                 |             |         |            |                  | A 100   | ete                   |                | 75      |     | 125     | 35       |                | 4         | 17.75     | 17.75  |     |    |
|                 | 2 Dipping                             | 5.4                 |             |         |            |                  | 1       | 125                   |                | 20      |     | 125     | 40       |                | 2         | -37.50    | -37.50 |     |    |
|                 | 2 Spraying                            | 5.8                 |             |         |            |                  | 1       | 125                   |                | 70      |     | 125     | 45       |                | 3         | 12.50     | 12.50  |     |    |
|                 | 2 Spraying                            | 6.1                 |             |         |            |                  | 1       | 125                   |                | 82      |     | 150     | 25       |                | 9         | 24.50     | 7/ 50  | -   |    |
|                 | 2 Spraving                            | 0.3                 |             |         |            |                  | 1       | 125                   | 41.1           | 38      |     | 150     | 30       |                | 0         | 0.50      |        |     |    |
| IPH T           | Asymetric I                           | ictorial Design and | IW          |         |            |                  |         |                       | 4              |         |     |         |          | _              |           | _         |        |     |    |
| Asymetr         | ic Factorial Des                      | ign and Two-way Al  | www.AVOV    |         |            |                  |         |                       |                |         |     |         |          |                |           | •         |        | 1   |    |
| D TV            | pe here to s                          | earch               |             |         | 0          | - A              | 1       | N 🚳                   | -              |         |     |         | 22       |                | ^ ő       | 90 A 40   | 100    | TEL | 14 |
| PTEL '          | pe nere to s                          | carcii              |             |         | <u> </u>   | •                |         |                       | -              | -       | ♥∐  | <u></u> |          | <u> </u>       |           | 100 MG 41 | 1 20   |     |    |

And then we can see the ANOVA analysis that is given over here. So, in this case I will copy this one and take it to excel and try to see enlarge this one and see what is the result outcome.

(Refer Slide Time: 05:13)

|         | <b>e.</b> G.                            |             |        |                | ook1 - Excel | (Product A     | ctivation Fail          | ed)  |                            |          |                          |         |                                      |                                |            |                 |        |                                       |                   |                         |             |     |
|---------|-----------------------------------------|-------------|--------|----------------|--------------|----------------|-------------------------|------|----------------------------|----------|--------------------------|---------|--------------------------------------|--------------------------------|------------|-----------------|--------|---------------------------------------|-------------------|-------------------------|-------------|-----|
|         | Home                                    | Insert      | Page   |                | Formula      |                | Review                  |      | ACROBAT                    | For      | mat                      |         |                                      |                                |            |                 |        |                                       |                   | Sign in                 | <b>A</b> 58 | are |
| Paste   | X Cut<br>Copy +<br>Format F<br>Cipboard | Painter B   | I U    | - B<br>Font    | • A          | ≡ :<br>≡ :<br> | * = *<br>= = *<br>= = * | · P  | Wrap Text<br>Merge & Centi | N - 12   | neral<br>7 - % i<br>Nunt | -<br>   | Conditional Fr<br>Formatting -<br>St | ormat as<br>Table - St<br>yles | Cell Inset | Delete<br>Cells | Format | AutoSum<br> Fill -<br> Clear -<br> Ec | Sort & Filter - 1 | P<br>Find &<br>Select * |             |     |
| Picture | e 2 🔹                                   | 1 X         | ~      | f <sub>x</sub> |              |                |                         |      |                            |          |                          |         |                                      |                                |            |                 |        |                                       |                   |                         |             |     |
| 4       | A                                       | 8           | с      | D              | E            | F              | G                       | н    | 1                          | J        |                          | ι ι     | M                                    | N                              | 0          | р               | Q      | R                                     | s                 | T                       |             | U   |
| 1       |                                         |             |        |                |              |                |                         |      |                            | Co       |                          |         |                                      |                                |            |                 |        |                                       |                   |                         |             |     |
| 2       |                                         |             | 0      |                |              |                |                         |      |                            | 0        |                          |         |                                      |                                |            | -0              |        |                                       |                   |                         |             |     |
| 4       |                                         |             |        |                |              |                |                         |      | _                          |          |                          |         |                                      |                                |            | -               |        |                                       |                   |                         |             |     |
| 5       |                                         |             |        | Ana            | alysis       | of V           | arian                   | ce f | or Bat                     | tery     | Life                     | e (In F | lour)                                |                                |            |                 |        |                                       |                   |                         |             |     |
| 6       |                                         |             | -      |                |              |                |                         |      |                            |          |                          |         |                                      |                                |            | -               |        |                                       |                   |                         |             |     |
| 7       |                                         |             | -      | Sou            | rce          |                |                         |      |                            |          | DF                       | SS      | MS                                   | i 1                            | F P        | -               |        |                                       |                   |                         |             |     |
| 9       |                                         |             |        | Dia            | te ma        | terial         | Type                    |      |                            |          | 2                        | 10684   | 5341 0                               | 7.0                            | 1 0 002    |                 |        |                                       |                   |                         |             |     |
| 10      |                                         |             |        | Fie            | ite ma       | terial         | Type                    |      |                            |          | -                        | 10004   | 5541.5                               | 1.5                            | 0.002      |                 |        |                                       |                   |                         |             |     |
| 11      |                                         |             | Ĭ      | Tei            | mp of        | Opera          | ation                   |      |                            |          | 2                        | 39119   | 19559.4                              | 28.9                           | 7 0.000    | Ĭ               |        |                                       |                   |                         |             |     |
| 12      |                                         |             | _      | Pla            | te ma        | terial         | Tyne*1                  | Temn | of One                     | ratio    | 4                        | 9614    | 2403.4                               | 3.5/                           | 5 0 0 1 9  | -               |        |                                       |                   |                         |             |     |
| 13      |                                         |             | -      | - 10           | ice into     | cerior.        | i jpc                   | emp  | or ope                     | i di loi |                          | 2014    | 2400.4                               | 2.21                           | 0.012      | -               | ¢      |                                       |                   |                         |             |     |
| 15      |                                         |             |        | Erro           | or           |                |                         |      |                            |          | 27                       | 18231   | 675.2                                |                                |            |                 |        |                                       |                   |                         |             |     |
| 16      |                                         |             |        | Tota           | al           |                |                         |      |                            |          | 35                       | 77647   |                                      |                                |            |                 |        |                                       |                   |                         |             |     |
| 17      |                                         |             |        |                |              |                |                         |      |                            |          |                          |         |                                      |                                |            |                 |        |                                       |                   |                         |             |     |
| 18      |                                         |             | 0      |                |              | -              |                         | -    |                            | 0-       |                          | _       |                                      |                                |            | _0              |        |                                       |                   |                         |             |     |
| 19      |                                         |             |        |                |              |                |                         |      |                            |          |                          |         |                                      |                                |            |                 |        |                                       |                   |                         |             |     |
| 21      |                                         |             |        |                |              |                |                         |      |                            |          |                          |         |                                      |                                |            |                 |        |                                       |                   |                         |             |     |
| 22      |                                         |             |        |                |              |                |                         |      |                            |          |                          |         |                                      |                                |            |                 |        |                                       | 1                 | 6                       | -           |     |
| 23      | _                                       | _           |        |                |              |                |                         |      |                            |          |                          |         |                                      |                                |            |                 |        |                                       |                   |                         | 10          |     |
| 1       | 1                                       | Sheet1      | ۲      |                |              |                |                         |      |                            |          |                          |         |                                      |                                |            |                 |        |                                       |                   |                         |             |     |
| 2 60    | Y1                                      |             |        |                |              |                |                         |      |                            |          |                          |         |                                      |                                |            |                 | 田      | 00 8                                  | ] - [             | 100                     | 1           |     |
| 10      | O Turn                                  | e here to s | tearch |                |              |                | 0                       |      |                            | -        | 10                       |         |                                      | 10 Y                           | 1 51       |                 | ~      | ñ (m. /                               | a da              | 15                      | 18/1        |     |

And it is saying that when you are changing plate material type, this is having a significant impact on the battery life. So, there is at least two levels where when I change the material from 1 to 2 or 2 to 3 like that. So, it is impacting basically the mean expected value of the battery life and temperature is also when I change that one it is also significantly influencing like that.

And also we can see that the interaction between plate material type and temperature of operations is also significant because this is also less than 0.05. So, interaction is prominent individually they are prominent so that means, all need to be considered when we are trying to determine what is the optimal combinations like that.

Whenever interaction is prominent in that case we cannot ignore this interaction between the variables while we are determining the optimal combination of plate material and temperature like that ok.

(Refer Slide Time: 06:08)



So, what we have to do is that whenever we have seen this one and normal probability plot seems to be satisfactory, there is no problem as such we can also check that one because C14 is the residual. So, we can just check that one whether everything is fine.

# (Refer Slide Time: 06:14)



# (Refer Slide Time: 06:21)



So, in this case normality test we are doing and residual 2 that because earlier there was some other residual that was same.

## (Refer Slide Time: 06:25)



# (Refer Slide Time: 06:26)



So, in this case what we are seeing is that p value of this is more than 0.05. So, it is satisfactory basically. So, without have any problem in normality assumptions like that.

#### (Refer Slide Time: 06:35)



So, we can delete this two over here and then what we can do is that.

(Refer Slide Time: 06:39)

|                                               | initab - Untitled                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |          |            |                                                                                                                                      |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                              |                                                     |                                                                     |     |     | - 8 | Х |
|-----------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|-----|-----|-----|---|
| File                                          | Edit Data                                                                                      | Calc Stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Graph View H                                                                                                    | lelp Ass | istant Add | litional Tools                                                                                                                       |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                              |                                                     |                                                                     |     |     |     |   |
| 2                                             | 8 8 X 6                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Basic Statistics                                                                                                | ,        | fx 30      | -248 24                                                                                                                              | 2                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                              |                                                     |                                                                     |     |     |     |   |
| -                                             |                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Regression                                                                                                      | ,        | . 177 : 44 | 1. III 4 4 1                                                                                                                         |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19    |                                                              |                                                     |                                                                     |     |     |     |   |
|                                               |                                                                                                | +01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANOVA                                                                                                           | ,        | - One-     | Way                                                                                                                                  | BUT                                                                                                                          | P DB T D LOT D T T P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | × 0.5 |                                                              |                                                     |                                                                     |     |     |     |   |
|                                               | : 6                                                                                            | <u>e</u>   .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DOE                                                                                                             | ,        | 幸 Analy    | sis of Means                                                                                                                         |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                              |                                                     |                                                                     |     |     |     |   |
|                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Control Charts                                                                                                  | ,        | AB Balan   | ced ANOVA                                                                                                                            |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                              |                                                     |                                                                     |     |     |     |   |
|                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quality Tools                                                                                                   | ,        | Gene       | ral Linear Model                                                                                                                     | ,                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                              |                                                     |                                                                     |     |     |     |   |
|                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reliability/Survival                                                                                            | ,        | Mixe       | d Effects Model                                                                                                                      | •                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                              |                                                     |                                                                     |     |     |     |   |
|                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Predictive Analytics</b>                                                                                     | ,        | € Fully    | Nested ANOVA                                                                                                                         |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                              |                                                     |                                                                     |     |     |     |   |
|                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Multivariate                                                                                                    |          | 🔥 Gene     | ral MANOVA                                                                                                                           | 1ini                                                                                                                         | tah 🕨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Si    |                                                              |                                                     |                                                                     |     |     |     |   |
|                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tables                                                                                                          | ,        | σ² Test f  | or Equal Variances                                                                                                                   |                                                                                                                              | CUN P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                              |                                                     |                                                                     |     |     |     |   |
|                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nonparametrics                                                                                                  | ,        | ti Interv  | ral Plot                                                                                                                             |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                              |                                                     |                                                                     |     |     |     |   |
|                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Equivalence Tests                                                                                               | ,        | 🛆 Main     | Effects Plot                                                                                                                         | -                                                                                                                            | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                              |                                                     |                                                                     |     |     |     |   |
|                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Power and Sample S                                                                                              | ize +    | ≥ Intera   | iction Plot                                                                                                                          | 4                                                                                                                            | pen curro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                                              |                                                     |                                                                     |     |     |     |   |
|                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |          |            | Plot the data mea                                                                                                                    | ns for one factor at eac                                                                                                     | ch level of another                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                              |                                                     |                                                                     |     |     |     |   |
|                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |          |            | Plot the data mei<br>factor to examine                                                                                               | ns for one factor at eac<br>whether the factors inf                                                                          | ch level of another<br>teract.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                                                              |                                                     |                                                                     |     |     |     |   |
| 4                                             | cı                                                                                             | C2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G                                                                                                               | 64       | CS         | Plot the data nea<br>factor to examine                                                                                               | ns for one factor at eac<br>whether the factors inf                                                                          | ch level of another<br>teract.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C9    | C10                                                          | C11                                                 | C12 g                                                               | C13 | C14 | CIS |   |
| 4                                             | C1<br>Primer Type                                                                              | C2-T<br>Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C3<br>Adhesive Force                                                                                            | C4       | CS         | Plot the data mei<br>factor to examine<br>C6<br>Plate material Type                                                                  | ns for one factor at eac<br>whether the factors inf<br>C7<br>Temp of Operation                                               | ch level of another<br>teract.<br>Battery Life (In Hour)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (9    | C10<br>Temp                                                  | C11<br>Pressure                                     | C12<br>Impurity (No Replicate)                                      | C13 | C14 | CIS |   |
| * 7                                           | C1<br>Primer Type<br>2 1                                                                       | C2-T<br>Method<br>Dipping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C3<br>Adhesive Force<br>5.6                                                                                     | C4       | CS         | Plot the data mei<br>factor to examine<br>C6<br>Plate material Type<br>1                                                             | ns for one factor at eac<br>whether the factors inf<br>C7<br>Temp of Operation<br>70                                         | ch level of another<br>teract.<br>Battery Life (In Hour)<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0     | C10<br>Temp<br>125                                           | C11<br>Pressure<br>30                               | C12 g<br>Impurity (No Replicate)                                    | C13 | C14 | CIS | 4 |
| +<br>7<br>8                                   | C1<br>Primer Type<br>2 1<br>2 1                                                                | C2-T<br>Method<br>Dipping<br>Dipping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C3<br>Adhesive Force<br>5.6<br>4.9                                                                              | C4       | CS         | Plot the data mee<br>factor to examine<br>C6<br>Plate material Type<br>1<br>1                                                        | ns for one factor at ease<br>whether the factors inf<br>C7<br>Temp of Operation<br>70<br>70<br>70                            | ct level of another<br>terad.<br>Battery Life (in Hour)<br>0 80<br>0 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C9    | C10<br>Temp<br>125<br>125                                    | C11<br>Pressure<br>30<br>35                         | C12 g<br>Impurity (No Replicate)<br>1                               | C13 | C14 | C15 | • |
| *<br>7<br>8<br>9                              | C1<br>Primer Type<br>2 1<br>2 1<br>2 1                                                         | C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4                                                                       | C4       | CS         | C6<br>Plate material Type<br>1<br>1<br>1                                                                                             | ns for one factor at exe<br>whether the factors int<br>C7<br>Temp of Operation<br>70<br>70<br>125                            | ch level of another<br>level.<br>Battery Life (In Hour)<br>0 80<br>75<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C9    | C10<br>Temp<br>125<br>125<br>125                             | C11<br>Pressure<br>30<br>35<br>40                   | C12 g<br>Impurity (No Replicate)<br>1<br>4<br>2                     | C13 | C14 | CIS | • |
| +<br>7<br>8<br>9<br>10                        | C1<br>Primer Type<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1                             | C2-T<br>Method<br>Dipping<br>Dipping<br>Spraying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8                                                                | C4       | CS         | Rot the data nee<br>factor to examine<br>26<br>Plate material Type<br>1<br>1<br>1<br>1<br>1                                          | ns for one factor at exe<br>whether the factors int<br>C7<br>Temp of Operation<br>70<br>70<br>125<br>125                     | ch level of another<br>teract.<br>Battery Life (In Hour)<br>0 80<br>0 75<br>5 20<br>5 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C9    | Ct0<br>Temp<br>125<br>125<br>125<br>125                      | C11<br>Pressure<br>30<br>35<br>40<br>45             | C12 g<br>Impurity (No Replicate)<br>4<br>2<br>3                     | C13 | C14 | CIS | • |
| +<br>7<br>8<br>9<br>10<br>11                  | C1<br>Primer Type<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                      | C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.4<br>5.8<br>6.1                                                  | C4       | CS         | Pot the data me<br>factor to examine<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1                                            | ns for one factor at eac<br>whether the factors int<br>Temp of Operation<br>700<br>702<br>125<br>125<br>125                  | ch level of another<br>teract.<br>Battery Life (In Hour)<br>0 60<br>75<br>20<br>70<br>5 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0     | Ct0<br>Temp<br>125<br>125<br>125<br>125<br>125<br>125        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25       | C12 g<br>Impurity (No Replicate)<br>4<br>2<br>3<br>9<br>9           | C13 | C14 | CIS |   |
| +<br>7<br>8<br>9<br>10<br>11<br>11            | C1<br>Primer Type<br>2 1<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2                      | C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>5.8<br>6.1<br>6.3                                           | C4       | CS         | C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1             | rs for one factor at eac<br>whether the factors int<br>Temp of Operation<br>70<br>125<br>125<br>125<br>125                   | ch level of another<br>terest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G     | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>Impurity (No Replicate)<br>4<br>2<br>3<br>9<br>0<br>0        | C13 | C14 | CIS |   |
| +<br>7<br>8<br>9<br>10<br>11<br>12<br>H d     | С1<br>Primer Type<br>2 1<br>2 2<br>2 2<br>2 2<br>2 4<br>2 4<br>2 4<br>2 4<br>2 4<br>2 4<br>2 4 | C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying<br>Spraying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1<br>6.1<br>6.3<br>ctorial Design and To                  | C4       | CS         | C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                     | rs for one factor at eac<br>whether the factors int<br>C7<br>Temp of Operation<br>70<br>70<br>70<br>125<br>125<br>125<br>125 | ch level of another<br>tersd.<br><b>Battery Life (In Hour)</b><br><b>D</b><br><b>CB</b><br><b>Battery Life (In Hour)</b><br><b>D</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b><br><b>CB</b> | C9    | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 pr<br>Impurity (No Replicate)<br>4<br>2<br>3<br>9<br>6          | C13 | C14 | CIS |   |
| +<br>7<br>8<br>9<br>10<br>11<br>12<br>H 4     | C1<br>Primer Type<br>2 1<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2        | C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>6.3<br>6.1<br>6.3<br>ctorial Design and T<br>ign and Two way AN    | C4       | CS         | C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                       | rs for one factor at eac<br>whether the factors int<br>C7<br>Temp of Operation<br>70<br>70<br>72<br>125<br>125<br>125<br>125 | ch level of another<br>terst.<br>Battery Life (in Hour)<br>Battery Life (in H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C9    | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 g<br>Impurity (No Replicate)<br>1<br>4<br>2<br>3<br>9<br>6<br>6 | C13 | C14 | CIS |   |
| +<br>7<br>8<br>9<br>10<br>11<br>12<br>14<br>4 | C1<br>Primer Type<br>2 1<br>2 1<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2        | C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying<br>spraying<br>spraying<br>spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray<br>Spray | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.8<br>6.1<br>6.3<br>6.3<br>6.1<br>6.3<br>10<br>6.3<br>70 nd Table Way AN | C4       | CS         | Pot the data met<br>tatlet to examine<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | ns for one factor at account<br>whether the factors and<br>Temp of Operation<br>70<br>125<br>125<br>125<br>125               | ch level of another<br>terad.<br>B Battery Life (In Hour)<br>0 73<br>20<br>3 70<br>6 62<br>5 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 09  | C10<br>Temp<br>125<br>125<br>125<br>125<br>150<br>150        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 mpurity (No Replicate)                                          | C13 | C14 | CIS |   |

We have done this one and so, we can see 2 plots over here; one is known as main effect plot, one is known as interaction plot. So, what we have to do is that to get the best possible settings that we have to see. So, in this case I have to go to *stat*, *ANOVA analysis* and there will be a main effect plot and one interaction plot over here because interaction is prominent I am going by interaction plot.

#### (Refer Slide Time: 07:05)



So, what I will do is that I will mention which is the response and I want to see where the response is maximized and then I will give the two variables one is plate material and one is temperature over here. And I will click display full interaction plot over here similarly what we have done last time also.

(Refer Slide Time: 07:21)



So, in this case I clicked OK and whenever the interaction is present you see that the graphical representation is some more different as what we have seen not similar to the what we have seen when we were talking about adhesive strength maximization.

And what we will see if there is interaction you can expect that these lines will cross each other. So, what you are seeing is that lines are crossing each other. So, in this case what is expected is that whenever such kind of scenario of interaction is prominent the lines will cross each other basically and they will not be parallel they will not be parallel like that.

So, over here I will see one half of this. So, let us see upper right hand side over here. So, in this case what you see is that to maximise the battery life this is the highest point that we are observing this brown point that you are seeing over here is 15.

And this line shows plate material type 2. So, plate material type 2 and 15 degree gives you the best combination over here. So, this is gives you the best combination nearest to this is we have material type 3 and 15 degree that is also. So, what we are seeing is that we are seeing maximum temperature maximum battery life condition is appearing when we are taking a combination at lower temperature at 15 degree and material type 2 or 3.

So, in this case there is no problem in seeing this one although this plate material type 2 is the preferred one. But we have to make a multiple comparison test and figure out whether this is different from this one. So, whether this point what combination of 15 and 2 is different from 15 and 3 like that. So, we have seen multiple comparison test that is possible and we can see that one and but we have to consider over here something else.

In the problem it was mentioned that which material will be robust to temperature change while we are selecting. So, if you see this diagrammatically over here what do you observe for material type 3?

There is a flat region from 15 to 70 over here; that means, this battery life does not change much if you are following plate material type three over here, but if you are taking plate material 2 the slope of this line is drastically falling what we can see as compared to material type 3. So, the slope is higher than material type 3. So, material type 3 is more robust within the temperature zone of 15 to 70 like that.

If you are considering that temperature range, it is insensitive to the change in temperature if I change from 15 to 70 any range within this assuming the continuity of the or we can say that within this range we can expect. So, we are just extrapolating our

interpretation over here. So, 15 into 70 because we have done one discrete points so, but we can just see the interpolation over here to be more or less flat what we are seeing over here.

So, in this case what we are trying to say is that this is more flat. So, if you have to take reference on robustness now which material I should use I should go for material 3 over here in the range of 15 to 70 and beyond 70 also see material type 3 is giving you higher value of battery life as compared to any other material 2 or material 3, but any how material one is of we can ignore this one.

So, for two what you see from 70 to 125 also it is lower than 70 to 125 battery life what is given by the material 3 over here. So, without much hesitation what we can do is that we can select material type 3 if I want a robust material which is insensitive to temperature changes like that we will go for material three like that.

(Refer Slide Time: 11:18)



So, this is interaction plot what we can see over here and we can make a comparison test also.

(Refer Slide Time: 11:24)

| Minitab - Unebil<br>File Edit Detection<br>Detection Plot<br>Interaction Plot<br>MAYMETRIC FA<br>Interaction | ed<br>Calc Sta<br>S D C<br>for Batts<br>CTOBAL<br>Plot | r Graph View Help<br>Basic Shaftic<br>Regression<br>AllOW<br>Centrel Charts<br>Quality Tools<br>Restably/Sharhol<br>Predicate Audity Cost<br>Mathematics<br>Tenes Series<br>Tables<br>Decemend Sample Secie<br>Upper Landon Secience<br>Tenes Secience<br>Secience Secience<br>Secience<br>Secience Secience<br>Secience<br>Secience Secience<br>Secience<br>Secience<br>Secience<br>Secience<br>Secience<br>Secience<br>Secience<br>Secience<br>Secience<br>Secience<br>Secience<br>Secience<br>Secience<br>Secience<br>Secience<br>Secience<br>Secience<br>Secience<br>Se | Assistant Add | Hernal Tools  The Tool | Research Linear M     Research Res.     Scherter Res.     Scher | cdd                 |           |      |          |                       |     |     |     | 8 |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|------|----------|-----------------------|-----|-----|-----|---|
| e ci                                                                                                         | C2-T                                                   | C3 C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 C5          | C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>C7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C8 2                | <b>C9</b> | C10  | C11      | C12                   | C13 | C14 | C15 |   |
| Primer Typ                                                                                                   | e Method                                               | Adhesive Force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | Plate material Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Temp of Operation Bat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tery Life (In Hour) |           | Temp | Pressure | Impurity (No Replicat | e)  |     |     |   |
|                                                                                                              | 2 Dipping                                              | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80                  |           | 125  | 30       |                       | 1   |     |     |   |
|                                                                                                              | 2 Dipping                                              | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75                  |           | 125  | 35       |                       | 9   |     |     |   |
|                                                                                                              | 2 Spraving                                             | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                  |           | 125  | 40       |                       | 3   |     |     |   |
|                                                                                                              | 2 Spraving                                             | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82                  |           | 150  | 25       |                       | 9   | -   |     |   |
| 2                                                                                                            | 2 Spraving                                             | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58                  |           | 150  | 30       |                       | 6   |     |     |   |
| 4 D H +                                                                                                      | Asymetric F<br>c Factorial De                          | factorial Design and Tw<br>Isign and Two-way ANOVA.r<br>search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TWX           | 0 🗖 🛱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A N 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |           |      | -        |                       | - 0 | 1   |     |   |

So, if you want to make a comparison test go to ANOVA analysis and then general linear model comparison test over here.

(Refer Slide Time: 11:30)

| 0 m -0 1                  |                                                                                                       |                                                                                                                 |                     | · · · · ·  | る服業                        | - 先 - Y >> 国 @<br>Comparisons | 11-1-九月        | o" (2 o"                | ч X, 19              | x                                    |                                               |                            |                                      |     |     |   |
|---------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|------------|----------------------------|-------------------------------|----------------|-------------------------|----------------------|--------------------------------------|-----------------------------------------------|----------------------------|--------------------------------------|-----|-----|---|
| eraction Plot f           | for Battery                                                                                           | v x                                                                                                             |                     | 1 2.2      |                            | Besponse:                     | Battery Life ( | in Hour)                | •                    | t                                    |                                               |                            |                                      |     |     |   |
| ASYMETRIC FAC             | Plot for                                                                                              | AND TWO-WAY AND | NOVA.MWX<br>(In Hou | ır)        |                            | Type of comparison:<br>Method | Pairwise       | Factor                  | •                    |                                      |                                               |                            |                                      |     |     | • |
|                           | Inte                                                                                                  | eraction Plot fo                                                                                                | or Batter           | y Life (Ir | Hour)                      | Tugey                         | parisons:      | ∏ gonferroni<br>∏ gidak |                      |                                      |                                               |                            |                                      |     |     |   |
|                           |                                                                                                       |                                                                                                                 | 11                  | 1          | - 12                       |                               |                |                         |                      |                                      |                                               |                            |                                      |     |     |   |
| 150                       | Plate material                                                                                        | Туре                                                                                                            | /                   |            | 11<br>15                   |                               |                |                         |                      |                                      |                                               |                            |                                      |     |     |   |
| 150<br>+14<br>C1          | Plate material                                                                                        | Type                                                                                                            | 64                  | cs         | 10<br>75<br>50             |                               |                |                         |                      | 0                                    | C11                                           | C12                        | 5 C13                                | C14 | C15 |   |
| 150<br>TC1<br>Primer Type | Plate material<br>C2-T<br>e Method                                                                    | Type                                                                                                            | 64                  | G          | Plate ma                   |                               |                |                         |                      | D                                    | C11<br>Pressure                               | C12<br>Impurity (No Replic | z C13<br>ate)                        | C14 | C15 |   |
| 150<br>C1<br>Primer Typi  | Plate material<br>C2-T<br>e Method<br>2 Dipping                                                       | Type<br>C3<br>Adhesive Force<br>5.6                                                                             | 64                  | cs         | 90<br>71<br>90<br>Plate ma | Opjons                        | graphs         | Resjits                 | yew Model            | 0<br>1p<br>125                       | C11<br>Pressure<br>30                         | C12<br>Impurity (No Replic | z C13<br>ate)                        | C14 | C15 |   |
| C1<br>Primer Type         | Plate material<br>C2-T<br>e Method<br>2 Dipping<br>2 Dipping                                          | Type<br>C3<br>Adhesive Force<br>5.6<br>4.9                                                                      | 64                  | cs         | 90<br>75<br>90<br>Plate ma | Options                       | graphs         | Resylts                 | yew Model            | D<br>1p<br>12:<br>12:                | C11<br>Pressure<br>30<br>35                   | C12<br>Impurity (No Replic | c C13<br>ate)<br>1<br>4              | C14 | C15 |   |
| 150<br>C1<br>Primer Type  | Plate material<br>C2-T<br>e Method<br>2 Dipping<br>2 Dipping<br>2 Dipping                             | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4                                                                       | 64                  | G          | 90<br>75<br>90<br>Plate ma | Options<br>Help               | graphs         | Resylts                 | yew Model<br>Cancel  | D<br>12:<br>12:<br>12:               | C11<br>Pressure<br>30<br>35<br>40             | C12<br>Impurity (No Replic | 2 C13<br>ate)<br>1<br>4<br>2         | C14 | CIS |   |
| 150<br>C1<br>Primer Type  | Plate material<br>C2-T<br>e Method<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraying               | Type<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8                                                        | C4                  | G          | 98<br>75<br>50<br>Plate ma | Options<br>Help               | Graphs         | Resylts<br>QK           | yew Model<br>Cancel  | D<br>1p<br>12!<br>12!<br>12!         | C11<br>Pressure<br>30<br>35<br>40<br>45       | C12<br>Impurity (No Replic | C13<br>ate)<br>1<br>4<br>2<br>3      | C14 | C15 |   |
| C1<br>C1<br>C1            | Plate material<br>C2-T<br>e Method<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying | Type C3 Adhesive Force 5.6 4.9 5.4 5.8 6.1                                                                      | 64                  | cs         | 98<br>75<br>90<br>Plate ma | Coptons<br>Help               |                | Results<br>QX           | View Model<br>Cancel | D<br>121<br>122<br>122<br>122<br>122 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25 | C12<br>Impurity (No Replic | C13<br>ate)<br>1<br>4<br>2<br>3<br>9 | C14 | C15 |   |

You have to mention that battery life is one to test and I want to see plate material type 3 and temperature and I want to make a comparison because that is prominent what we have seen.

#### (Refer Slide Time: 11:39)

| M    | initab - Untitleo | ł             |                       |          |           |                                       |                   |                       |      |          |          |                       |          |      |      | 8 : |
|------|-------------------|---------------|-----------------------|----------|-----------|---------------------------------------|-------------------|-----------------------|------|----------|----------|-----------------------|----------|------|------|-----|
| File | Edit Data         | Calc Stat     | Graph View H          | lelo Ass | istant Ad | Sitional Tools                        |                   |                       |      |          |          |                       |          |      |      |     |
| 0    |                   |               |                       | 00       | 1 fr 3=   | and Balay Ala                         |                   |                       |      |          |          |                       |          |      |      |     |
|      |                   |               |                       |          | 5 ISO 1 4 | -5 19 10 27 44 1                      |                   | 50 ( .mmmv.           | 6 50 |          |          |                       |          |      |      |     |
| н,   | 0 1 0 1           | 10110         | TRUBS                 | E. S     | 9 EI : 1  | • • • • • • • • • • • • • • • • • • • | BEX4              | SII : D. CO D         | 913  |          |          |                       |          |      |      |     |
|      |                   | W F.          | YNERKI                |          | rA 😽 🗖    | BK*                                   |                   |                       |      |          |          |                       |          |      |      |     |
| Co   | mparisons for     | Battery U     | ¥ X                   |          |           |                                       |                   |                       |      |          |          |                       |          |      |      |     |
|      | ASYMETRIC FAC     | TORIAL DESI   | IN AND TWO-WAY AM     | OVA.MWO  |           |                                       |                   |                       |      |          |          |                       |          |      |      |     |
| Co   | mparisor          | s for Ba      | ttery Life (In        | Hour     |           |                                       |                   |                       |      |          |          |                       |          |      |      | ٠   |
|      | mparisor          | 101 01        | intery site (in       | rioui,   |           |                                       |                   |                       |      |          |          |                       |          |      |      |     |
|      | Dalam Dalam       |               | Distant               |          | TreestTo  |                                       |                   |                       |      |          |          |                       |          |      |      | ٨   |
|      | lukey Pallw       | ise comp      | parisons: Plate i     | nateria  | Type-te   | imp of Operation                      |                   |                       |      |          |          |                       |          |      |      |     |
|      | Grouping          | Informat      | tion Using the        | Tukey N  | lethod a  | nd 95% Confidence                     | *                 |                       |      |          |          |                       |          |      |      |     |
|      | Grouping          | morma         | don osing the         | lukey iv | iethou a  | nu 55% connuence                      |                   |                       |      |          |          |                       |          |      |      |     |
|      | Plate             |               |                       |          |           |                                       |                   |                       |      |          |          |                       |          |      |      |     |
|      | Type*Temp         |               |                       |          |           |                                       |                   |                       |      |          |          |                       |          |      |      |     |
|      | of                |               |                       |          |           |                                       |                   |                       |      |          |          |                       |          |      |      |     |
|      | Operation         | N M           | ean Grouping          |          |           |                                       | 1                 |                       |      |          |          |                       |          |      |      |     |
|      | 3 70              | 4 123         | 75 A B                |          |           |                                       |                   |                       |      |          |          |                       |          |      |      |     |
|      | 3 15              | 4 14          | 4.00 A B              |          |           |                                       |                   |                       |      |          |          |                       |          |      |      |     |
|      | 1 15              | 4 134         | 175 A B               |          |           |                                       |                   |                       |      |          |          |                       |          |      |      |     |
|      | 2 70              | 4 119         | 1.75 A B              |          |           |                                       |                   |                       |      |          |          |                       |          |      |      | Ŧ   |
| ÷    | CI                | C2-T          | G                     | C4       | CS        | C6                                    | C7                | C8                    | (9   | C10      | CII      | C12                   | C13      | C14  | C15  | T   |
|      | Primer Type       | Method        | Adhesive Force        |          |           | Plate material Type                   | Temp of Operation | Battery Life (In Hour |      | Temp     | Pressure | Impurity (No Replicat | e)       |      |      |     |
| 7    | 2                 | Dipping       | 5.6                   |          |           | 1                                     | 70                | 8                     |      | 125      | 30       |                       | 1        |      |      |     |
| 8    | 2                 | Dipping       | 4.9                   |          |           | 1                                     | 70                | 7.                    |      | 125      | 35       |                       | 4        |      |      |     |
| 9    | 2                 | Dipping       | 5.4                   |          |           | 1                                     | 125               | 2                     | 1    | 125      | 40       |                       | 2        |      |      |     |
| 10   | 2                 | Spraying      | 5.8                   |          |           | 1                                     | 125               | 7                     | 1    | 125      | 45       |                       | 3        |      |      |     |
| 11   | 2                 | Spraying      | 6.1                   |          |           | 1                                     | 125               | 8                     |      | 150      | 25       |                       | 9        | -    |      |     |
| 12   | 2                 | Spraving      | 6.3                   |          |           | 1                                     | 125               | S                     |      | 150      | 30       |                       | 6        |      | 100  |     |
| 4    | рн + I            | Asymetric Fa  | ictorial Design and 1 | Wm       |           |                                       |                   | 4                     |      |          |          |                       |          | -    | 100  |     |
| Ø    | Asymetric         | Factorial Des | ign and Two-way AN    | OVA.mwx  |           |                                       |                   |                       |      |          |          |                       | - 🗆      | - 10 | 20   |     |
| V    | O Turne           | here to a     | earch                 |          |           | 0                                     |                   |                       |      | <b>1</b> | 63       | <b></b>               | 5 m 4 d  | 10   | A BA |     |
| NP   | TEL Type          | enere to s    | carcin                |          |           |                                       |                   |                       | •    | <u></u>  |          | <u> </u>              | 5 m 18 4 |      | 1.19 | DU. |

So, here what you can see is that ah grouping information is given.

(Refer Slide Time: 11:40)

| M N  | linitab - Untitled |             |                          |               |               |                     |                   |                        |      |         |          |                         |                 |     |     | <i>a</i> > |
|------|--------------------|-------------|--------------------------|---------------|---------------|---------------------|-------------------|------------------------|------|---------|----------|-------------------------|-----------------|-----|-----|------------|
| File | Edit Data          | Calc Sta    | Graph View               | Helo Assi     | stant Ad      | ditional Tools      |                   |                        |      |         |          |                         |                 |     |     |            |
| •    |                    | Da da le    |                          | 00            | fr 3          |                     |                   |                        |      |         |          |                         |                 |     |     |            |
|      | CI 302 60          |             |                          |               |               | - 10 10 10 10 - 44  |                   |                        | 6 50 |         |          |                         |                 |     |     |            |
| н    | ·0 II ·0 I         | 101-0       | TEPER                    | E             | 9 EU : 9      | Y 10 11 11 11 10    | CHELXH            | 80 · 0. 00 0           | ¥ 83 |         |          |                         |                 |     |     |            |
|      |                    | W.F.        | YNBERI                   | * 12          | -γ ≥ <b>Γ</b> | BK *                |                   |                        |      |         |          |                         |                 |     |     |            |
| Co   | mparisons for      | Battery U   | * x                      |               |               |                     |                   |                        |      |         |          |                         |                 |     |     |            |
|      | ASYMETRIC FACT     | TORIAL DESI | GN AND TWO-WAY AT        | NOVA.MWX      |               |                     |                   |                        |      |         |          |                         |                 |     |     |            |
| Co   | mparison           | s for B     | attery Life (In          | Hour)         |               |                     |                   |                        |      |         |          |                         |                 |     |     | ٠          |
| -    |                    |             |                          |               |               |                     | 1                 |                        |      |         |          |                         |                 |     |     |            |
|      | Operation          | NN          | ean Grouping             |               |               |                     |                   |                        |      |         |          |                         |                 |     |     | ^          |
|      | 2.15               | 4 15        | 5.75 A                   |               |               |                     |                   |                        |      |         |          |                         |                 |     |     |            |
|      | almp               | 4 14        | 5.75 A B                 |               |               |                     |                   |                        |      |         |          |                         |                 |     |     |            |
|      | 3 15               | 4 14        | 4.00 A B                 |               |               |                     |                   |                        |      |         |          |                         |                 |     |     |            |
|      | 1 15               | 4 13        | 4.75 A B                 |               |               |                     |                   |                        |      |         |          |                         |                 |     |     |            |
|      | 2 70               | 4 11        | 9.75 A B                 |               |               |                     |                   |                        |      |         |          |                         |                 |     |     |            |
|      | 3 1 2 5            | 4 8         | 5.50 B C                 |               |               |                     |                   |                        |      |         |          |                         |                 |     |     |            |
|      | 1 125              | 4 5         | 7.50 C                   |               |               |                     |                   |                        |      |         |          |                         |                 |     |     |            |
|      | 1 70               | 4 5         | 7.25 C                   |               |               |                     |                   |                        |      |         |          |                         |                 |     |     |            |
|      | 2125               | 4 4         | 9.50 C                   |               |               |                     |                   |                        |      |         |          |                         |                 |     |     |            |
|      | Means that         | do not sha  | e a letter are significa | antly differe | nt.           |                     |                   |                        |      |         |          |                         |                 |     |     |            |
|      |                    | _           |                          | _             |               |                     |                   |                        |      |         |          |                         |                 |     |     |            |
|      | 1                  |             |                          |               |               | 1                   |                   |                        |      |         |          |                         |                 | 1   |     | ٣          |
| +    | CI                 | C2-T        | C3                       | C4            | CS            | C6                  | C7                | C8 5                   | C9   | C10     | C11      | C12 😰                   | C13             | C14 | C15 |            |
|      | Primer Type        | Method      | Adhesive Force           |               |               | Plate material Type | Temp of Operation | Battery Life (In Hour) |      | Temp    | Pressure | Impurity (No Replicate) |                 |     |     |            |
| 7    | 2                  | Dipping     | 5.6                      |               |               | 1                   | 70                | 80                     |      | 125     | 30       | 1                       |                 |     |     |            |
| 8    | 2                  | Dipping     | 4.9                      |               |               | 1                   | 70                | 75                     |      | 125     | 35       | 4                       |                 |     |     |            |
| 9    | 2                  | Dipping     | 5.4                      |               |               | 1                   | 125               | 20                     |      | 125     | 40       | 2                       |                 |     |     |            |
| 10   | 2                  | Spraying    | 5.8                      |               |               | 1                   | 125               | 70                     |      | 125     | 45       | 3                       |                 |     |     |            |
| 11   | 2                  | Spraying    | 6.1                      |               |               | 1                   | 125               | 82                     |      | 150     | 25       | 9                       |                 |     |     |            |
| 12   | 2                  | Spraving    | 6.3                      |               |               | 1                   | 125               | 58                     |      | 150     | 30       | 6                       |                 |     | In  |            |
| 4.4  | DH + /             | symetric F  | actorial Design and      | Tw            |               |                     |                   | 4                      |      |         |          |                         |                 |     | 100 |            |
| 1    | Asymetric I        | actorial De | ign and Two-way Al-      | xwm.Al/Ov     |               |                     |                   |                        |      |         |          | ₩ #                     | - 0             | 11  | A   |            |
| 0    |                    |             |                          |               |               |                     |                   |                        |      | -       | -        |                         |                 | 11  |     |            |
| NP   | P Type             | here to s   | earch                    |               |               | 0 📕 🗄               |                   | 🦉 💻 🎯                  | W    | <u></u> |          | L. ^ @ '                | <b>•••</b> // • |     | CHI |            |
|      |                    |             |                          |               |               |                     |                   |                        |      |         |          |                         |                 |     |     | 100        |

So, 2 and 15 and 3 and 15 are not different as such but based on the robustness assumptions what we are doing is that we are adopting 3 as the material type because although there is no significant difference because letter code remains same. So, but we will select 3 because that is more robust with the change in temperature like that. So, this comparison test is also possible to see which levels to select which combination of the levels to select like that is possible.

## (Refer Slide Time: 12:10)

| Ne life Das Gir San Gay New Help Autors Addreed Nois<br>Beic Santistic<br>Addreed Nois<br>Addreed Nois<br>Does<br>Help Carlos Santistic<br>Help Carlos Carlos Santistic<br>Help Carlos Carlos Santistic<br>Help Carlos Car | Minitab - Untitled  |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |                                                                                                                                                                                                                                                  |                                                                                      |      |        |                        |         |        | 8  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------|--------|------------------------|---------|--------|----|
| Image: Second Construction     Image: Second Construction     Image: Second Construction       Image: Second Construction     Image: Second Construction     Image: Second Construction       Image: Second Construction     Image: Second Construction     Image: Second Construction       Image: Second Construction     Image: Second Construction     Image: Second Construction       Image: Second Construction     Image: Second Construction     Image: Second Construction       Image: Second Construction     Image: Second Construction     Image: Second Construction       Image: Second Construction     Image: Second Construction     Image: Second Construction       Image: Second Construction     Image: Second Construction     Image: Second Construction       Image: Second Construction     Image: Second Construction     Image: Second Construction       Image: Second Construction     Image: Second Construction     Image: Second Construction       Image: Second Construction     Image: Second Construction     Image: Second Construction       Image: Second Construction     Image: Second Construction     Image: Second Construction       Image: Second Construction     Image: Second Construction     Image: Second Construction       Image: Second Construction     Image: Second Construction     Image: Second Construction       Image: Second Construction     Image: Second Construction     Image: Second Construction       Imag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e Edit Data Calc    | Stat Graph View Help                                                                                                                                                                                                                                                          | Assistant Ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ditional Tools                                                          |                                                                                                                                                                                                                                                  |                                                                                      |      |        |                        |         |        |    |
| Cl.         C-T.         CJ.         C4         C5         C6         C7         C1         c9         C0         C1         C12         g         C13         C4         C5           Primer Type Method         Adhesive Force         Primer Type Method         Adhesive Force         Primer Type Temp of Operation         Eaternatical Temp of Operation         Eate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | Baic Statistic<br>Regression<br>ANOVA<br>DOE<br>Control Charts<br>Control Charts<br>Control Charts<br>Control Charts<br>Control Charts<br>Control Charts<br>Parkistive Analysis<br>Mithousite<br>Trans Series<br>Nonparametrics<br>Equivalence Tests<br>Power and Sample Size | <ul> <li>fx and</li> <li>fx and</li></ul> | -s. F. R. y V. C.<br>R. H. H. H. K. | <ul> <li>Recent Line</li> <li>Recent Line</li> <li>Computers</li> <li>Computers</li> <li>Factorial Retain</li> <li>Surface Retain</li> <li>Surface Retain</li> <li>Response Optimized Control</li> <li>New Proje</li> <li>New Workshe</li> </ul> | er Model.<br>er Model.<br>er Para.<br>er Para.<br>er Curi-Shiften<br>er Curi-Shiften | ×.   |        |                        |         |        |    |
| Prime type         Motion         American type         Motion         Temporation         Temporatimation <thtemporation< th=""> <th< th=""><th>C1 C2-</th><th>r ca c</th><th>4 CS</th><th>C6</th><th>C7</th><th>C8 12</th><th>C9 C</th><th>10 C11</th><th>C12 🕫</th><th>C13 C1</th><th>4 C15</th><th></th></th<></thtemporation<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1 C2-              | r ca c                                                                                                                                                                                                                                                                        | 4 CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C6                                                                      | C7                                                                                                                                                                                                                                               | C8 12                                                                                | C9 C | 10 C11 | C12 🕫                  | C13 C1  | 4 C15  |    |
| a contract         contra <tttttt<ttttt< th="">         contra<ttttt< th="">         cont</ttttt<></tttttt<ttttt<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 Dinoin            | a Adhesive Force                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Plate material Type                                                     | remp or Operation                                                                                                                                                                                                                                | en                                                                                   | Te   | 125 20 | impunty (No Replicate) |         |        |    |
| 2 Opping         5.4         1         125         20         125         40         2           2 Spraying         5.8         1         125         70         125         45         3           2 Spraying         6.1         1         125         70         125         45         3           2 Spraying         6.1         1         125         82         150         25         9           2 Spraying         6.1         1         125         82         150         25         9           2 Spraying         6.1         1         125         82         150         25         9           2 Spraying         6.1         1         125         82         150         26         150           19 H         Appendric Factorial Design and Inc         Image: Control Design and Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 Dippin            | g 4.9                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                       | 70                                                                                                                                                                                                                                               | 75                                                                                   |      | 125 35 | 4                      |         |        |    |
| 2 (straying         5.8         1         125         70         125         45         3           2 (straying         6.1         1         125         62         150         25         9           2 (straying         6.3         1         125         50         150         30           2 (straying         6.3         1         125         50         150         30           2 (straying         6.4         1         125         50         150         30           2 (straying         6.1         1         125         50         150         30         6           P // + Mymetric factural Deckyn and Teo-wy AND/A-max         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 Dippin            | g 5.4                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                       | 125                                                                                                                                                                                                                                              | 20                                                                                   |      | 125 40 | 2                      |         |        |    |
| 2 Spraying         6.1         1         125         62         150         25         9           2 Spraying         6.3         1         125         30         150         30         6           P H         H symmetric factural Bodge and Nuc         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 Sprayin           | ng 5.8                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                       | 125                                                                                                                                                                                                                                              | 70                                                                                   |      | 125 45 | 3                      |         |        |    |
| 2 Soravina 6.3 1 125 58 150 30 6     P H + Appentic Factural Design and Two-     Appentic Factural Design and Two-     Appentic Factural Design and Two-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 Sprayi            | ng 6.1                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                       | 125                                                                                                                                                                                                                                              | 82                                                                                   |      | 150 25 | 9                      |         | -      |    |
| b H + Agymetric Factural Design and Two           Agymetric Factural Design and Two           Agymetric Factural Design and Two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 Spravi            | ng 6.3                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                       | 125                                                                                                                                                                                                                                              | 58                                                                                   |      | 150 30 | 6                      |         | 100    |    |
| Asymetric Factorial Design and Two-way ANDIA.mws                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D H + Asymetri      | c Factorial Design and Tw                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |                                                                                                                                                                                                                                                  | 4                                                                                    |      |        |                        |         |        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Asymetric Factorial | Design and Two-way ANOVA.                                                                                                                                                                                                                                                     | mwx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                                                                                                                                                                                                  |                                                                                      |      | 1000   | <b>.</b>               |         |        | į. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O Tune here t       | o search                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 =                                                                     |                                                                                                                                                                                                                                                  |                                                                                      |      | VI 51  | 6                      | 00 0 10 | In all | 1  |

And also we can fit a regression model that we told that we can do general linear models like that fit general linear models over here.

(Refer Slide Time: 12:18)

| File  | Edit Data Calc Sta<br>Edit D | t Graph View ⊨<br>C C □ # # #<br>Y ⊠ © E E E<br>Y ⊠ © E E I | Help Assir<br>Ø@<br>K + H | stant Ad | Additional Tools<br>3 <sup>m</sup> −Σ Å B ↓ ✓ ✓ ≪ €<br># 70 Ⅲ # % ↓ ∨ ≥<br>5 Ⅲ Ø ∠ ★<br>General Linear Medel<br>C1 Primer Type Rg | <b>∉</b><br>⊻∎8⊻★¤                     | 🖸 d' 🖏 d           | "Y \$\$ 晋 |         |        |                       |     |      |       |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------|-----------|---------|--------|-----------------------|-----|------|-------|--|
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |                           |          | General Linear Model                                                                                                              |                                        |                    |           |         | <      |                       |     |      |       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |                           |          |                                                                                                                                   | Responses:<br>'Battery Life (In Hour)' |                    |           |         |        |                       |     |      |       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |                           |          |                                                                                                                                   | Factors                                |                    |           | _       | -      |                       |     |      |       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |                           |          |                                                                                                                                   | "Plate material Type" "Ter             | np of Operation'   |           | 2       |        |                       |     |      |       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |                           |          |                                                                                                                                   | Covariates:                            |                    |           |         |        |                       |     |      |       |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |                           |          |                                                                                                                                   | Random/Nest                            | Model              | Optogs    | Coging  |        |                       |     |      |       |  |
| 4     | C1 C2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C3                                                          | C4                        | CS       | Select                                                                                                                            | Stepwise                               | graphs             | Results   | Storage |        | C12 🛛                 | C13 | C14  | C15   |  |
| _     | Primer Type Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Adhesive Force                                              |                           |          |                                                                                                                                   |                                        |                    |           |         | are Im | purity (No Replicate) |     |      |       |  |
| 7     | 2 Dipping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.6                                                         |                           |          | Help                                                                                                                              |                                        |                    | <u>OK</u> | Cancel  | 30     | 1                     |     |      |       |  |
| 8     | 2 Dipping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.9                                                         |                           |          | 1                                                                                                                                 | /0                                     |                    | 15        | 125     | 35     | 4                     |     |      |       |  |
| 9     | 2 Dipping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.4                                                         |                           |          | 1                                                                                                                                 | 125                                    |                    | 20        | 125     | 40     | 2                     |     |      |       |  |
| 10    | 2 Spraying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.8                                                         |                           |          | 1                                                                                                                                 | 125                                    |                    | 70        | 125     | 45     | 3                     |     |      |       |  |
| 11    | 2 Spraying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.1                                                         |                           |          | 1                                                                                                                                 | 125                                    |                    | 82        | 150     | 25     | 9                     |     | 100  | 6     |  |
| 12    | 2 Spraving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.3                                                         |                           |          | 1                                                                                                                                 | 125                                    | Real Property lies | 58        | 150     | 30     | 6                     |     |      | -     |  |
| 41    | Asymetric F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | actorial Design and 1                                       | Wee                       |          |                                                                                                                                   |                                        | 4                  |           |         |        |                       |     | -    |       |  |
| 1     | Asymetric Factorial De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sign and Two-way AN                                         | WM.mwx                    |          |                                                                                                                                   |                                        |                    |           |         |        |                       | - 🗆 | - 10 | - Cal |  |
| 10.00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |                           |          |                                                                                                                                   |                                        |                    |           |         |        |                       |     |      |       |  |

So, I have battery life which I want to predict and plate material type and temperature is done and we want to select the models that interactions also is selected over here what you can observe.

(Refer Slide Time: 12:25)



And I click OK over here.

(Refer Slide Time: 12:32)



So, in options we have not given anything. So, that is not required.

(Refer Slide Time: 12:36)



And in graphical representation this normal standardised residual we can do that and we can see the residual plots also and then like what we do in regression.

(Refer Slide Time: 12:47)

| 1100  | C.G. Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cale Day                                                                                                                              | Court Mary 1                                                                                                   | Inter Annia                       |                        | in a large                                                                                                                       |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     | -   | 1 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------|-------------------------------------------------|-----------|--------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------|-----|-----|---|
|       | Edit Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calc Stat                                                                                                                             | Graph View P                                                                                                   | telp Assist                       | Addi                   | bonal loois                                                                                                                      |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| 5     | 1 2 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       | で日本共                                                                                                           | 00                                | fx ge.                 | SAN 24                                                                                                                           | 2                                                                |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| P     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01 -0                                                                                                                                 | Y 20 8                                                                                                         | 医**                               | 图:带                    | 珍雅兼代四                                                                                                                            | ×■SE#科                                                           |                        | a ry st                                         | Bä        |                                                              |                                                     |                                                           |                                                                                |     |     |   |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | € F.                                                                                                                                  | YMBERI                                                                                                         |                                   | Y 🖂 🛄                  | 8 K *                                                                                                                            |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| en    | eral Linear M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | odel: Bat                                                                                                                             | ¥ X                                                                                                            |                                   |                        |                                                                                                                                  |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| 45    | SYMETRIC FACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TORIAL DESI                                                                                                                           | IN AND TWO-WAY AN                                                                                              | OVA MWX                           |                        |                                                                                                                                  |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| er    | neral Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ar Mor                                                                                                                                | lel: Battery Li                                                                                                | fe (In H                          | OUT) VE                | ersus Plate mat                                                                                                                  | erial Type Ten                                                   | nn of Oper             | ation                                           |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| "     | ierai enti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | an mot                                                                                                                                | ien buttery u                                                                                                  | ine (ini in                       | oui) it                | and a finde find                                                                                                                 | iena type, ten                                                   | in or open             | ution                                           |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| M     | lethod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                       |                                                                                                                |                                   |                        |                                                                                                                                  |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| IN    | lethou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                       |                                                                                                                |                                   |                        |                                                                                                                                  |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| Ð,    | actor coding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (-1, 0, +1)                                                                                                                           |                                                                                                                |                                   |                        |                                                                                                                                  |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                       |                                                                                                                |                                   |                        |                                                                                                                                  |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| Fi    | actor Infor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mation                                                                                                                                |                                                                                                                |                                   |                        |                                                                                                                                  |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
|       | artor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Type                                                                                                                                  | Levels Values                                                                                                  |                                   |                        | N                                                                                                                                |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
|       | actor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       |                                                                                                                |                                   |                        |                                                                                                                                  |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| P     | late material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type Fixe                                                                                                                             | d 3 1, 2, 3                                                                                                    | _                                 |                        | 48                                                                                                                               |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| PI    | late material<br>emp of Opera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type Fixe                                                                                                                             | d 3 1, 2, 3<br>d 3 15, 70,                                                                                     | 125                               |                        | 18                                                                                                                               |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| PI    | late material<br>emp of Opera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type Fixe                                                                                                                             | d 3 1, 2, 3<br>d 3 15, 70,                                                                                     | 125                               |                        | Lê.                                                                                                                              |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| PI    | late material<br>emp of Opera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type Fixe                                                                                                                             | d 3 1, 2, 3<br>d 3 15, 70,                                                                                     | 125                               |                        | 13                                                                                                                               |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| PITI  | late material<br>emp of Opera<br>nalysis of '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type Fixe<br>ition Fixe<br>Variance                                                                                                   | d 3 1, 2, 3<br>d 3 15, 70,                                                                                     | 125                               |                        | 18                                                                                                                               |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| PITI  | late material<br>emp of Opera<br>nalysis of 1<br>ource<br>Plate materia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Type Fixe-<br>ition Fixe-<br>Variance                                                                                                 | d 3 1, 2, 3<br>d 3 15, 70,                                                                                     | 125<br>DF Adj SS<br>2 10584       | Adj MS                 | F-Value P-Value                                                                                                                  |                                                                  |                        |                                                 |           |                                                              |                                                     |                                                           |                                                                                |     |     |   |
| PI TI | late material<br>emp of Opera<br>nalysis of 1<br>ource<br>Plate material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Type Fixe-<br>ition Fixe-<br>Variance                                                                                                 | d 3 1, 2, 3<br>d 3 15, 70,                                                                                     | 125<br>DF Adj SS<br>2 10684       | Adj MS<br>5341.9       | F-Value P-Value<br>7.91 0.002                                                                                                    |                                                                  |                        |                                                 |           | 614                                                          |                                                     | (1)                                                       |                                                                                |     |     |   |
| PI TI | late material<br>emp of Opera<br>nalysis of 1<br>ource<br>Plate material<br>C1<br>Primer Tune                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type Fixe<br>Ition Fixe<br>Variance<br>Type<br>C2-T<br>Mathod                                                                         | d 3 1, 2, 3<br>d 3 15, 70,<br>C3                                                                               | 125<br>DF Adj SS<br>2 10684<br>C4 | Adj MS<br>5341.9<br>C5 | F-Value P-Value<br>7.91 0.002<br>C6<br>Plate material Tune                                                                       | C7<br>Terms of Operation                                         | C8<br>Battere life //r | 5<br>Hourt                                      | 09        | C10                                                          | C11<br>Dressura                                     | C12                                                       | C13<br>Spec                                                                    | C14 | C15 |   |
| PI TI | late material<br>emp of Opera<br>nalysis of <sup>1</sup><br>ource<br>Plate materia<br>C1<br>Primer Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Type Fixes<br>ition Fixes<br>Variance<br>Type<br>C2-T<br>Method<br>Disping                                                            | d 3 1, 2, 3<br>d 3 1, 2, 3<br>d 3 15, 70,<br>C3<br>Adhesive Force                                              | 125<br>DF Adj SS<br>2 10684<br>C4 | Adj MS<br>5341.9<br>C5 | F-Value<br>7.91 0.002<br>C6<br>Plate material Type                                                                               | C7<br>Temp of Operation<br>20                                    | C8<br>Battery Life (In | E Hour)                                         | <b>C9</b> | C10<br>Temp                                                  | C11<br>Pressure                                     | C12 2<br>Impurity (No Replicate)                          | C13<br>SRES                                                                    | C14 | CIS |   |
| PI TI | late material<br>emp of Opera<br>nalysis of 1<br>ource<br>Plate material<br>C1<br>Primer Type<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Type Fixes<br>toon Fixes<br>Variance<br>Type<br>C2-T<br>Method<br>Dipping<br>Dipping                                                  | d 3 1, 2, 3<br>d 3 15, 70,<br>C3<br>Adhesive Force<br>5.6<br>4.9                                               | 125<br>DF Adj SS<br>2 10684<br>C4 | Adj MS<br>5341.9<br>C5 | F-Value P-Value<br>7:91 0.002<br>Plate material Type<br>1                                                                        | C7<br>Temp of Operation<br>70<br>70                              | C8<br>Battery Life (in | 80<br>75                                        | C9        | C10<br>Temp<br>125                                           | C11<br>Pressure<br>30                               | C12 5<br>Impurity (No Replicate)<br>4                     | C13<br>SRES<br>1.01095<br>0.78876                                              | C14 | CIS |   |
| PI TI | iate material<br>emp of Opera<br>nalysis of 1<br>ource<br>Plate material<br>C1<br>Primer Type<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Type Fixes<br>tition Fixes<br>Variance<br>Type<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping                                     | d 3 1, 2, 3<br>d 3 15, 70,<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.6                                        | 125<br>DF Adj SS<br>2 10684<br>C4 | Adj MS<br>5341.9<br>C5 | F-Value P-Value<br>7:91 0.002<br>C6<br>Plate material Type<br>1<br>1                                                             | C7<br>Temp of Operation<br>70<br>70<br>125                       | C8<br>Battery Life (In | 80<br>Hour)<br>80<br>75<br>20                   | C9        | C10<br>Temp<br>125<br>125<br>125                             | C11<br>Pressure<br>30<br>35<br>40                   | C12 g<br>Impurity (No Repicate)<br>1<br>4<br>2            | C13<br>SRES<br>1.01095<br>0.78876<br>-1.66640                                  | C14 | CIS |   |
|       | International Control | Type Fixes<br>tion Fixes<br>Variance<br>Type<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraving                           | d 3 1, 2, 3<br>d 3 15, 70,<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.4                                 | 125<br>DF Adj SS<br>2 10684<br>C4 | Adj MS<br>5341.9<br>C5 | F-Value P-Value<br>7.91 0.002<br>C6<br>Plate material Type<br>1<br>1<br>1<br>1                                                   | C7<br>Temp of Operation<br>70<br>125<br>125                      | C8<br>Battery Life (In | 80<br>75<br>20<br>70                            | C9        | Ct0<br>Temp<br>125<br>125<br>125<br>125                      | C11<br>Pressure<br>30<br>35<br>40<br>45             | C12 g<br>Impurity (No Replicate)<br>1<br>4<br>2<br>3      | C13<br>SRES<br>1.01095<br>0.78876<br>-1.66640<br>0.55547                       | C14 | CIS |   |
|       | International Control | Type Fixes<br>tion Fixes<br>Variance<br>Type<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying               | d 3 1, 2, 3<br>d 3 15, 70,<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1                          | 125<br>DF Adj SS<br>2 10684<br>C4 | Adj MS<br>5341.9<br>CS | F-Value P-Value<br>7.91 0.002<br>Plate material Type<br>1<br>1<br>1<br>1<br>1                                                    | C7<br>Temp of Operation<br>70<br>70<br>125<br>125<br>125         | C8<br>Battery Life (In | Hour)<br>80<br>75<br>20<br>70<br>82             | 09        | Ct0<br>Temp<br>125<br>125<br>125<br>125<br>125               | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25       | C12 g<br>Impurity (No Repicate)<br>1<br>2<br>3<br>3       | C13<br>SRES<br>1.01095<br>0.78876<br>-1.66640<br>0.55547<br>1.08872            | C14 | C15 |   |
| PI TI | International Control | Type Fixes<br>tion Fixes<br>Variance<br>Type<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying   | d 3 1,2,3<br>d 3 15,70,<br>C3<br>Adhesive Force<br>5,6<br>4,9<br>5,4<br>5,8<br>6,1<br>6,3                      | 125<br>DF Adj SS<br>2 10684<br>C4 | Adj MS<br>5341.9<br>C5 | F-Value P-Value<br>7.91 0.002<br>C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    | C7<br>Temp of Operation<br>70<br>125<br>125<br>125<br>125<br>125 | C8<br>Battery Life (In | 80<br>Hour)<br>80<br>75<br>20<br>70<br>82<br>58 | C9        | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 to<br>Impurity (No Replicate)<br>4<br>3<br>9<br>6     | C13<br>SRES<br>1.01095<br>0.78876<br>-1.66640<br>0.55547<br>1.08872<br>0.02222 | C14 | CIS |   |
|       | alter material<br>late material<br>malysis of 1<br>ource<br>Plate material<br>C1<br>Primer Type<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type Fixe<br>Type Fixe<br>Variance<br>Variance<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying | d 3 1,2,3<br>d 3 15,70,<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1<br>6.3<br>totrid Desien and | 125<br>DF Adj SS<br>2 10684<br>C4 | Adj MS<br>5341.9<br>C5 | F-Value P-Value<br>7.91 0.002<br>C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    | C7<br>Temp of Operation<br>70<br>125<br>125<br>125<br>125<br>125 | C8<br>Battery Life (in | 80<br>Hour)<br>80<br>75<br>20<br>70<br>82<br>58 | C9        | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 5<br>Impurity (No Repicate)<br>4<br>2<br>3<br>9<br>6  | C13<br>SRES<br>1.01095<br>0.78876<br>-1.66640<br>0.55547<br>1.08872<br>0.02222 | C14 | CIS |   |
|       | Iate material<br>are material<br>malysis of 1<br>ource<br>Plate material<br>Primer Type<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Type Fixes<br>tion Fixes<br>Variance<br>Type<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying   | d 31,2,3<br>d 315,70,<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>6.1<br>6.3<br>cterial Design and I       | 125<br>DF Adj SS<br>2 10684<br>C4 | Adj MS<br>5341.9<br>C5 | F-Value P-Value<br>7.91 0.002<br>C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | C7<br>Temp of Operation<br>70<br>125<br>125<br>125<br>125<br>125 | C8<br>Battery Life (in | 80<br>Hour)<br>80<br>75<br>20<br>70<br>82<br>58 | 0         | C10<br>Temp<br>125<br>125<br>125<br>125<br>150<br>150        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 g<br>Impurity (No Replicate)<br>4<br>3<br>9<br>9<br>6 | C13<br>SRES<br>1.01095<br>0.78876<br>-1.66640<br>0.55547<br>1.08872<br>0.02222 | C14 | CIS |   |

So, if I click OK over here what you observe is that.

#### (Refer Slide Time: 12:49)

| Local and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |             |            |                 |                                               |                                                                        |                                                                                                                             |       |                                                              |                                                     |                         |                                                 |                                                                                  |     | -   | 6 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|------------|-----------------|-----------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------|-----------------------------------------------------|-------------------------|-------------------------------------------------|----------------------------------------------------------------------------------|-----|-----|---|
| e Edit Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calc Stat                                                                                                                                          | Graph View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Help         | Assista     | nt Additi  | onal Tools      |                                               |                                                                        |                                                                                                                             |       |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BA SC                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0            | 0           | fx 30 -    | e 1 8           | 211                                           |                                                                        |                                                                                                                             |       |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
| 11 mm m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 14          | 14 B       | - 19 18<br>     | ate Luri                                      |                                                                        | 1                                                                                                                           | A 150 |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
| .0 II .0 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 101 10 11                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.          |             | 51) : NK - | · · · · · · ·   | AU                                            | C                                                                      | 1 0 0 0 0 T                                                                                                                 | ·9 83 |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | £ ⊥ Y                                                                                                                                              | RESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *            | 29          |            | SK *            |                                               |                                                                        |                                                                                                                             |       |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
| eneral Linear Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | odel: Bat 👻                                                                                                                                        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |             |            |                 |                                               |                                                                        |                                                                                                                             |       |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
| ASYMETRIC FACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TORIAL DESIGN                                                                                                                                      | AND TWO-WAY A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOVA         | AMWX        |            |                 |                                               |                                                                        |                                                                                                                             |       |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
| eneral Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ear Model                                                                                                                                          | I: Battery L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ife          | (In H       | our) ve    | rsus Pla        | ate mat                                       | erial Type, Ten                                                        | of Operation                                                                                                                |       |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
| Analysis of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Undance                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |             |            |                 |                                               | × .                                                                    |                                                                                                                             |       |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
| Analysis of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | variance                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |             |            |                 |                                               |                                                                        |                                                                                                                             |       |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
| Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DF           | Adj SS      | Adj MS     | F-Value         | P-Value                                       |                                                                        |                                                                                                                             |       |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
| Plate material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Type                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2            | 10584       | 5341.9     | 7.91            | 0.002                                         |                                                                        |                                                                                                                             |       |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
| Temp of Oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | racion                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -            | 39119       | 19559.4    | 28.97           | 0.000                                         |                                                                        |                                                                                                                             |       |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
| Place material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | riype-remp o                                                                                                                                       | or Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37           | 10224       | 675.3      | 3.30            | 0.014                                         |                                                                        |                                                                                                                             |       |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
| Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23           | 18231       | 0/2.2      |                 |                                               |                                                                        |                                                                                                                             |       |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
| Total<br>Model Sumi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mary<br>R-so R-so(a)                                                                                                                               | uli) R-satured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35           | 77647       |            |                 | C                                             |                                                                        |                                                                                                                             |       |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
| Total<br>Model Sumi<br>S 1<br>25.9849 76.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mary<br>R-sq R-sq(at<br>52% 69.56                                                                                                                  | idj) R-sq(pred<br>6% 58.26%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35           | 77647       |            |                 | L                                             |                                                                        |                                                                                                                             |       |                                                              |                                                     |                         |                                                 |                                                                                  |     |     |   |
| Tatal<br>Model Sum<br>25.9849 76.<br>C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mary<br>R-sq R-sq(ai<br>.52% 69.56<br>C2-T                                                                                                         | dj) R-sq(pred<br>6% 58.26%<br>C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35           | 77647<br>C4 | CS         | 0               | 6                                             | C7                                                                     | C8 ;                                                                                                                        | 09    | C10                                                          | C11                                                 | C12                     | 5                                               | C13                                                                              | C14 | C15 |   |
| Total<br>Model Sum<br>S 1<br>25.9849 76.<br>C1<br>Primer Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mary<br>R-sq R-sq(at<br>52% 69.56<br>C2-T<br>Method A                                                                                              | rdj) R-sq(pred<br>6% 58.26%<br>C3<br>Adhesive Force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35           | 77647<br>C4 | CS         | C<br>Plate mate | 6<br>erial Type                               | C7<br>Temp of Operation                                                | C8<br>ttery Life (In Hour                                                                                                   | 09    | C10<br>Temp                                                  | C11<br>Pressure                                     | C12<br>Impurity (No Rep | licate)                                         | C13<br>SRES                                                                      | C14 | C15 |   |
| Total<br>Model Sum<br>S 1<br>25.9849 76.<br>C1<br>Primer Type<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mary<br>R-sq R-sq(at<br>52% 69.56<br>C2-T<br>Method A<br>Dipping                                                                                   | dj) R-sq(pred<br>6% 58.26%<br>C3<br>Adhesive Force<br>5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35<br>)<br>b | 77647<br>C4 | CS         | C<br>Plate mate | 6<br>erial Type<br>1                          | C7<br>Temp of Operation<br>70                                          | C8 :<br>ttery Life (in Hour<br>80                                                                                           | 09    | C10<br>Temp<br>125                                           | C11<br>Pressure<br>30                               | C12<br>Impurity (No Rep | licate)                                         | C13<br>SRES<br>1.01095                                                           | C14 | C15 |   |
| Total<br>Model Summ<br>25.9849 76<br>C1<br>Primer Type<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mary<br>R-sq R-sq(at<br>52% 69.56<br>C2-T<br>Method A<br>Dipping<br>Dipping                                                                        | dj) R-sq(pred<br>6% 58.26%<br>C3<br>Adhesive Force<br>5.6<br>4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )<br>b       | 77647<br>C4 | C5         | C<br>Plate mate | 6<br>erial Type<br>1<br>1                     | C7<br>Temp of Operation<br>70<br>70                                    | C8<br>ttery Life (In Hour<br>8/<br>7!                                                                                       | 0     | C10<br>Temp<br>125<br>125                                    | C11<br>Pressure<br>30<br>35                         | C12<br>Impurity (No Rep | licate)<br>1                                    | C13<br>SRES<br>1.01095<br>0.78876                                                | C14 | C15 |   |
| Total<br>Model Summ<br>25.9849 76<br>C1<br>Primer Type<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mary<br>R-sq R-sq(ar<br>52% 69.56<br>C2-T<br>Method A<br>Dipping<br>Dipping<br>Dipping                                                             | dj) R-sq(pred<br>6% 58.26%<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>)</u>     | 77647<br>C4 | C5         | C<br>Plate mate | 6<br>erial Type<br>1<br>1<br>1                | C7<br>Temp of Operation<br>70<br>70<br>125                             | C8 steey Life (In Hour<br>80<br>73<br>20                                                                                    | 0     | C10<br>Temp<br>125<br>125<br>125                             | C11<br>Pressure<br>30<br>35<br>40                   | C12<br>Impurity (No Rep | licate)<br>1<br>4<br>2                          | C13<br>SRES<br>1.01095<br>0.78876<br>-1.66640                                    | C14 | C15 |   |
| Total<br>Model Summi<br>25.9849 76.<br>C1<br>Primer Type<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mary<br>R-sq R-sq(at<br>52% 09.50<br>C2-T<br>Method A<br>Dipping<br>Dipping<br>Dipping<br>Spraying                                                 | ldj) R-sqipred<br>6% 58.26%<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )<br>b       | 77647<br>C4 | CS         | C<br>Plate mate | 6<br>erial Type<br>1<br>1<br>1<br>1           | C7<br>Temp of Operation<br>70<br>70<br>125<br>125                      | C8 st<br>ttery Life (in Hour<br>8<br>72<br>20<br>7<br>7                                                                     | 0     | C10<br>Temp<br>125<br>125<br>125<br>125                      | C11<br>Pressure<br>30<br>35<br>40<br>45             | C12<br>Impurity (No Rep | 1 1 4 2 3                                       | C13<br>SRES<br>1.01095<br>0.78876<br>-1.66640<br>0.55547                         | C14 | C15 |   |
| Total Model Summ S 1 25.9849 76. C1 Primer Type 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mary<br>R-sq R-sq(at<br>52% 09.50<br>C2-T<br>Method A<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying                                     | ndj) R-sqipred<br>6% 58.26%<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35<br>)<br>b | 77647<br>C4 | CS         | C<br>Plate mate | 6<br>erial Type<br>1<br>1<br>1<br>1<br>1      | C7<br>Temp of Operation<br>70<br>125<br>125<br>125                     | C8 :<br>ttery Life (In Hour<br>88<br>72<br>20<br>7<br>7<br>8                                                                | C9    | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25       | C12<br>Impurity (No Rep | 2 dicate)<br>11<br>4<br>2<br>3<br>9             | C13<br>SRES<br>1.01095<br>0.78876<br>-1.66640<br>0.55547<br>1.08872              | C14 | CIS |   |
| Total<br>Model Summi<br>25.9849 76.<br>C1<br>Primer Type<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mary<br>R-sq R-sq(at<br>52?6 09.56<br>C2-T<br>Method A<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying                                    | dj) R-sq(pred<br>6% 58.269<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35<br>)<br>b | 77647<br>C4 | CS         | C<br>Plate mate | 6<br>erial Type<br>1<br>1<br>1<br>1<br>1<br>1 | C7<br>Temp of Operation<br>70<br>70<br>125<br>125<br>125<br>125<br>125 | C8 t<br>ttery Life (in Hour<br>72<br>24<br>77<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>84 | C9    | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>Impurity (No Reg | 2<br>licate)<br>1<br>4<br>2<br>3<br>9<br>6      | C13<br>SRES<br>1.01095<br>0.78876<br>-1.66640<br>0.55547<br>1.08872<br>0.02222   | C14 | CIS |   |
| C1           Primer Type           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2 <t< td=""><td>C2-T<br/>Method A<br/>Dipping<br/>Dipping<br/>Spraying<br/>Spraying<br/>Spraying<br/>Spraying</td><td>dj) R-sqipred<br/>6% 58.26%<br/>C3<br/>Adhesive Force<br/>5.6<br/>4.9<br/>5.4<br/>6.3<br/>6.1<br/>6.3<br/>orial Design and</td><td>35</td><td>77647<br/>C4</td><td>CS</td><td>C<br/>Plate mate</td><td>6<br/>erial Type<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1</td><td>C7<br/>Temp of Operation<br/>70<br/>125<br/>125<br/>125<br/>125<br/>125</td><td>C8 c<br/>ttery Life (in Hour<br/>77<br/>24<br/>77<br/>8<br/>5<br/>5<br/>4</td><td>09</td><td>C10<br/>Temp<br/>125<br/>125<br/>125<br/>125<br/>125<br/>150</td><td>C11<br/>Pressure<br/>30<br/>35<br/>40<br/>45<br/>25<br/>30</td><td>C12<br/>Impurity (No Reg</td><td>2<br/>1<br/>1<br/>4<br/>2<br/>3<br/>9<br/>9<br/>6</td><td>C13<br/>SRES<br/>1.01095<br/>0.78876<br/>-1.66640<br/>0.55547<br/>1.08872<br/>0.02222</td><td>C14</td><td>CIS</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C2-T<br>Method A<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying<br>Spraying                                                             | dj) R-sqipred<br>6% 58.26%<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>6.3<br>6.1<br>6.3<br>orial Design and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35           | 77647<br>C4 | CS         | C<br>Plate mate | 6<br>erial Type<br>1<br>1<br>1<br>1<br>1<br>1 | C7<br>Temp of Operation<br>70<br>125<br>125<br>125<br>125<br>125       | C8 c<br>ttery Life (in Hour<br>77<br>24<br>77<br>8<br>5<br>5<br>4                                                           | 09    | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>Impurity (No Reg | 2<br>1<br>1<br>4<br>2<br>3<br>9<br>9<br>6       | C13<br>SRES<br>1.01095<br>0.78876<br>-1.66640<br>0.55547<br>1.08872<br>0.02222   | C14 | CIS |   |
| C1           Primer Type           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2 <t< td=""><td>Mary<br/>R-sq R-sq(at<br/>52% 69.50<br/>C2-T<br/>Method A<br/>Dipping<br/>Dipping<br/>Dipping<br/>Spraying<br/>Spraying<br/>Spraying<br/>Spraying<br/>Spraying</td><td>Idj)         R-sqlpred           6%         58.26%           C3         C3           Adhesive Force         5.6           4.9         5.4           5.8         6.1           6.3         orial Design and Design and Jung a</td><td>35<br/>)<br/>5</td><td>77647<br/>C4</td><td>CS</td><td>C<br/>Plate mate</td><td>6<br/>erial Type<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1</td><td>C7<br/>Temp of Operation<br/>70<br/>125<br/>125<br/>125<br/>125</td><td>CB 11444</td><td>09</td><td>C10<br/>Temp<br/>125<br/>125<br/>125<br/>125<br/>150<br/>150</td><td>C11<br/>Pressure<br/>30<br/>35<br/>40<br/>45<br/>25<br/>30</td><td>C12<br/>Impurity (No Reg</td><td>2<br/>1<br/>4<br/>2<br/>3<br/>9<br/>6</td><td>C13<br/>SRES<br/>1.01095<br/>0.78876<br/>-1.666540<br/>0.555547<br/>1.08872<br/>0.02222</td><td>C14</td><td>CIS</td><td></td></t<> | Mary<br>R-sq R-sq(at<br>52% 69.50<br>C2-T<br>Method A<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying | Idj)         R-sqlpred           6%         58.26%           C3         C3           Adhesive Force         5.6           4.9         5.4           5.8         6.1           6.3         orial Design and Design and Jung a | 35<br>)<br>5 | 77647<br>C4 | CS         | C<br>Plate mate | 6<br>erial Type<br>1<br>1<br>1<br>1<br>1<br>1 | C7<br>Temp of Operation<br>70<br>125<br>125<br>125<br>125              | CB 11444                                                                                                                    | 09    | C10<br>Temp<br>125<br>125<br>125<br>125<br>150<br>150        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>Impurity (No Reg | 2<br>1<br>4<br>2<br>3<br>9<br>6                 | C13<br>SRES<br>1.01095<br>0.78876<br>-1.666540<br>0.555547<br>1.08872<br>0.02222 | C14 | CIS |   |
| Тосы<br>Model Sumn<br>25.9849 76.<br>С1<br>Ргітег Туре<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C2-T<br>Method A<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying                                      | tidj) R-sqipred<br>C3<br>C3<br>C3<br>C4<br>bidhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1<br>6.3<br>orial Design and<br>orial Design and<br>Norway A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35           | 77647<br>C4 | C5         | C<br>Plate mate | 6<br>erial Type<br>1<br>1<br>1<br>1<br>1      | C7<br>Temp of Operation<br>70<br>125<br>125<br>125<br>125<br>125       | C8 14<br>ttery Life (in Hour<br>77<br>22<br>23<br>35<br>54<br>4                                                             | 0     | C10<br>Temp<br>125<br>125<br>125<br>125<br>150<br>150        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>Impurity (No Rej | ■<br>licate)<br>1<br>4<br>2<br>3<br>9<br>6<br>■ | C13<br>SRES<br>1.01095<br>0.78876<br>-1.66640<br>0.55547<br>1.08872<br>0.02222   | C14 | C15 |   |

The same results what we have analysis of variance remains same.

(Refer Slide Time: 12:53)

| Mi   | nitab - Untitled | 1                     |                         |                         |              |          |            |             |                   |                       |           |    |       |          |                         |                       |      |      | 8 : |
|------|------------------|-----------------------|-------------------------|-------------------------|--------------|----------|------------|-------------|-------------------|-----------------------|-----------|----|-------|----------|-------------------------|-----------------------|------|------|-----|
| File | Edit Data        | Calc Sta              | Graph View              | Help /                  | Assistant Ad | ditional | Tools      |             |                   |                       |           |    |       |          |                         |                       |      |      |     |
| 2    |                  | BAL                   |                         | 0                       | a fr 3       | -2.1     | . P3 2/    | al.         |                   |                       |           |    |       |          |                         |                       |      |      |     |
|      | 1 10 10 1        | 1111                  |                         |                         | N 100 1 a    |          | i sir sir  | LV          | a a company       |                       | 1 LAV 1/2 | 50 |       |          |                         |                       |      |      |     |
|      | 0 11 0 1         | 10110                 | TEPE                    | PEL N                   | 49 821 : 9   | R 10     | # 74       | at R        | BE * 4            | C) : D' CO D          | - Y - Y   | RB |       |          |                         |                       |      |      |     |
|      |                  | W F.                  | Y 🔀 🖬 🖻 🖂               | * 12                    | Y PA         | BF       |            |             |                   |                       |           |    |       |          |                         |                       |      |      |     |
| Ger  | eral Linear Mi   | odel: Bat             | Y X                     |                         |              |          |            |             |                   |                       |           |    |       |          |                         |                       |      |      |     |
| 84   | SYMETRIC FACT    | TORIAL DESI           | GN AND TWO-WAY          | ANOVA.M                 | WX           |          |            |             |                   |                       |           |    |       |          |                         |                       |      |      |     |
| Ge   | neral Line       | ear Mod               | del: Battery            | Life (I                 | n Hour)      | versu    | s Plate    | mat         | erial Type, Tem   | p of Opera            | ation     |    |       |          |                         |                       |      |      | •   |
|      | amo of Opera     | tion                  |                         |                         |              |          |            |             |                   |                       |           |    |       |          |                         |                       |      |      | 14  |
| 1    | emp or opera     | ibon                  |                         | 20.31                   | 6.12         | 6.42     | 0.000      | 1 33        |                   |                       |           |    |       |          |                         |                       |      |      | î   |
|      | 70               |                       |                         | 2.06                    | 6.12         | 0.34     | 0.740      | 1.33        |                   |                       |           |    |       |          |                         |                       |      |      |     |
| F    | late material 1  | Type*Temp             | of Operation            |                         |              |          |            |             |                   |                       |           |    |       |          |                         |                       |      |      |     |
|      | 1 15             | 1                     |                         | 12.28                   | 8.66         | 1.42     | 0.168      | 1.78        |                   |                       |           |    |       |          |                         |                       |      |      |     |
|      | 1 70             |                       |                         | -27.97                  | 8.66         | -3.23    | 0.003      | 1.78        |                   |                       |           |    |       |          |                         |                       |      |      |     |
|      | 215              |                       |                         | 8.11                    | 8.66         | 0.94     | 0.357      | 1.78        |                   |                       |           |    |       |          |                         |                       |      |      |     |
|      | 2 70             |                       |                         | 9.36                    | 8.66 Jh      | 1.08     | 0.289      | 1.78        |                   |                       |           |    |       |          |                         |                       |      |      |     |
|      |                  |                       |                         |                         |              |          |            |             |                   |                       |           |    |       |          |                         |                       |      |      |     |
| R    | earession I      | Equation              |                         |                         |              |          |            |             |                   |                       |           |    |       |          |                         |                       |      |      |     |
|      | anna life fla    | Hand a                | 105.62 22.26.0          |                         | dal Tree 1 4 | 3.04 DI- |            | T           |                   |                       |           |    |       |          |                         |                       |      |      |     |
|      | sattery Life (in | Hour) =               | + 19.56 Plate ma        | ace mace<br>sterial Tvo | e 3 + 39.31  | Loi Pia  | Operation  | iype_<br>15 |                   |                       |           |    |       |          |                         |                       |      |      |     |
|      |                  |                       | + 2.06 Temp of (        | Operation               | 70 - 41.36 T | emp of   | Operation_ | 125         |                   |                       |           |    |       |          |                         |                       |      |      |     |
|      |                  |                       | + 12.28 Plate ma        | iterial Typ             | e*Temp of C  | Operatio | n_1 15     |             |                   |                       |           |    |       |          |                         |                       |      |      | ٣   |
|      | CI               | C2-T                  | C3                      | C4                      | CS           |          | C6         |             | <b>C7</b>         | C8                    | 2         | C9 | C10   | C11      | C12 5                   | C13                   | C14  | C15  |     |
|      | Primer Type      | Method                | Adhesive Force          | 2                       |              | Plate    | material   | Туре        | Temp of Operation | Battery Life (In      | Hour)     |    | Temp  | Pressure | Impurity (No Replicate) | SRES                  |      |      |     |
|      | 2                | Dipping               | 5.1                     | 5                       |              |          |            | 1           | 70                |                       | 80        |    | 125   | 30       | 1                       | 1.01095               |      |      |     |
|      | 2                | Dipping               | 4.5                     | )                       |              |          |            | 1           | 70                |                       | 75        |    | 125   | 35       | 4                       | 0.78876               |      |      |     |
|      | 2                | Dipping               | 5.4                     | 1                       |              |          |            | 1           | 125               |                       | 20        |    | 125   | 40       | 2                       | -1.66640              |      |      |     |
| )    | 2                | Spraying              | 5.1                     | 3                       |              |          |            | 1           | 125               |                       | 70        |    | 125   | 45       | 3                       | 0.55547               |      |      |     |
| 1    | 2                | Spraying              | 6.1                     | 1                       |              |          |            | 1           | 125               |                       | 82        |    | 150   | 25       | 9                       | 1.08872               | -    |      |     |
| 2    | 2                | Spraving              | 6.3                     | 3                       |              |          |            | 1           | 125               |                       | 58        |    | 150   | 30       | 6                       | 0.02222               |      | 1    |     |
| 4    | рн + A           | symetric F            | ectorial Design an      | d Tw                    |              |          |            |             |                   | 4.0                   |           |    |       |          |                         |                       |      | 1 de |     |
| 1    |                  | and the second second |                         |                         |              |          |            |             |                   | Profession and        |           |    |       |          |                         | -                     | 1    |      |     |
| Ë,   | - Hoymeane r     | actorial Des          | ign and <i>morway</i> i | erouen                  | WA           |          |            |             |                   |                       |           |    |       |          |                         |                       | 1.11 | 1    |     |
| 1    | O Type           | here to s             | earch                   |                         |              | 0        |            | •           | 💼 🖬 🔞             |                       |           | R  | ili 📰 | 22       | A 0                     | 10 10 00              | 151  |      |     |
| NP1  | EL.              |                       |                         |                         |              |          | _          | -           |                   | and the second second |           | •  |       |          | . <b></b> .             | and the second second | 100  | 100  | 60. |

 $R_{adj}^2$  is around here 69% and  $R_{predicted}^2$  is 58% although not drastically changing like that, but the predictive behaviour is not much what we expect. So, in this case what we have generated a regression model which is significant over here. And we have developed that based on the ANOVA analysis results that we are getting and then what we can do is that is this prediction.

## (Refer Slide Time: 13:18)

| Miniti<br>File I<br>Gener<br>I<br>I<br>Son<br>Fac<br>Fac<br>Fac<br>Fac<br>Fac<br>Pla<br>I<br>Ter<br>I<br>Son<br>PL<br>Te<br>PL<br>Te<br>PL | tab - Unitited<br>Grin Data C<br>Control Control Control<br>Control Control Control<br>Control Control Control<br>Control Control<br>Control<br>Control Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Co | Lalc Stat               | Graph View<br>Basic Statistics<br>Regression<br>ANOVA<br>DOE<br>Control Charts<br>Quality Tools<br>Reliability/Surviv<br>Predictive Analy<br>Multivariate<br>Tables<br>Tables<br>Power and Samp<br>Power and Samp<br>p of Operation | Hel<br>val<br>tics<br>DF<br>2<br>2<br>2<br>4 | Adj SS<br>10684<br>39119<br>9614 | net Addi<br>fx ≧=<br>i at.<br>at.<br>at.<br>fx ≧=<br>One-W<br>i at.<br>at.<br>blanc<br>Generation<br>fx distribution<br>fx distri | ional Tools<br>=2: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: | 2 2 2 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10 |      | Fit General Line<br>Comparisons<br>Predict,<br>FactoritPriots<br>Contrace Piot<br>Contrace Piot<br>Pressonse Optim | r Model          | r v tion |            |       |          |                |            |          |     | •   | Ø : |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------|------------------|----------|------------|-------|----------|----------------|------------|----------|-----|-----|-----|
| +                                                                                                                                          | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C2-T                    | C3                                                                                                                                                                                                                                  |                                              | C4                               | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (                                                         | 6                                                |      | <b>C</b> 7                                                                                                         | C8               | 2        | <b>C</b> 9 | C10   | C11      | C12            | 5          | C13      | C14 | C15 |     |
| P                                                                                                                                          | rimer Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Method                  | Adhesive Ford                                                                                                                                                                                                                       | ce                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plate mat                                                 | erial Type                                       | Temp | of Operation                                                                                                       | Battery Life (In | Hour)    |            | Temp  | Pressure | Impurity (No F | (eplicate) | SRES     |     |     |     |
| 7                                                                                                                                          | 2 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lipping                 | 5                                                                                                                                                                                                                                   | .6                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           | 1                                                |      | 70                                                                                                                 |                  | 80       |            | 125   | 30       |                | 1          | 1.01095  |     |     |     |
| 8                                                                                                                                          | 2 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | upping                  | 4                                                                                                                                                                                                                                   | .9                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           | 1                                                |      | 70                                                                                                                 |                  | 75       |            | 125   | 35       |                | 4          | 0.78876  |     |     |     |
| 9                                                                                                                                          | 2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | opping                  | 5                                                                                                                                                                                                                                   | .4                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           | 1                                                |      | 125                                                                                                                |                  | 20       |            | 125   | 40       |                | 2          | -1.00040 |     |     |     |
| 11                                                                                                                                         | 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | praying                 | 6                                                                                                                                                                                                                                   | 1                                            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           | 1                                                |      | 125                                                                                                                |                  | 82       |            | 123   | 43       |                | 3          | 1.09972  |     |     |     |
| 12                                                                                                                                         | 2 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | praving                 | 6                                                                                                                                                                                                                                   | 3                                            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           | 1                                                |      | 125                                                                                                                |                  | 58       |            | 150   | 30       |                | 6          | 0.02222  |     |     |     |
|                                                                                                                                            | H + Asy<br>Asymetric Fac<br>O Type h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | metric Fa<br>torial Des | actorial Design an<br>ign and Two-way<br>earch                                                                                                                                                                                      | ANO/                                         | -<br>A.mwx                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) [                                                       |                                                  | ŕ    | <b>N</b> (                                                                                                         |                  | ରୁ ।     | R          | ii ×B | 2        | <b>•</b>       | - @        |          |     |     | 1   |

We can predict anything like that. So, I have selected a material type 3 let us say and at 15 degree what is expected. So, I will go to ANOVA analysis and I go to general linear model and predict.

(Refer Slide Time: 13:28)

|                                                                                      | sar Model: Bar V                                                                                                                 | ×                                                                                                            | Predict                                            |        |                     |                    |             |                                                              | X                     |                                               |                                                          |     |     |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------|---------------------|--------------------|-------------|--------------------------------------------------------------|-----------------------|-----------------------------------------------|----------------------------------------------------------|-----|-----|
| ASYMETRIC                                                                            | FACTORIAL DESIGN A                                                                                                               | ND TWO-WAY ANOVA                                                                                             | .MWX                                               |        | Response: Batt      | erv Life (In Hour) | •           |                                                              |                       |                                               |                                                          |     |     |
| eneral I                                                                             | Linear Model                                                                                                                     | Battery Life                                                                                                 | (In H                                              |        |                     |                    |             |                                                              |                       |                                               |                                                          |     |     |
| hactor cod                                                                           | ding (-1, 0, +1)                                                                                                                 |                                                                                                              |                                                    |        | Include govaria     | tes in prediction  |             |                                                              |                       |                                               |                                                          |     |     |
|                                                                                      |                                                                                                                                  |                                                                                                              |                                                    |        | Enter individual va | Aves               | •           |                                                              |                       |                                               |                                                          |     |     |
| Factor In                                                                            | nformation                                                                                                                       |                                                                                                              |                                                    |        |                     |                    | -           |                                                              |                       |                                               |                                                          |     |     |
| Factor                                                                               | Туре                                                                                                                             | Levels Values                                                                                                |                                                    |        |                     |                    | <           |                                                              |                       |                                               |                                                          |     |     |
| Plate mate                                                                           | erial Type Fixed                                                                                                                 | 3 1, 2, 3                                                                                                    |                                                    |        | 'Plate material     | 'Temp of Operat    | ^           |                                                              |                       |                                               |                                                          |     |     |
| Temp of O                                                                            | Operation Hixed                                                                                                                  | 3 15, 70, 125                                                                                                |                                                    |        | 3                   | 15 •               |             |                                                              |                       |                                               |                                                          |     |     |
| Analycie                                                                             | of Variance                                                                                                                      |                                                                                                              |                                                    |        | -                   |                    |             |                                                              |                       |                                               |                                                          |     |     |
|                                                                                      | s of variance                                                                                                                    |                                                                                                              |                                                    |        |                     | 1                  |             |                                                              |                       |                                               |                                                          |     |     |
|                                                                                      |                                                                                                                                  |                                                                                                              |                                                    |        |                     |                    |             |                                                              |                       |                                               |                                                          |     |     |
| Source<br>Place mat                                                                  | sterial Type                                                                                                                     | DF<br>2                                                                                                      | Adj SS                                             |        |                     |                    |             |                                                              |                       |                                               |                                                          |     |     |
| Source<br>Plate mat<br>Temp of                                                       | iterial Type<br>Operation                                                                                                        | DF<br>2<br>2                                                                                                 | Adj SS<br>10684<br>39119                           |        |                     |                    | ~           |                                                              |                       |                                               |                                                          |     |     |
| Plate man<br>Temp of Plate man                                                       | iterial Type<br>Operation<br>iterial Type*Temp of                                                                                | DF<br>2<br>2<br>Operation 4                                                                                  | Adj SS<br>10584<br>39119<br>9614                   |        |                     |                    | ~           |                                                              |                       |                                               |                                                          |     |     |
| Source<br>Plate mat<br>Temp of Plate mat<br>From<br>C1                               | iterial Type<br>Operation<br>Iterial Type*Temp of<br>C2-T                                                                        | DF<br>2<br>2<br>2<br>0peration<br>4<br>27<br>C3                                                              | Adj SS<br>10684<br>39119<br>9614<br>18731          |        |                     |                    | <b>`</b>    |                                                              |                       | C12 m                                         | C13                                                      | C14 | C15 |
| Plate mat<br>Temp of Plate mat<br>Plate mat<br>From<br>C1<br>Primer 1                | terial Type<br>Operation<br>terial Type*Temp of<br>C2-T<br>Type Method Ac                                                        | DF           2           2           0peration           4           27           C3           Ihesive Force | Adj SS<br>10684<br>39119<br>9614<br>18231          | Select |                     | Optogs             | v Rgsults S | torage <u>Y</u> ew Moo                                       | šel                   | C12 Z                                         | C13<br>SRES                                              | C14 | C15 |
| Source<br>Plate mai<br>Temp of I<br>Plate mai<br>Fron<br>C1<br>Primer 1              | Iterial Type<br>Operation<br>Iterial Type*Temp of<br>C2-T<br>Type Method Ac<br>2 Dipping                                         | DF           2           2           4           27           C3           Ihesive Force           5.6       | Adj SS<br>10684<br>39119<br>9614<br>18231          | Select |                     | Optogs             | v Results S | torage yew Moo                                               | sel                   | C12 gurity (No Replicate)                     | C13<br>SRES<br>1.01095                                   | C14 | C15 |
| Source<br>Plate mat<br>Temp of Plate mat<br>Plate mat<br>Prov<br>C1<br>Primer 1      | teerial Type<br>'Operation<br>teerial Type*Temp of<br>C2-T<br>Type<br>Method<br>2 Dipping<br>2 Dipping                           | DF<br>2<br>2<br>4<br>77<br>C3<br>C3<br>Ihesive Force<br>5.6<br>4.9                                           | Adj SS<br>10684<br>39119<br>9614<br>18731          | Select |                     | Optogs             | Repults S   | torage <u>y</u> ew Moc                                       | sel                   | C12 gurity (No Replicate)                     | C13<br>SRES<br>1.01095<br>0.78876                        | C14 | C15 |
| Source<br>Plate mat<br>Temp of P<br>Plate mat<br>Plate mat<br>From<br>C1<br>Primer 1 | terial Type<br>Operation<br>terial Type*Temp of<br>C2-T<br>Type Method Ac<br>2 Dipping<br>2 Dipping<br>2 Dipping                 | DF<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>4<br>27<br>7<br>7<br>6<br>4<br>9<br>5.6<br>4.9<br>5.4          | Adj SS<br>10684<br>39119<br>9614<br>18731<br>18731 | Select | 1                   | Optogs             |             | torage <u>y</u> lew Moo<br><u>95</u> Cano<br>125             | sel<br>el40           | C12 purity (No Replicate)<br>1<br>4<br>2      | C13<br>SRES<br>1.01095<br>0.78876<br>-1.66640            | C14 | C15 |
| Source<br>Plate mat<br>Temp of i<br>Plate mat<br>Fron<br>C1<br>Primer 1              | tterial Type<br>Operation<br>tterial Type*Temp of<br>C2-T<br>Type Method Ac<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraying | DF<br>2<br>2<br>2<br>2<br>2<br>2<br>4<br>27<br>7<br>7<br>6<br>4<br>9<br>5.6<br>4.9<br>5.4<br>5.8             | Adj SS<br>10584<br>39119<br>9614<br>18731<br>34    | Select | 1                   | Optogs             |             | torage <u>Yew Moo</u><br><u>95</u> <u>Cano</u><br>125<br>125 | del<br>el<br>40<br>45 | C12 purity (No Replicate)<br>1<br>4<br>2<br>3 | C13<br>SRES<br>1.01095<br>0.78876<br>-1.66640<br>0.55547 | C14 | CIS |

If I go to predict it will say what material type you want to predict. So, I will say 3 and temperature let us say 15. Then I will click OK.

#### (Refer Slide Time: 13:40)



And it will give me some possible values over here. So, this is the predicted fit values. So, the regression model that is general linear model that we have fitted over here it is predicting about 144 is the values and it will give you a prediction interval and confidence interval. So, 144 is expected when these combinations is run at a separate and we can rerun this one.

So, expected value is 144, but there is a prediction interval that is given over here. Now one of the variable is continuous variable over here one is discrete or categorical variable over here and the CTQ is continuous variable that we can see. So, there is another option what we can do is that we can also see graphically surface plot of this. (Refer Slide Time: 14:27)

| Minitab - Untitled  |               |        |                |                      |                              |             |            |             |      |         |            |                         |          |     | - 1  | 9 ; |
|---------------------|---------------|--------|----------------|----------------------|------------------------------|-------------|------------|-------------|------|---------|------------|-------------------------|----------|-----|------|-----|
| File Edit Data      | Calc Stat     | Gra    | oph View H     | Help Assistant Ad    | ditional Tools               |             |            |             |      |         |            |                         |          |     |      |     |
| 8 8 8               | nn s          | 2      | Scatterplot    |                      | 24824                        |             |            |             |      |         |            |                         |          |     |      |     |
| THURLE              |               | 121    | Matrix Plot    |                      | 西·斯·泰·弗                      | -           | K + 12     | C In C In Y | R    |         |            |                         |          |     |      |     |
|                     | 1 24          | , :    | Bubble Plot.   |                      | ak+                          | -           |            |             | 11.5 |         |            |                         |          |     |      |     |
| 1                   | 20.   +454    | 4      | Marginal Plo   | t                    | P 0. *                       |             |            |             |      |         |            |                         |          |     |      |     |
| Prediction for Batt | ery Life      | 4      | Histogram      |                      |                              |             |            |             |      |         |            |                         |          |     |      |     |
| ASYMETRIC FACT      | ORIAL DESIG   | a da   | Dotplot        |                      |                              |             |            |             |      |         |            |                         |          |     |      |     |
| Prediction fo       | or Batte      | 1E     | Stem-and-Le    | af                   |                              |             |            |             |      |         |            |                         |          |     |      | •   |
| Terms               |               | 1      | Probability P  | lot                  |                              |             |            |             |      |         |            |                         |          |     |      |     |
| Plate material T    | ype Temp      | 1      | Empirical CD   | F                    | Operation                    |             |            |             |      |         |            |                         |          |     |      | 1   |
|                     |               | 4      | Probability D  | istribution Plot     |                              |             |            |             |      |         |            |                         |          |     |      |     |
| Settings            |               | 040    | Boxplot        |                      |                              |             |            |             |      |         |            |                         |          |     |      |     |
| Unishla             | Sal           | . 14   | Interval Plot. |                      |                              |             |            |             |      |         |            |                         |          |     |      |     |
| Plate material T    | VDP           | 11     | Individual Va  | lue Plot             |                              |             |            |             |      |         |            |                         |          |     |      |     |
| Temp of Opera       | tion          | 2      | Line Plot      |                      |                              |             |            |             |      |         |            |                         |          |     |      |     |
|                     |               | h.     | Bar Chart      |                      |                              |             |            |             |      |         |            |                         |          |     |      |     |
| Prediction          |               | 0      | Pie Chart      |                      |                              |             |            |             |      |         |            |                         |          |     |      |     |
| Fit SE Fit          | 959           | 6 1.4  | Time Series I  | Hot                  |                              |             |            |             |      |         |            |                         |          |     |      |     |
| 144 12.9924         | (117.342      | M      | Area Grach.    | Potes.               |                              |             |            |             |      |         |            |                         |          |     |      |     |
|                     |               | G      |                |                      |                              |             |            |             |      |         |            |                         |          |     |      |     |
|                     | () T          | 67     | Contour Plot   |                      |                              |             |            | 60          | 60   | C10     | <i>c</i> # | 60                      | 613      |     |      | ĥ   |
| Primer Type         | Method        | 9      | 3D Surface R   | Rei                  | Co<br>Plate material Type    | Temp of     | Operation  | C8          | 69   | Temp    | Pressure   | Impurity (No Replicate) | SRES     | C14 | CIS  |     |
| 2                   | Dipping       | 100    | 5.6            | 2                    | cane material type           |             | 70         | 80          |      | 125     | 30         | imparty (no implant)    | 1.01095  |     |      |     |
| 2                   | Dipping       |        | 4.9            | 3D Surface Plot      |                              |             | 70         | 75          |      | 125     | 35         | 4                       | 0.78876  |     |      |     |
| 2                   | Dipping       |        | 5.4            | Examine the relation | ship between a response v    | ariable (Z) | 125        | 20          |      | 125     | 40         | 2                       | -1.66640 |     |      |     |
| 2                   | Spraying      |        | 5.8            | three-dimensional si | inface of the predicted resp | onse.       | 125        | 70          |      | 125     | 45         | 3                       | 0.55547  |     |      |     |
| 2                   | Spraying      |        | 6.1            |                      | 1                            |             | 125        | 82          |      | 150     | 25         | 9                       | 1.08872  | _   | -    |     |
| 2                   | Spraving      |        | 6.3            |                      | 1                            |             | 125        | 58          |      | 150     | 30         | 6                       | 0.02222  |     | 100  |     |
| арн <b>+</b> А      | symetric Fa   | ctoria | al Design and  | fw                   |                              |             |            | 4           |      |         |            |                         |          |     | 1    |     |
| Asymetric F         | actorial Desi | ign an | id Two-way Alt | IOWA.mwx             |                              |             |            |             |      |         |            |                         |          | 14  | A    |     |
| 110.                |               |        |                |                      | ·                            | 1           | -          |             |      |         | -          | -                       | -        |     |      |     |
| Type                | here to se    | earch  | 1              |                      |                              |             | <b>N</b> 6 |             |      | <u></u> | <b>1</b>   | - e                     | M (4)    |     | LEAN |     |

So, we have seen interaction. So, how does it look when there is a interaction how the graph looks in a 3D dimension if we want to see then we can see this by 3D surface plot.

(Refer Slide Time: 14:38)

| Minitab - Untit<br>ile Edit Dat | Calc Stat       | Graph View H         | telp Assist  | tant Add | Stional Tools       |                   | 50 i <b>20 20 20</b> 10 10 14 | 59   |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|---------------------------------|-----------------|----------------------|--------------|----------|---------------------|-------------------|-------------------------------|------|------|----------|-------------------------|----------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.0 m (1)                       | @ 1 4           | E BE                 |              | Y 🖂 🗖    | BK*                 |                   |                               | 10.3 |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Prediction for E                | attery Life     | ~ X                  |              |          |                     |                   |                               |      |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| ASYMETRIC FA                    | CTORIAL DESIG   | IN AND TWO-WAY AN    | XWM.AVO      |          |                     |                   |                               |      |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| rediction                       | for Batte       | ry Life (In Ho       | our)         |          |                     |                   |                               |      |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •  |
| Terms                           |                 |                      |              |          |                     |                   |                               |      |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i. |
| Plate materia                   | Type Temp       | of Operation Plate r | material Typ | e*Temp   | of Operation        |                   |                               |      |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | î  |
|                                 |                 |                      |              |          |                     |                   |                               |      |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Settings                        |                 |                      |              |          | 3D S                | urface Plots      |                               | ×    |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Variable                        | Set             | ting                 |              |          | s                   | urface Wireframe  |                               |      |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Plate materia                   | Туре            | 3                    |              |          |                     |                   |                               |      |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Temp of Ope                     | ration          | 15                   |              |          |                     |                   |                               |      |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| -                               |                 |                      |              | ~        |                     |                   |                               |      |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Prediction                      |                 |                      |              |          |                     |                   |                               |      |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Fit SE                          | Fit 959         | 6 CI 95              | 5% PI        |          |                     | Help              | <u> </u>                      | ncel |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 144 12.9                        | 24 (117.342,    | 170.658) (84.390     | 3, 203.610)  |          |                     |                   |                               |      |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                 |                 |                      |              |          |                     |                   |                               |      |      |          |                         |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •  |
| CI                              | C2-T            | C3                   | C4           | CS       | C6                  | C7                | C8 🖉                          | C9   | C10  | C11      | C12 (                   | C13      | C14 | C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Primer Typ                      | e Method        | Adhesive Force       |              |          | Plate material Type | Temp of Operation | Battery Life (In Hour)        |      | Temp | Pressure | Impurity (No Replicate) | SRES     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                 | 2 Dipping       | 5.6                  |              |          | 1                   | 70                | 80                            |      | 125  | 30       |                         | 1.01095  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| -                               | 2 Dipping       | 4.9                  |              |          | 1                   | 70                | 75                            |      | 125  | 35       | 4                       | 0.78876  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                 | 2 Dipping       | 5,4                  |              |          | 1                   | 125               | 20                            |      | 125  | 40       |                         | -1.00040 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                 | 2 Spraying      | 5.8                  |              |          | 1                   | 123               | 70                            |      | 120  | 43       |                         | 1.00072  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                 | 2 Spraying      | 6.2                  |              |          | 1                   | 125               | 60                            |      | 150  | 20       |                         | 0.02222  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| () H +                          | Asymetric Fa    | ctorial Design and T | w.           |          |                     | 123               | 4                             |      | 1.00 |          |                         | UNLESS . | 1   | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| -                               | Contract Day    |                      | 10111        |          |                     |                   |                               | _    | _    | _        |                         | -        | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                 | : Pactonal Desi | an and morway way    | IO NHLIMIWA  |          |                     |                   |                               |      |      |          |                         |          |     | and the second sec |    |
|                                 |                 |                      |              |          | 127 1120            |                   |                               | -    |      |          |                         |          |     | 0.412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |

And when you go to the there is wireframe surface like that and I go by surface let us say surface plots like that.

#### (Refer Slide Time: 14:44)

| File E                                       | idit Data                                                                            | Calc Stat                                  | Graph View ⊨                                   | lelp Assist                  | fx   }=<br>fx   }=<br>Y ≥ ■ | itional Tools<br>                                                                                                              | 8 <b>⊻</b> ★48                                                                                                    | <b>d" (2 d</b> " (4 š) (2  |        |          |                         |          |     |         |   |
|----------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------|------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------|--------|----------|-------------------------|----------|-----|---------|---|
| Pred                                         | liction fo                                                                           | or Batte                                   | ry Life (In Ho                                 | our)                         |                             |                                                                                                                                |                                                                                                                   |                            |        | -        |                         |          |     |         | ٠ |
|                                              |                                                                                      |                                            | .)                                             | ,                            |                             | 3D Surface Plot: Surface                                                                                                       |                                                                                                                   |                            | >      | (        |                         |          |     |         |   |
| Set<br>Var<br>Plat<br>Ten<br>Pre<br><u>F</u> | tings<br>iable<br>te material T<br>np of Operat<br>cdiction<br>fit SE Fit<br>12.9924 | Set<br>ype<br>tion<br>t 95%<br>t (117.342, | ting<br>3<br>15<br>• CI 99<br>170.658) (84.390 | 196 <b>PI</b><br>3, 203.610) | -                           | C6 Plate material Type<br>C7 Temp of Operation<br>C8 Battery Ur6 (mHz<br>C90 Temp<br>C11 Pressure<br>C12 Investure<br>C13 SRES | Variable:<br>Top of Operation<br>X variable:<br>Variable:<br>Variable:<br>Variable:<br>Signace Optome<br>Qata Vew | f<br>grah<br>Dagta Options | Labels | J        |                         |          |     |         |   |
|                                              | CI                                                                                   | C2-T                                       | C3                                             | C4                           | C5                          | Нер                                                                                                                            |                                                                                                                   | QK                         | Cancel | CII      | C12                     | C13      | C14 | C15     |   |
| P                                            | rimer Type                                                                           | Method                                     | Adhesive Force                                 |                              |                             | Plate material Type Ten                                                                                                        | p of Operation Batte                                                                                              | ery Life (In Hour)         | Temp   | Pressure | Impurity (No Replicate) | SRES     |     |         |   |
| 1                                            | 2                                                                                    | Dipping                                    | 5.6                                            |                              |                             | 1                                                                                                                              | 70                                                                                                                | 80                         | 125    | 30       | 1                       | 1.01095  |     |         |   |
| 3                                            | 2                                                                                    | Dipping                                    | 4.9                                            |                              |                             | 1                                                                                                                              | 70                                                                                                                | 75                         | 125    | 35       | 4                       | 0.78876  |     |         |   |
| )                                            | 2                                                                                    | Dipping                                    | 5.4                                            |                              |                             | 1                                                                                                                              | 125                                                                                                               | 20                         | 125    | 40       | 2                       | -1.66640 |     |         |   |
| 0                                            | 2                                                                                    | Spraying                                   | 5.8                                            |                              |                             | 1                                                                                                                              | 125                                                                                                               | 70                         | 125    | 45       | 3                       | 0.55547  |     |         |   |
| 1                                            | 2                                                                                    | Spraying                                   | 6.1                                            |                              |                             | 1                                                                                                                              | 125                                                                                                               | 82                         | 150    | 25       | 9                       | 1.08872  |     |         |   |
| 2                                            | 2                                                                                    | Spraving                                   | 6.3                                            |                              |                             | 1                                                                                                                              | 125                                                                                                               | 58                         | 150    | 30       | 6                       | 0.02222  |     | 98      |   |
| 4 1.                                         | 7 A                                                                                  | symetric ra                                | tonal Design and 1                             | Wm                           |                             |                                                                                                                                |                                                                                                                   | 4                          |        |          |                         |          |     | CORE OF |   |
| 4.5                                          | Asymetric F                                                                          | actorial Deci                              | an and Tenners AM                              | ONL must                     |                             |                                                                                                                                |                                                                                                                   |                            |        |          | <b>— =</b>              | Π        | 11  | A       |   |

So, battery life is the variable which will be on z axis, temperature of operation on y axis and plate material type on x axis.

(Refer Slide Time: 14:57)

|                              | siction for Battery Life                                                                                                | * X                                                     |                       |      | P <u>15.</u> ×     |                                                                                                                                               |                                           |                 |                                   |                                                         |                                        |                        |                                                                                                                       |     |            |     |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------|-----------------------------------|---------------------------------------------------------|----------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------|-----|------------|-----|
| Pre                          | SYMETRIC FACTORIAL DESI                                                                                                 | GN AND TWO-WAY AN                                       | ova.mwx               |      | 20.6               | 3D Surface Plot: Optio                                                                                                                        | ns                                        |                 |                                   | ×                                                       | 2                                      |                        |                                                                                                                       |     |            |     |
| T                            | erms                                                                                                                    |                                                         |                       |      | 30.20              | Method                                                                                                                                        |                                           |                 |                                   |                                                         | `                                      |                        |                                                                                                                       |     |            |     |
| S<br>V<br>P<br>T<br>T        | ettings<br>tariable Se<br>tate material Type<br>emp of Operation<br>rediction<br>Fit SE Fit 95<br>144 12.9924 (117.342) | tting<br>3<br>15<br>% Cl 9:<br>170.658) (84.390         | 5% PI<br>13, 203.610) | *    | C 8 29 211 212 213 | Distance method<br>Distance gower:<br>IF Standardze ><br>Mesh for Interpolativ<br>C Automate<br>IF Qustom<br>X-Mesh Number:<br>X-Mesh Number: | 2<br>and y-data<br>ng Surface<br>15<br>15 |                 |                                   | -                                                       | L                                      |                        |                                                                                                                       |     |            | (e) |
| _                            |                                                                                                                         |                                                         |                       |      |                    |                                                                                                                                               |                                           |                 |                                   |                                                         | C11                                    | C12                    | - (13                                                                                                                 | C14 | <b>C15</b> | Ē   |
| •                            | C1 C2-T                                                                                                                 | G                                                       | C4                    | C5   | _                  | 1                                                                                                                                             |                                           |                 | 1                                 |                                                         | -                                      |                        | 2 415                                                                                                                 |     | CID        |     |
| •                            | C1 C2-T<br>Primer Type Method                                                                                           | C3<br>Adhesive Force                                    | C4                    | C5 P | late ma            | Help                                                                                                                                          | _                                         | OK .            | Can                               | cel ip                                                  | Pressure                               | Impurity (No Replicate | e) SRES                                                                                                               |     | CIS        |     |
|                              | C1 C2-T<br>Primer Type Method<br>2 Dipping                                                                              | C3<br>Adhesive Force<br>5.6                             | C4                    | C5 P | late ma            | Heb<br>1                                                                                                                                      | 70                                        | -GK             | 0 Can                             | cel p<br>125                                            | Pressure<br>30                         | Impurity (No Replicate | e) SRES<br>1 1.01095                                                                                                  |     | CIS        |     |
| r<br>3                       | C1 C2-T<br>Primer Type Method<br>2 Dipping<br>2 Dipping                                                                 | C3<br>Adhesive Force<br>5.6<br>4.9                      | C4                    | C5 P | late ma            | Help<br>1<br>1                                                                                                                                | 70<br>70                                  | Č.              | 80<br>75                          | cel p<br>125<br>125                                     | Pressure<br>30<br>35                   | Impurity (No Replicate | e) SRES<br>1 1.01095<br>4 0.78876                                                                                     |     | CIS        |     |
| 7<br>B<br>9                  | C1 C2-T<br>Primer Type Method<br>2 Dipping<br>2 Dipping<br>2 Dipping                                                    | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4               | C4                    | C5 P | late ma            | Heb<br>1<br>1<br>1                                                                                                                            | 70<br>70<br>125                           | -G <sup>K</sup> | Can<br>80<br>75<br>20             | cel p<br>125<br>125<br>125                              | Pressure<br>30<br>35<br>40             | Impurity (No Replicate | e) SRES<br>1 1.01095<br>4 0.78876<br>2 -1.66640                                                                       |     | CIS        |     |
| 7<br>8<br>9<br>0             | C1 C2-T<br>Primer Type Method<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraying                                      | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8        | C4                    | C5 P | late ma            | Heb<br>1<br>1<br>1<br>1                                                                                                                       | 70<br>70<br>125<br>125                    | -lŞ             | Can<br>80<br>75<br>20<br>70       | cel p<br>125<br>125<br>125<br>125<br>125                | Pressure<br>30<br>35<br>40<br>45       | Impurity (No Replicate | SRES           1         1.01095           4         0.78876           2         -1.66640           3         0.55547 |     | cis        |     |
| ↓<br>7<br>8<br>9<br>10<br>11 | C1 C2-T<br>Primer Type Method<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying                        | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1 | C4                    | C5 P | late ma            | Heb<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                             | 70<br>70<br>125<br>125<br>125             | Č.              | Can<br>80<br>75<br>20<br>70<br>82 | cel pp<br>125<br>125<br>125<br>125<br>125<br>125<br>125 | Pressure<br>30<br>35<br>40<br>45<br>25 | Impurity (No Replicate | e) SRES<br>1 1.01095<br>4 0.78876<br>2 -1.66640<br>3 0.55547<br>9 1.08872                                             |     | cis        |     |

Then surface options over here we can see the methods of this mesh over here Y mesh numbering over here mesh numbering. So, in this case and this is not so, no much required to change the settings over here. If you click ok what will happen is that.

## (Refer Slide Time: 15:10)



You will get a plot like this; you will get a plot like this and which shows that there is some curvature in the graph what you see over here. So, this can be rotated also. So, you can see rotation on Z axis over here and also you can rotate on X axis.

So, if you see the surface like this. So, you can see that it is not plane surface what is expected because interaction is present. In this case you can expect some amount of curvature that is present in the model. So, that is prominent over here that you can see and you can change the direction over here.



(Refer Slide Time: 15:52)

You can also customize the surface.

(Refer Slide Time: 15:58)



If you want to change the colour, you can. So, you can change the colour then you can see which is the lower surface which is the upper surface like that and the curvature that is present in the surface like that.

So, one is categorical variable one is continuous variable and battery life is continuous. So, we can see the plots of this.

(Refer Slide Time: 16:25)



So, what I have done is that I have just changed the surface over here.

(Refer Slide Time: 16:27)

| <b>M</b> | initab - Untitled                          |                  |                                | ~                                       |                                             |              |              |          |          |         |     | × 1  | 9 ×      |
|----------|--------------------------------------------|------------------|--------------------------------|-----------------------------------------|---------------------------------------------|--------------|--------------|----------|----------|---------|-----|------|----------|
| File     | Edit Data Calc Stat                        | Graph View       | Help Assistant Additional Tool | ls .                                    |                                             |              |              |          |          |         |     |      |          |
| 1        | B 👲 🔏 🖻 ち 🕫                                | 2 . 4            | de Edit Graph                  |                                         |                                             |              |              |          |          |         |     |      |          |
|          | 5 II II II II II II                        |                  | DJ+TOON.                       | Annotation v Add Item v                 | Surface                                     | · \$ 0×50    | To YY        | 44 42    |          |         |     |      |          |
|          | 2 I Y                                      | ×∎øk             | C ( D)                         | (n                                      |                                             | 10           | <b>n</b> l   | 1.7      |          |         |     |      |          |
| Su       | rface Plot of Battery Life Y               | ×                | Surface Plot                   | of Battery Lif                          | e (In vs Temp                               | of Operatio, | Plate materi | all      |          |         |     |      |          |
|          | ASYMETRIC FACTORIAL DESIGN                 | AND TWO WAY      |                                |                                         |                                             |              |              |          |          |         |     |      |          |
| Su       | rface Plot of Batte                        | ry Life (In      |                                | Edit Surface                            |                                             |              | ×            |          |          |         |     |      | ٠        |
| -        |                                            | .,               |                                | Attributes Method U                     | hts                                         |              |              |          | -        |         |     |      |          |
|          | Surface Plot of Bat                        | ttery Life (Ir   |                                | Surface Type<br>G Surface<br>C Wreframe | Surface Pattern<br>C Automatic<br>(* Gustom |              |              |          |          |         |     |      | <u> </u> |
|          | 150<br>Lattery Life (In Hour)<br>150<br>50 | 1                | Battery Life (In Hour)         |                                         |                                             |              | 10           |          |          |         |     |      | ٠        |
| +        | C1 C2-T                                    | C3               |                                |                                         | [/////////////////////////////////////      | _            | br Operation |          |          | C13     | C14 | C15  |          |
|          | Primer Type Method A                       | Adhesive Forc    |                                | Help                                    | QK                                          | Cancel       |              |          | xlicate) | SRES    |     |      |          |
| 7        | 2 Dipping                                  | 5.               |                                | Plate mater                             | al Type                                     |              |              |          | 1        | 1.01095 |     |      |          |
| 8        | 2 Dipping                                  | 4.               |                                |                                         |                                             |              |              |          | 4        | 0.78876 |     |      |          |
| 9        | 2 Dipping                                  | 5.               |                                |                                         |                                             |              |              |          | 2        | 1.00040 |     |      |          |
| 10       | 2 Spraying                                 | 6                |                                |                                         |                                             |              |              |          | 0        | 1.09972 |     |      |          |
| 12       | 2 Spraying                                 | 6                | Help                           |                                         |                                             |              | OK           | Cancel   | 6        | 0.02222 |     |      |          |
| H 4      | D H + Asymetric Fact                       | orial Design and | Tw                             |                                         | •                                           |              |              | _        |          |         |     | H    |          |
| 1        | Asymetric Factorial Design                 | n and Two-way Al | NOVA.mwx                       |                                         |                                             |              |              |          | Ħ        |         |     |      |          |
|          | Vorme                                      |                  |                                |                                         |                                             |              | <b>20 50</b> |          |          | Am      | 14  | CH N |          |
| NP       | Type here to sea                           | ircn             | 0                              | - <b>B</b>                              | × 🔮 🖷                                       | · · · ·      | L 🗶 🗶        | <u> </u> | ~ u      | W / Q   |     | 311  | y.       |

So, customize this one and I have made the surface like this.

(Refer Slide Time: 16:33)



if you take a top view of the surface then what we get is a contour plot. Contour plot is also very important when we are talking about optimization.

So, it is like you are seeing a top view of a mountain.

If you see from the top, mountains will have different surfaces. You will see the altitude along Z-axis. Certain planes will be at same altitude. So, contour plot is an important plot which MINITAB also gives you.

| 0 M                          | initab - Untitled                                                                                                | 0-             | oh View blate Assistant A               | difficant <sup>a</sup> |               |                  |                        |    |      |          |                       |                        |     | - 1 | 8 |
|------------------------------|------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------|------------------------|---------------|------------------|------------------------|----|------|----------|-----------------------|------------------------|-----|-----|---|
| File                         | Edit Data Calc Stat                                                                                              | Gra            | ph View Help Assistant A<br>Scatterplot | dditional 1            | Par 2/ 2/     | 2                |                        |    |      |          |                       |                        |     |     |   |
|                              |                                                                                                                  | 10             | Matrix Plot                             | r <sub>0</sub> 3       | ₩ 卷   ·Y      | × Bek *          | V 🔠 i 🗗 🗗 🖓 V          | 1  |      |          |                       |                        |     |     |   |
|                              | ▲ 王 4                                                                                                            | 3              | Marginal Plot                           | sk                     |               |                  |                        |    |      |          |                       |                        |     |     |   |
| Su                           | face Plot of Battery Life                                                                                        |                | Histogram                               |                        |               |                  |                        |    |      |          |                       |                        |     |     |   |
| 8                            | ASYMETRIC FACTORIAL DESIG                                                                                        | 4              | Dotplot                                 |                        |               |                  |                        |    |      |          |                       |                        |     |     |   |
| Su                           | rface Plot of Batte                                                                                              |                | Stem-and-Leaf                           | of O                   | peration v    | s Plate mater    | al Type                |    |      |          |                       |                        |     |     |   |
| _                            |                                                                                                                  | 1              | Probability Plot                        |                        |               |                  |                        |    |      |          |                       |                        |     |     | ł |
|                              | Surface Plot of Ba                                                                                               | N              | Probability Distribution Plot           | tio, P                 | late materia  | ίт               |                        |    |      |          |                       |                        |     |     |   |
|                              |                                                                                                                  | -              | Boxplot                                 |                        |               |                  |                        |    |      |          |                       |                        |     |     |   |
|                              |                                                                                                                  | ŧ.             | Interval Plot                           |                        |               |                  |                        |    |      |          |                       |                        |     |     |   |
|                              |                                                                                                                  |                | Individual Value Plot                   |                        |               |                  |                        |    |      |          |                       |                        |     |     |   |
|                              |                                                                                                                  | 12             | Line Plot                               | -11                    |               |                  |                        |    |      |          |                       |                        |     |     |   |
|                              |                                                                                                                  | 1              | Bar Chart<br>Pie Chart                  |                        |               |                  |                        |    |      |          |                       |                        |     |     |   |
|                              | 150 .<br>Jattery Life (In Hour)<br>100 .                                                                         | M              | Time Series Plot<br>Area Graph          |                        |               |                  |                        |    |      |          |                       |                        |     |     |   |
|                              | 50                                                                                                               |                | Contour Plot.                           | 7 12                   |               |                  |                        |    |      |          |                       |                        |     |     |   |
|                              | C1 C2-T                                                                                                          | 0              | 3D Scatterplot                          |                        | C6            | C7               | C8 g                   | C9 | C10  | C11      | C12                   | C13                    | C14 | C15 |   |
|                              | Primer Type Method                                                                                               | 8              | 3D Surface Plot                         | Plate                  | material Type | Temp of Operatio | Battery Life (In Hour) |    | Temp | Pressure | Impurity (No Replicat | e) SRES                |     |     |   |
|                              | 2 Dipping                                                                                                        |                | 3.0                                     |                        | 1             | 7                | 75                     |    | 125  | 30       |                       | 4 0.78976              |     |     |   |
|                              | e opping                                                                                                         |                | 5.4                                     |                        | 1             | 12               | 5 20                   |    | 125  | 40       |                       | 2 -1.66640             |     |     |   |
|                              | 2 Dipping                                                                                                        |                |                                         |                        | 1             | 12               | 5 70                   |    | 125  | 45       |                       | 3 0.55547              |     |     |   |
| ,                            | 2 Dipping<br>2 Spraying                                                                                          |                | 5.8                                     |                        |               |                  |                        |    | 150  | 25       |                       |                        |     |     |   |
| 1                            | 2 Dipping<br>2 Spraying<br>2 Spraying                                                                            |                | 5.8<br>6.1                              |                        | 1             | 12               | 5 82                   |    | 1.00 | ~~       |                       | 9 1.08872              |     | 0   |   |
| 3 ) ) 1                      | 2 Dipping<br>2 Spraying<br>2 Spraying<br>2 Spraying                                                              |                | 5.8<br>6.1<br>6.3                       |                        | 1             | 12               | 5 82                   |    | 150  | 30       |                       | 9 1.08872<br>6 0.02222 |     |     |   |
| 8<br>0<br>1<br>2<br>4        | 2 Dipping<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>2 N + Asymetric Far                         | toria          | 5.8<br>6.1<br>6.3<br>I Design and Tw    |                        | 1             | 12               | 5 82<br>5 58           |    | 150  | 30       |                       | 9 1.08872<br>6 0.02222 |     |     |   |
| 8<br>9<br>10<br>11<br>2<br>4 | 2 Dipping<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>4 Asymetric Fat | toria<br>gn an | 5.8<br>6.1<br>6.3<br>I Design and Tw.,  |                        | 1             | 12               | 5 82<br>5 58           |    | 150  | 30       |                       | 9 1.08872<br>6 0.02222 |     |     |   |

(Refer Slide Time: 17:21)

So, you go to graph and you go to contour plot.

(Refer Slide Time: 17:22)



Here you mention battery life and temperature and plate material types. Generally the variable should be treated as continuous variable for the contour plot. But for the sake of simplicity we are doing this. We will take another example where all the variables are

continuous and that case it will more relevant, but now just showing you the options that we have.



(Refer Slide Time: 17:41)

So, here there is an options of contour plot like this. So, where the battery life will be maximized? Battery life is over here on the right hand side. What you see is that greater than 180 what is expected is dark green zone that you are seeing over here, plate material 2 or 3, and temperature range around 15 will maximize battery life. So, contour plot is possible, but one of the variable is discrete over here. So, let us not do this one over here. But I just showed you that there is an option of contour plot which is also used for when defining the region which is where the optimality lies basically ok where to see basically.

So, this is contour plot options is there and these are the things that you can do when one is categorical, one is continuous variable. So, these are the; these are the possibilities what we have then we have another example over here at the end what we are having is that.

## (Refer Slide Time: 18:38)

| Mir  | sitab - Untitled     |                                       |          |                       |                     |                                              |                       |        |      |          |                   |       |             |     | -   | 8 |
|------|----------------------|---------------------------------------|----------|-----------------------|---------------------|----------------------------------------------|-----------------------|--------|------|----------|-------------------|-------|-------------|-----|-----|---|
| File | Edit Data Calc       | Stat Graph View H                     | elp Assi | stant Add             | átional Tools       |                                              |                       |        |      |          |                   |       |             |     |     |   |
| 1    |                      | Basic Statistics<br>Regression        | ;        | fx 3ª                 | -11日 24             | S∎ev∍x                                       |                       | 14. 59 |      |          |                   |       |             |     |     |   |
|      |                      | ANOVA                                 | ,        | Cne-                  | Way                 | E CLARK                                      | Di La Cala I          | ·* D3  |      |          |                   |       |             |     |     |   |
|      | · 622.   •           | DOE                                   | ,        | 幸 Analy               | isis of Means       |                                              |                       |        |      |          |                   |       |             |     |     |   |
|      |                      | Control Charts                        | ,        | A Balan               | ced ANQUA           |                                              |                       |        |      |          |                   |       |             |     |     |   |
|      |                      | Quality loois<br>Reliability/Survival | - (      | Mire                  | Balanced AN         | AVC                                          |                       |        |      |          |                   |       |             |     |     |   |
|      |                      | Predictive Analytics                  | ,        | -C Fully              | Determine who       | ether the means of two of data are balanced. | or more groups        |        |      |          |                   |       |             |     |     |   |
|      |                      | Multivariate                          | ,        | A                     | -1144101/0          | A same and                                   | in la l               |        |      |          |                   |       |             |     |     |   |
|      |                      | Time Series                           | ,        | aca Gene              | rai mareuva         | -11011                                       | I Q D J               | 21     |      |          |                   |       |             |     |     |   |
|      |                      | Tables                                | ,        | σ <sup>2</sup> Test f | or Equal Variances  |                                              |                       | -      |      |          |                   |       |             |     |     |   |
|      |                      | Nonparametrics                        | ,        | Interv                | Effects Dist        |                                              |                       |        |      |          |                   |       |             |     |     |   |
|      |                      | Equivalence Tests                     | ,        | No Intern             | criects Plot        | Op                                           | en Ctrl+O             |        |      |          |                   |       |             |     |     |   |
|      |                      | Power and Sample S                    | ce ,     |                       |                     | New Deale                                    | an Carla Chiftean     |        |      |          |                   |       |             |     |     |   |
|      |                      |                                       |          |                       |                     |                                              |                       |        |      |          |                   |       |             |     |     |   |
|      | C1 C2-               | C3                                    | C4       | CS                    | C6                  | C7                                           | C8                    | c9     | C10  | C11      | C12               | 2     | C13         | C14 | C15 |   |
|      | Primer Type Meth     | od Adhesive Force                     |          |                       | Plate material Type | Temp of Operation                            | Battery Life (In Hour | 0      | Temp | Pressure | Impurity (No Repl | cate) |             |     |     |   |
|      | 2 Dippin<br>2 Dippin | g 5.0                                 |          |                       | 1                   | 70                                           | 7                     | 5      | 125  | 35       |                   | 4     |             |     |     |   |
|      | 2 Dippin             | 5.4                                   |          |                       | 1                   | 125                                          | 2                     | 0      | 125  | 40       |                   | 2     |             |     |     |   |
|      | 2 Sprayi             | ig 5.8                                |          |                       | 1                   | 125                                          | 7                     | 0      | 125  | 45       |                   | 3     |             |     |     |   |
|      | 2 Sprayi             | ig 6.1                                |          |                       | 1                   | 125                                          | 8                     | 2      | 150  | 25       |                   | 9     |             |     |     |   |
|      | 2 Spravi             | ia 6.3                                |          |                       | 1                   | 125                                          | 5                     | 8      | 150  | 30       |                   | 6     |             |     | -   |   |
|      | H + Asymetr          | c Factorial Design and Tv             | W        |                       |                     |                                              | 4                     |        |      |          |                   |       |             | -   | H   |   |
| ÷    | Asymetric Factorial  | Design and Two-way ANG                | own AVO  |                       |                     |                                              |                       |        |      |          |                   | m     |             |     |     |   |
|      |                      |                                       |          |                       |                     |                                              |                       |        |      |          |                   | ▥ _   | <u>ц - </u> |     | 100 |   |
|      | O Tracher            |                                       |          |                       | A ■ ■               |                                              |                       |        |      | -        |                   |       |             |     | 1   |   |

We are having another example over here where temperature and pressure is given. So, this is also another example.

(Refer Slide Time: 18:44)



So, this example and this is a two-factor experimentation. We want to minimize the impurities over here. And we have different combinations of temperature and pressure. So, temperature is at 3 levels over here and pressure has 5 levels over here. So, it is asymmetric design what you see over here.

There are 15 experimental trials. There are no replicates. We want to analyse this data. So, in this case this is the data set that we are having temperature, pressure and impurities over here. So, what we will do is that let us go directly to the analysis of variance and let us try to do and see that because there is one replicate.



(Refer Slide Time: 20:00)

So, we can also go for balanced experimentation over here only thing is that what will be the outcome that is of concern for us. So, in this case response is impurity and the model variables are temperature and pressure over here and let us say I want to estimate the interaction between temperature and pressure. (Refer Slide Time: 20:16)



And these options we will give over here and graphical options we will place like this and then we place ok over here.

(Refer Slide Time: 20:19)



(Refer Slide Time: 20:23)

|                                    | Cale Out                                                                                                                 | Graph View k                                                                                      | lelo Arris | stant As | uni,                                      | and Tools                                                                             |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------|----------|-------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------|------------|-------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------|-----|-----|
|                                    | Da to 4                                                                                                                  |                                                                                                   | 00         | i fr 9   | 0 -1                                      |                                                                                       |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
|                                    |                                                                                                                          |                                                                                                   | 00         | : JA   0 |                                           |                                                                                       |                                      |                                                                                     | 100        |                                                       |                                                     |                                                           |                                                                                   |     |     |
| ·0 = 0                             | 1010                                                                                                                     |                                                                                                   | 5 4        |          |                                           | 0 # # %   1 E # 8 E 1                                                                 |                                      | 9 20 1 <b>0</b> , <b>c</b> o <b>0</b> , 11 55                                       | 83         |                                                       |                                                     |                                                           |                                                                                   |     |     |
|                                    | · @ .± *                                                                                                                 | PERSENT                                                                                           |            | Y 28 1   | 1                                         | P K. *                                                                                |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
| NOVA: Impurity                     | y (No Repli                                                                                                              | ¥ X                                                                                               |            |          |                                           |                                                                                       |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
| ASYMETRIC FAI                      | CTORIAL DESK                                                                                                             | IN AND TWO-WAY AM                                                                                 | XWM.ANOS   |          |                                           |                                                                                       |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
| NOVA: Im                           | npurity (I                                                                                                               | No Replicate                                                                                      | versus     | s Temp   | ), P                                      | ressure                                                                               |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
|                                    |                                                                                                                          |                                                                                                   |            |          |                                           |                                                                                       |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
| Factor Info                        | ormation                                                                                                                 |                                                                                                   |            |          |                                           |                                                                                       |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
| Factor Th                          | vne Level                                                                                                                | s Values                                                                                          |            |          |                                           |                                                                                       |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
| Temp Fit                           | ixed                                                                                                                     | 3 100, 125, 150                                                                                   |            |          |                                           |                                                                                       |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
| Pressure Fk                        | bxed                                                                                                                     | 5 25, 30, 35, 40, 45                                                                              |            |          |                                           |                                                                                       |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
|                                    |                                                                                                                          |                                                                                                   |            | _        | _                                         |                                                                                       |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
| Analysis of                        | f Variance                                                                                                               | for Impurity (N                                                                                   | o Replic   | ate)     | ۷.                                        |                                                                                       |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
| Source                             | DE                                                                                                                       | 2M 22                                                                                             | P          |          |                                           | Send to Microsoft® Word                                                               |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
| Temp                               | 2                                                                                                                        | 100.13 50.067                                                                                     |            |          | _                                         | Send to Microsoft® PowerPoint                                                         |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
| Pressure                           | 4                                                                                                                        | 34.67 8.667                                                                                       | •          |          | 2                                         | Send to Companion                                                                     |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
| Tamathers                          | pure 8                                                                                                                   | 10.53 1.317                                                                                       | •          |          |                                           | Send to Minitab Workspace**                                                           |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
| iemp*rress                         |                                                                                                                          |                                                                                                   |            |          | 110                                       | Copy Ctri+C                                                                           |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
| Error<br>Toral                     | 0                                                                                                                        | 145.33                                                                                            |            |          | 1                                         |                                                                                       |                                      |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
| Error<br>Total                     | 0                                                                                                                        | 145.33                                                                                            |            |          |                                           | Copy as Pirgare                                                                       | 5                                    |                                                                                     |            |                                                       |                                                     |                                                           |                                                                                   |     |     |
| Error<br>Total                     | 0<br>14<br>C2-T                                                                                                          | 145.33<br>C3                                                                                      | C4         | CS       |                                           | Copy Column<br>Decimal Places                                                         |                                      | C8 5                                                                                | <b>C</b> 9 | C10                                                   | C11                                                 | C12 5                                                     | C13                                                                               | C14 | C15 |
| C1                                 | 0<br>14<br>C2-T<br>Method<br>2 Dinping                                                                                   | C3<br>Adhesive Force                                                                              | C4         | CS       |                                           | Copy Column<br>Decimal Places<br>Print                                                | ior                                  | C8 2<br>Battery Life (In Hour)                                                      | (9         | C10<br>Temp                                           | C11<br>Pressure                                     | C12<br>Impurity (No Replicate)                            | C13<br>RESI1                                                                      | C14 | C15 |
| C1<br>Primer Typ                   | 0<br>14<br>C2-T<br>Method<br>2 Dipping<br>2 Dipping                                                                      | C3<br>Adhesive Force<br>5.6<br>4.9                                                                | C4         | cs       |                                           | Copy as in Figure<br>Copy Column<br>Decimal Places<br>Print<br>Delete                 | ior                                  | C8 2<br>Battery Life (In Hour)<br>0 80<br>0 75                                      | C9         | C10<br>Temp<br>125                                    | C11<br>Pressure<br>30                               | C12 E<br>Impurity (No Replicate)<br>1                     | C13<br>RESI1<br>-0.0000000                                                        | C14 | C15 |
| Error<br>Total<br>C1<br>Primer Typ | 0<br>14<br>C2-T<br>Method<br>2 Dipping<br>2 Dipping<br>2 Dipping                                                         | 145.33<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4                                               | C4         | CS       | ·<br>一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一 | Copy as Private<br>Copy Column<br>Decimal Places<br>Print<br>Delete                   | ior<br>70<br>70                      | C8 20<br>Battery Life (In Hour)<br>0 80<br>0 75<br>5 20                             | C9         | C10<br>Temp<br>125<br>125                             | C11<br>Pressure<br>30<br>35<br>40                   | C12 5<br>Impurity (No Replicate)<br>1<br>4                | C13<br>RESI1<br>-0.0000000<br>0.0000000                                           | C14 | C15 |
| C1<br>Primer Typ                   | 0<br>14<br>C2-T<br>Method<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraving                                           | 145.33<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8                                        | C4         | CS       | ·<br>一<br>一<br>一<br>一                     | Copy colorm<br>Decimal Places<br>Print<br>Delete                                      | ior<br>70<br>70<br>125               | C8 5<br>Battery Life (In Hour)<br>0 80<br>0 75<br>5 20<br>5 70                      | (9         | C10<br>Temp<br>125<br>125<br>125<br>125               | C11<br>Pressure<br>30<br>35<br>40<br>45             | C12<br>Impurity (No Replicate)<br>1<br>4<br>2<br>3        | C13<br>RESI1<br>-0.0000000<br>-0.0000000<br>-0.0000000                            | C14 | C15 |
| C1<br>Primer Typ                   | 0<br>14<br>C2-T<br>Method<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying                             | 145.33<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1                                 | C4         | CS       | <u>م</u>                                  | Copy scrigge<br>Copy Column<br>Decimal Places<br>Print<br>Delete                      | ior<br>70<br>70<br>125<br>125        | C8 s<br>Battery Life (In Hour)<br>0 80<br>0 75<br>5 20<br>5 70<br>5 82              | C9         | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>125 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25       | C12<br>Impurity (No Replicate)<br>1<br>4<br>2<br>3<br>9   | C13<br>RESI1<br>-0.0000000<br>0.0000000<br>-0.0000000<br>-0.0000000               | C14 | CIS |
| C1<br>Primer Typ                   | 0<br>14<br>C2-T<br>Method<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying<br>2 Spraying               | 145.33<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1<br>6.3                          | C4         | CS       | <u>ي</u><br>چ<br>۲                        | Copy a tongue<br>Copy Cohumn<br>Decinal Parces<br>Print<br>Delete<br>1<br>1<br>1      | ior<br>70<br>125<br>125<br>125       | C8 2<br>Battery Life (In Hour)<br>0 80<br>0 75<br>5 20<br>5 82<br>5 \$\$            | (9         | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 5<br>Impurity (No Replicate)<br>4<br>2<br>3<br>9<br>6 | C13<br>RESI1<br>-0.0000000<br>-0.0000000<br>-0.0000000<br>-0.0000000<br>0.0000000 | C14 | CIS |
| Error<br>Total<br>C1<br>Primer Typ | 0<br>14<br>C2-T<br>Method<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>2 Spraying | 145.33<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1<br>6.3<br>ctorial Design and    | C4         | CS       | الا<br>ب<br>ب<br>ب<br>ب                   | Copy as organe<br>Copy Column<br>Decinal Places<br>Print<br>Delete<br>1<br>1<br>1     | ior<br>7(<br>7(<br>125<br>125<br>125 | C8 2<br>Battery Life (In Hour)<br>0 80<br>0 75<br>5 20<br>5 70<br>5 82<br>5 88<br>4 | (9         | Ct0<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 5<br>Impurity (No Replicate)<br>4<br>2<br>3<br>9<br>6 | C13<br>RESI1<br>-0.0000000<br>0.0000000<br>-0.0000000<br>0.0000000<br>0.0000000   | CH  | CIS |
| Error<br>Total<br>C1<br>Primer Typ | 0<br>14<br>C2-T<br>Method<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>2 Spraying | 145.33<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1<br>6.3<br>sctorial Design and T | C4         | CS       | 2<br>2<br>2<br>2<br>2                     | Copy an Pigue<br>Copy Column<br>Decimal Places<br>Print<br>Delete<br>1<br>1<br>1<br>1 | ior<br>70<br>125<br>125<br>125       | C8 2<br>Battery Life (In Hour)<br>0 80<br>0 75<br>5 20<br>5 70<br>5 82<br>5 58<br>4 | (9         | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 5<br>Impurity (No Replicate)<br>4<br>2<br>3<br>9<br>6 | C13<br>RESI1<br>-0.0000000<br>0.0000000<br>-0.0000000<br>0.0000000<br>0.0000000   | CH  | CIS |

What will happen is that you will see that if I copy this one as picture.

(Refer Slide Time: 20:27)

| Book1                                                     | - Excel (Product Activation Failed) Picture Toels                    | 🖾 – 🗗 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Home Insert Page Layout For                          | rmulas Data Review View ACROBAT Format 🖓 Tell me what you want to do | Sign in 👂 Share                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Paste Copy -<br>Paste Format Painter<br>Clipboard ri Fort | ∧    ∧    = = =    · · · · · · · · · · · · · ·                       | AutoSum A Y O     Z AutoSum     Z AutoS |
| Picture 3 * 1 × ✓ fs                                      |                                                                      | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A 8 C D<br>1<br>2<br>3                                    | E F G H I J K L M N O                                                | P Q R S T U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4<br>5<br>6                                               | Analysis of Variance for Impurity (No Replicate)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8                                                         | Source DF SS MS F P                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9                                                         | Temp 2 100.13 50.067 * *                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11                                                        | Pressure 4 34.67 8.667 * *                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12 13                                                     | Temp*Pressure 8 10.53 1.317 * *                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14                                                        | Error 0 * *                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16<br>17<br>18                                            | Total 14 145.33                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 19 0-                                                     | 0                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20                                                        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21                                                        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 23                                                        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sheet1 ⊕                                                  |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

And if I paste this over here you will find the estimation is not possible over here as there is no replicates. So, temperature is at 2 levels over here ok degree of freedom is 2, pressure degree of freedom is 4.

So, total degree of freedom is 6 that is consumed over here by these two factors over here and total 15 experimental trials was done because 5 into 3, 15 trials are done and so, 14 degree of freedom is the total degree of freedom. So, if we subtract 6 from 14, we get 8 degree of freedom. And if you place temperature and pressure with 8 degree of freedom then there is no error degree of freedom. If there is no error degree of freedom I cannot calculate mean square over here if I cannot calculate mean square I cannot calculate the F values and p values over here. So, it is not possible to see temperature and pressure information over here.

So, in this case we cannot do this. So, we have to confirm now whether the interaction is present or not. So, how do we calculate interaction? It is already given in Montgomery's books how to calculate interaction in case of single replicates what is to be done. So, I am not going to that details. What I will do is that, I want to see whether the interaction is prominent or not graphically whether I can see that one.

(Refer Slide Time: 21:38)



So, if I go to *stat* and *ANOVA* analysis over here. So, interaction plots is possible over here. So, or we can directly go to general linear model and we can go to factor plots also.

(Refer Slide Time: 21:53)

| File Edit Data                                                                                                                                | Calc Stat                                                         | Graph View H                                                                                                                                                         | telp Assi | stant Ad | átional Tools<br>→ 古台社<br>日本書書書書 | / 4   <b>€</b><br>  ¥ ⊠ ∎ 8 | ≤★#圓            | o <sup>n</sup> c <sup>n</sup> o <sup>n</sup> 47 <sup>2</sup> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |      |          |                 |          |            |     | - 6 |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------------------------------|-----------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|----------|-----------------|----------|------------|-----|-----|---|
| ANOVA: Impurit                                                                                                                                | y (No Repli                                                       | Y X                                                                                                                                                                  |           |          | PL                               |                             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | _    |          |                 |          |            |     |     |   |
| ASYMETRIC FA                                                                                                                                  | CTORIAL DESIG                                                     | N AND TWO-WAY AN                                                                                                                                                     |           |          |                                  | Factorial Plots             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×       |      |          |                 |          |            |     |     |   |
| ANOVA: In                                                                                                                                     | npurity (M                                                        | No Replicate)                                                                                                                                                        | versu     | s Temp   | Pressure                         |                             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |      |          |                 |          |            |     |     | ٠ |
| Factor Info<br>Factor Ty<br>Temp Fi<br>Pressure Fi<br>Source<br>Temp<br>Pressure<br>Temp<br>Pressure<br>Temp<br>Temp<br>Temp<br>Temp<br>Total | Variance 1<br>Variance 1<br>Variance 1<br>DF<br>2<br>4<br>0<br>14 | s Values<br>3 100, 125, 150<br>5 25, 30, 35, 40, 45<br>For Impurity (N-<br>SS MS F<br>100.13 50.067<br>34.67 8.667<br>10.53 1.317<br>+<br>+<br>+<br>+<br>+<br>145.33 | o Replic  | ate)     | v                                | Available:                  | Variables to In | dude in Plots Selected: Temp Pressure C Selected: Temp Pressure Selected: Temp Pressure Selected: Temp Pressure Selected: Temp Pressure Selected: |         |      |          |                 |          |            |     |     | * |
| + C1                                                                                                                                          | C2-T                                                              | C3                                                                                                                                                                   | C4        | CS       | C6                               |                             | Options         | graphs ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | w Model | C10  | C11      | C12             | 5        | C13        | C14 | C15 |   |
| Primer Typ                                                                                                                                    | e Method                                                          | Adhesive Force                                                                                                                                                       |           |          | Plate materia                    | Help                        |                 | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cancel  | Temp | Pressure | Impurity (No Re | plicate) | RESII      |     |     |   |
| 7                                                                                                                                             | 2 Dipping                                                         | 5.6                                                                                                                                                                  |           |          |                                  |                             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 125  | 30       |                 | 1        | -0.0000000 |     |     |   |
| 8                                                                                                                                             | 2 Dipping                                                         | 4.9                                                                                                                                                                  |           |          |                                  | 1                           | 70              | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 125  | 35       |                 | 4        | 0.0000000  |     |     |   |
| 9                                                                                                                                             | 2 Dipping                                                         | 5.4                                                                                                                                                                  |           |          |                                  | 1                           | 125             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 125  | 40       |                 | 2        | -0.0000000 |     |     |   |
| 10                                                                                                                                            | 2 Spraying                                                        | 5.8                                                                                                                                                                  |           |          |                                  | 1                           | 125             | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 125  | 45       |                 | 3        | -0.0000000 |     |     |   |
| 11                                                                                                                                            | 2 Spraying                                                        | 6.1                                                                                                                                                                  |           |          |                                  | 1                           | 125             | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 150  | 25       |                 | 9        | 0.0000000  | 6   | 1   |   |
| 12                                                                                                                                            | 2 Spraving                                                        | 6.3                                                                                                                                                                  |           |          |                                  | 1                           | 125             | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 150  | 30       |                 | 6        | 0.0000000  |     | 10  |   |
|                                                                                                                                               | Asymetric Fa                                                      | ctorial Design and T                                                                                                                                                 | Wm        |          |                                  |                             |                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |      |          |                 |          | _          | 1   | 2   |   |
| d D H +                                                                                                                                       | Factorial Desi                                                    | ign and Two-way AN                                                                                                                                                   | Wm.WO     |          |                                  |                             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |      |          |                 |          |            | 100 | 1   |   |

And we can see the plots like that. So, temperature over here. This is this will be impurities that we want to check and then temperature and pressure are the variables.

(Refer Slide Time: 22:03)

|                                                                                                | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                       | (≥■8K1<br>×≥0■8                                                                                                                                | 00<br>12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | fx   }*<br>  10   #<br>  14   14   14   14   14   14   14   14 |                             | < &<br>  ¥ ≥ ■ 8                                            | K★\$8                                                | d" ( <mark>"</mark> d"              | ч ¥, Ш                                                                                               |                                         |                                               |                               |                                                                                   |     |     |   |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|-----------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------|-----|-----|---|
| NOWA: Impur                                                                                    | rity (No Repli                                                                                                                    | * X                                                                                                                                            |                                              |                                                                |                             |                                                             |                                                      |                                     |                                                                                                      | -                                       |                                               |                               |                                                                                   |     |     |   |
| ASYMETRIC I                                                                                    | ACTORIAL DESIG                                                                                                                    | IN AND TWO-WAY AM                                                                                                                              | OVA.MWX                                      |                                                                |                             | Factorial Plots                                             |                                                      |                                     |                                                                                                      | <.                                      |                                               |                               |                                                                                   |     |     |   |
| NOVA: I                                                                                        | mpurity (M                                                                                                                        | No Replicate)                                                                                                                                  | versu                                        | s Temp,                                                        | , Pressure                  | Besponse: Imp                                               | ourity (No Replicate                                 | )                                   |                                                                                                      |                                         |                                               |                               |                                                                                   |     |     | • |
| Factor Inf                                                                                     | formation<br>Type Level                                                                                                           | s Values                                                                                                                                       | -                                            |                                                                |                             | <u>Avalable:</u>                                            | Variables to I                                       | ndude in Plats<br>Selected:<br>Temp |                                                                                                      |                                         |                                               |                               |                                                                                   |     |     | * |
| Temp                                                                                           | Fixed :                                                                                                                           | 3 100, 125, 150                                                                                                                                |                                              |                                                                | Factorial Plots:            | Options                                                     |                                                      |                                     |                                                                                                      |                                         | ×                                             |                               |                                                                                   |     |     |   |
| Analysis o                                                                                     | of Variance                                                                                                                       | for Impurity (N                                                                                                                                | o Replic                                     | ate)                                                           |                             |                                                             |                                                      |                                     |                                                                                                      |                                         |                                               |                               |                                                                                   |     |     |   |
| Analysis of<br>Source<br>Temp<br>Pressure<br>Temp*Pre<br>Error<br>Total                        | DF<br>2<br>4<br>ssure 8<br>0<br>14                                                                                                | for Impurity (N<br><u>\$5 MS 1</u><br>100.13 50.067<br>34.67 8.667<br>10.53 1.317<br>* *<br>145.33                                             | o Replic                                     | ate)                                                           | Help                        | Terms to display                                            | : Only model te                                      | rns                                 | -                                                                                                    | Cancel                                  |                                               |                               |                                                                                   |     |     | v |
| Analysis of<br>Source<br>Temp<br>Pressure<br>Temp*Pre<br>Error<br>Total                        | DF<br>2<br>4<br>ssure 8<br>0<br>14<br>C2-T                                                                                        | for Impurity (N<br>SS MS<br>100.13 50.067<br>34.67 8.667<br>10.53 1.317<br>145.33<br>C3                                                        | C4                                           | cs                                                             | Hep<br>C6                   | Terms to display                                            | : Only model te                                      | rns<br>                             | v<br>v<br>yew Madel                                                                                  | Cancel                                  | C11                                           | C12                           | z C13                                                                             | C14 | C15 |   |
| Analysis of<br>Source<br>Temp<br>Pressure<br>Temp*Pre<br>Error<br>Total<br>C1<br>Primer Ty     | DF<br>2<br>4<br>ssure 8<br>0<br>14<br>C2-T<br>ype Method                                                                          | for Impurity (N<br>SS MS<br>100.13 50.067<br>34.67 8.667<br>10.53 1.317<br>4<br>145.33<br>C3<br>Adhesive Force                                 | C4                                           | cs                                                             | Hep<br>C6<br>Plate materia  | Terms to deplay                                             | : Only model to Options                              | rms<br><br><br>OK                   | <br>▼<br>                                                                                            | Cancel<br>C10<br>Temp                   | Ct1 Pressure                                  | C12<br>Impurity (No Replicate | C13<br>() RESI1                                                                   | C14 | C15 |   |
| Analysis of<br>Source<br>Temp<br>Pressure<br>Temp*Pre<br>Error<br>Total<br>C1<br>Primer Ty     | bf Variance 1<br>DF<br>2<br>4<br>ssure 8<br>0<br>14<br>C2-T<br>ype Method<br>2 Dipping                                            | for Impurity (N<br>SS MS 1<br>100.13 50.067<br>34.67 8.667<br>10.53 1.317<br>145.33<br>C3<br>Adhesive Force<br>5.6                             | C4                                           | cs                                                             | Heip<br>C6<br>Plate materia | Terms to deplay<br>Help                                     | Conty model te                                       | rms<br>                             | Vew Model                                                                                            | Cancel<br>C10<br>Temp<br>125            | C11<br>Pressure<br>30                         | Ct2<br>Impurity (No Replicate | c C13<br>) RESI1<br>1 -0.000000                                                   | CM  | CIS |   |
| Analysis (<br>Source<br>Temp<br>Pressure<br>Temp*Pre<br>Error<br>Total<br>C1<br>Primer Ty      | bf Variance 1<br>DF<br>4<br>ssure 8<br>0<br>14<br>C2-T<br>ype Method<br>2 Dipping<br>2 Dipping                                    | for Impurity (N<br>SS MS 1<br>100.13 50.067<br>34.67 8.667<br>10.53 1.317<br>145.33<br>C3<br>Adhesive Force<br>5.6<br>4.9                      | C4                                           | cs                                                             | Heip<br>C6<br>Plate materix | Terms to display<br>Help                                    | Conty model te                                       | graphs<br>QK                        | yew Model                                                                                            | Cancel<br>C10<br>Temp<br>125<br>125     | C11<br>Pressure<br>30<br>35                   | C12<br>Impurity (No Replicate | C13<br>PRESI1<br>1 -0.0000000<br>4 0.0000000                                      | CI4 | C15 |   |
| Analysis (<br>Source<br>Temp<br>Pressure<br>Temp*Pre<br>Error<br>Total<br>C1<br>Primer Ty      | Veriance I<br>DF<br>2<br>4<br>8<br>0<br>14<br>C2-T<br>VPP Method<br>2 Dipping<br>2 Dipping<br>2 Dipping                           | for Impurity (N<br>SS MS 1<br>100.13 50.067<br>34.67 8.667<br>10.53 1.317<br>4.45<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4                 | C4                                           | cs                                                             | Hep<br>C6<br>Plate materia  | Terms to display<br>Help                                    | Doty model to<br>Options<br>70<br>125                | graphs<br>QK                        | Yew Model     Yew Model     Cancel     75     20                                                     | C10<br>Temp<br>125<br>125               | C11<br>Pressure<br>30<br>35<br>40             | C12<br>Impurity (No Replicate | C13           RESI1           -0.0000000           0.0000000           2.00000000 | C14 | CIS |   |
| Analysis :<br>Source<br>Temp Pressure<br>Temp*Pres<br>Error<br>Total<br>C1<br>Primer Ty        | DF<br>DF<br>2<br>4<br>8<br>0<br>14<br>C2-T<br>Method<br>2<br>Dipping<br>2<br>Dipping<br>2<br>Dipping<br>2<br>Spraying             | for Impurity (N<br>SS MS 1<br>100.13 50.067<br>34.67 8.667<br>10.53 1.317<br>x 1<br>145.33<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8 | C4                                           | cs                                                             | Help<br>C6<br>Plate materia | Terms to display<br>Help                                    | Only model for     Options      70      125      125 | graphs<br>QK                        | •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                   | Ctio<br>Temp<br>125<br>125<br>125       | C11<br>Pressure<br>30<br>35<br>40<br>45       | C12<br>Impurity (No Replicate | 5 C13<br>1 -0.000000<br>4 0.000000<br>2 -0.000000<br>3 -0.000000                  | C14 | C15 |   |
| Analysis -<br>Source<br>Temp<br>Pressure<br>Temp*Pressure<br>Error<br>Total<br>C1<br>Primer Ty | DF<br>DF<br>2<br>4<br>5sure 8<br>0<br>14<br>C2-T<br>7pe Method<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying | for Impurity (N<br>SS MS 1<br>100.13 50.067<br>10.53 1.317<br>*<br>145.33<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1           | C4                                           | cs                                                             | Help<br>C6<br>Plate materia | Terms to display Help 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Cotly model te<br>Options<br>70<br>125<br>125<br>125 | rms<br><u>Graphs</u><br><u>OK</u>   | Were Model           Were Model           Cancel           75           20           70           82 | C10<br>Temp<br>125<br>125<br>125<br>125 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25 | C12<br>Impurity (No Replicate | z C13<br>0 RES11<br>1 -0.000000<br>2 -0.000000<br>3 -0.000000<br>9 0.0000000      | C14 | C15 |   |

And in options titles we are not doing anything.

(Refer Slide Time: 22:05)

| Min                                 | itab - Untitled                                                          |                                                                          |                                                                                                      |          |           |                |                            |                                  |                |          |      |          |                  |           |         |     | × 6  | X   |
|-------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------|-----------|----------------|----------------------------|----------------------------------|----------------|----------|------|----------|------------------|-----------|---------|-----|------|-----|
| File                                | Edit Data                                                                | Calc Stat                                                                | Graph View H                                                                                         | Help Ass | istant Ad | ditional Tools |                            |                                  |                |          |      |          |                  |           |         |     |      |     |
| 2 F                                 |                                                                          | an e                                                                     | ¢ □ A A                                                                                              | 00       | 1 fx 3    | -s & 52 54     | 4.                         |                                  |                |          |      |          |                  |           |         |     |      |     |
| пu                                  | malt                                                                     | IIII                                                                     | YX C                                                                                                 | K+1      | 5.图 #     | 西服曲光           | Y >                        |                                  | di të di vy 3  | 100      |      |          |                  |           |         |     |      |     |
|                                     |                                                                          | TU                                                                       | YNDRK                                                                                                | 11/      | LY DA     | RK+            |                            |                                  |                |          |      |          |                  |           |         |     |      |     |
| ANO                                 | WA: Immurity                                                             | No Renii                                                                 | * X                                                                                                  |          |           |                |                            |                                  |                |          |      |          |                  |           |         |     |      |     |
|                                     | Daurrow Fact                                                             |                                                                          |                                                                                                      |          |           |                | Factorial Plots            |                                  |                | 5        |      |          |                  |           |         |     |      |     |
|                                     | OVA: Imr                                                                 | urity /                                                                  | lo Poplicato                                                                                         | Vorcu    | Tomp      | Droccuro       |                            |                                  |                |          |      |          |                  |           |         |     |      | ٠   |
| AIN                                 | OVA: Imp                                                                 | unity (i                                                                 | vo replicate,                                                                                        | versu    | siemp     | , Pressure     | Besponse:                  | npurity (No Replicate)           | *              |          |      |          |                  |           |         |     |      |     |
| Fa                                  | actor Inform                                                             | nation                                                                   |                                                                                                      |          |           |                |                            | Variables to In                  | idude in Plots |          |      |          |                  |           |         |     |      | *   |
| 61                                  | actor Tur                                                                | a Level                                                                  | e Valuet                                                                                             |          |           | ſ              | Eactorial Plate            | Graphs                           |                | ,        |      |          |                  |           |         |     |      |     |
| Te                                  | emp Fixe                                                                 | d                                                                        | 3 100, 125, 150                                                                                      | -        |           |                | Pectonal Produ             | orapits                          |                | ,        |      |          |                  |           |         |     |      |     |
| Pr                                  | ressure Fixe                                                             | d                                                                        | 5 25, 30, 35, 40, 45                                                                                 |          |           |                | Main effect                | s plot                           |                |          |      |          |                  |           |         |     |      |     |
| An<br>Sc<br>T<br>F<br>T<br>Er<br>Tc | nalysis of \<br>ource<br>Temp<br>Pressure<br>Temp*Pressu<br>rror<br>otal | 2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>14 | for Impurity (N<br><u>\$\$ M\$ 1</u><br>100.13 50.067<br>34.67 8.667<br>10.53 1.317<br>* *<br>145.33 | o Replic | cate)     |                | Daplay     Daplay     Help | loger left matrix<br>full matrix |                | Cancel   |      |          |                  |           |         |     |      | 4   |
| 4                                   | C1                                                                       | C2-T                                                                     | C3                                                                                                   | C4       | C5        | C6             |                            | Ogtons                           | Risbus         | ew 20006 | C10  | C11      | C12              | 12        | C13     | C14 | C15  |     |
| 1                                   | Primer Type                                                              | Method                                                                   | Adhesive Force                                                                                       |          |           | Plate materia  | Help                       | Î.                               | ox             | Cancel   | Temp | Pressure | Impurity (No Rep | licate) I | RESII   |     |      |     |
| 7                                   | 2                                                                        | Dipping                                                                  | 5.6                                                                                                  |          |           |                |                            |                                  |                | _        | 125  | 30       |                  | 1 -0.0    | 0000000 |     |      |     |
| 8                                   | 2                                                                        | Dipping                                                                  | 4.9                                                                                                  |          |           |                | 1                          | 70                               | 75             |          | 125  | 35       |                  | 4 0.0     | 0000000 |     |      |     |
| 9                                   | 2                                                                        | Cormina                                                                  | 5.0                                                                                                  |          |           |                |                            | 123                              | 20             |          | 123  | 40       |                  | 2 -0.0    | 000000  |     |      |     |
| 11                                  | 2                                                                        | Spraying                                                                 | 61                                                                                                   |          |           |                | 1                          | 125                              | 82             |          | 150  | 25       |                  | 9 00      | 0000000 |     |      |     |
| 12                                  | 2                                                                        | Spraying                                                                 | 6.3                                                                                                  |          |           |                | 1                          | 125                              | 58             |          | 150  | 30       |                  | 6 0.0     | 0000000 | 6   |      |     |
| 4.0                                 | H + A                                                                    | symetric Fa                                                              | ctorial Design and 1                                                                                 | lw       |           |                |                            |                                  | 1              |          |      |          |                  |           |         | 14  | NY I |     |
| 1                                   | Asymetric F                                                              | actorial Des                                                             | ion and Two-way AN                                                                                   | IOVA mwx |           |                |                            |                                  |                |          |      |          |                  | шГ        | 1       | 10  | 4    |     |
| 1                                   | Do -                                                                     |                                                                          |                                                                                                      |          |           | -              | a 🔺                        | -                                |                |          |      | -        |                  |           |         | 1.5 | 114  |     |
|                                     | 2 Type                                                                   | here to s                                                                | earch                                                                                                |          |           | 0              | 1 N                        | 🔛 🥘                              |                |          | X    |          |                  | ^ 🖁 📟     | 10 50   | N   |      | 100 |

So, graphically we are just defining main effect plot and interaction plot.

(Refer Slide Time: 22:10)



So, we have a zigzag pattern and there are two locations where impurities will be minimized, pressure at 30 or at 40, and temperature at 125 seems to be the condition.

(Refer Slide Time: 22:35)

| 11 C 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                       |              |                             |                                                                             |                                                                           |                                                                        |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | -   | ć |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|---|
| ile Ec                  | sit Data Calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stat Graph View He                                                                                                                                    | Ip Assistant | Additional Tools            |                                                                             |                                                                           |                                                                        |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |   |
| Н                       | 2 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Basic Statistics                                                                                                                                      | i fa         | 13° -2 A B 12 A             | 2                                                                           |                                                                           |                                                                        |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |   |
| 0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ANOVA                                                                                                                                                 | 1.05         | Cons.Way                    |                                                                             | 🔛 🗖 😋 🖬 🖓 🗄                                                               | 2 昭                                                                    |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |   |
|                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DOF                                                                                                                                                   | ) mit        | Analysis of Means           |                                                                             |                                                                           |                                                                        |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |   |
| artori                  | al Plots for Impu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Control Charts                                                                                                                                        |              | Balanced ANOVA              |                                                                             |                                                                           |                                                                        |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |   |
| 1.000                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quality Tools                                                                                                                                         | ,            | General Linear Model        |                                                                             |                                                                           |                                                                        |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |   |
| ASTN                    | rial Diate f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reliability/Survival                                                                                                                                  |              | Mixed Effects Model         | ,                                                                           |                                                                           |                                                                        |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |   |
| acto                    | rial Plots I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Predictive Analytics                                                                                                                                  | • 45         | Fully Nested ANOVA          |                                                                             |                                                                           |                                                                        |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |   |
| * NO                    | TE * There are r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Multivariate                                                                                                                                          | •            | General MANOVA              |                                                                             |                                                                           |                                                                        |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |   |
| NO                      | Te mere are i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Time Series                                                                                                                                           |              | 7. a.f. 7                   |                                                                             |                                                                           |                                                                        |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tables                                                                                                                                                | . 0.         | lest for Equal Variances    |                                                                             |                                                                           |                                                                        |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nonparametrics                                                                                                                                        | ·            | Main Effects Plot           |                                                                             |                                                                           |                                                                        |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Equivalence Tests                                                                                                                                     | 1            | Intel votion Plot           |                                                                             |                                                                           |                                                                        |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |   |
|                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Power and Sample Si                                                                                                                                   | ze • E       | W. Contraction              |                                                                             |                                                                           |                                                                        |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |   |
| licate)                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |              | *                           | _                                                                           |                                                                           |                                                                        |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |   |
| urity (No Replicate)    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |              | $\bigwedge$                 | ·                                                                           |                                                                           |                                                                        |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |   |
| urity (No Replicate)    | 8<br>7<br>6<br>C1 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-1 (3                                                                                                                                                | C4           | CS C6                       | <u>,</u>                                                                    | C8 g                                                                      | C9 C10                                                                 | C11                                                 | C12 g                                                                                         | 5 C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C14 | C15 |   |
| urity (No Replicate)    | 8<br>7<br>6<br>C1 C<br>imer Type Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-T C3<br>thod Adhesive Force                                                                                                                         | C4           | C5 C6<br>Plate material Typ | C7<br>C7<br>Temp of Operation                                               | C8 s<br>Battery Life (in Hour)                                            | C9 C10<br>Temp                                                         | C11<br>Pressure                                     | C12<br>Impurity (No Replicate)                                                                | c13<br>) RESI1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C14 | C15 |   |
| urity (No Replicate)    | 8<br>7<br>6<br>C1 C<br>imer Type Me<br>2 Dipp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-T C3<br>thod Adhesive Force<br>ing 5.6                                                                                                              | C4           | C5 C6<br>Plate material Typ | C7<br>Temp of Operation<br>1 70                                             | C8 g<br>Battery Life (in Hour)<br>80                                      | C9 C10<br>Temp<br>123                                                  | C11<br>Pressure<br>30                               | C12 g<br>Impurity (No Replicate)<br>1                                                         | 2 C13<br>RESI1<br>-0.0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C14 | C15 |   |
| 30 urity (No Replicate) | 6<br>C1 C<br>Dipp<br>2 Dipp<br>2 Dipp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-T C3<br>thod Adhesive Force<br>sing 5.6<br>sing 4.9                                                                                                 | C4           | CS C6<br>Plate material Tyy | C7<br>e Temp of Operation<br>1 70<br>1 70                                   | C8 g<br>Battery Life (In Hour)<br>80<br>75                                | C9 C10<br>Temp<br>125<br>125                                           | C11<br>Pressure<br>30<br>35                         | C12 g<br>Impurity (No Replicate)<br>1                                                         | s C13<br>RESI1<br>-0.0000000<br>6 0.0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C14 | CIS |   |
| urity (No Replicate)    | C1 C<br>C1 C<br>imer Type Me<br>2 Dipp<br>2 Dipp<br>2 Dipp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-T C3<br>thod Adhesive Force<br>ving 5.6<br>ving 4.9<br>ving 5.4                                                                                     | C4           | CS C6<br>Plate material Tyy | C7<br>Temp of Operation<br>1 70<br>1 70<br>1 125                            | C8 g<br>Battery Life (In Hour)<br>80<br>73<br>20                          | C9 C10<br>Temp<br>125<br>125<br>125                                    | C11<br>Pressure<br>30<br>35<br>40                   | C12 ta<br>Impurity (No Replicate)<br>1<br>4<br>2                                              | s C13<br>RESI1<br>-0.0000000<br>-0.0000000<br>-0.0000000<br>-0.0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C14 | C15 |   |
| urity (No Replicate)    | 6<br>Ct CC<br>Cimer Type Me<br>2 Dipp<br>2 Dipp<br>2 Dipp<br>2 Spra<br>2 Spra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-T C3<br>thod Adhesive Force<br>ping 5.6<br>ping 4.9<br>ping 5.4<br>ping 5.8<br>ping 5.8<br>ping 5.8                                                 | C4           | CS C6 Plate material Typ    | C7<br>Temp of Operation<br>1 70<br>1 125<br>1 125<br>1 125                  | C8 g<br>Battery Life (In Hour)<br>80<br>75<br>20<br>70<br>70              | C9 C10<br>Temp<br>125<br>125<br>125<br>125                             | C11<br>Pressure<br>30<br>35<br>40<br>45             | C12 g<br>Impurity (No Repicate)<br>4<br>2<br>3<br>3                                           | C13<br>RESI1<br>-0.0000000<br>4 0.0000000<br>2 -0.0000000<br>3 -0.0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C14 | CIS |   |
| urity (No Replicate)    | a<br>7<br>6<br>Ct C<br>Mer<br>2 Dipp<br>2 Dipp<br>2 Dipp<br>2 Dipp<br>2 Spra<br>2 Spra<br>2 Spra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-T C3<br>thod Adhesive Force<br>ing 5.6<br>ying 4.9<br>ying 5.8<br>ying 6.1<br>wing 6.1                                                              | C4           | CS C6<br>Plate material Typ | C7<br>De Temp of Operation<br>1 70<br>1 125<br>1 125<br>1 125<br>1 125      | C8 28<br>Battery Life (In Hour)<br>80<br>75<br>20<br>70<br>70<br>82<br>68 | C9 C10<br>Temp<br>125<br>125<br>125<br>125<br>125                      | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25       | C12 g<br>Impurity (No Replicate)<br>4<br>2<br>3<br>9<br>0                                     | C13<br>RESI1<br>-0.0000000<br>2 -0.0000000<br>3 -0.0000000<br>0 0.0000000<br>0 0.0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C14 | CIS |   |
| urity (No Replicate)    | e<br>7<br>6<br>Ct C<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dippp<br>2<br>Dippp<br>2<br>Dippp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2<br>Dipp<br>2 | 2-T C3<br>                                                                                                                                            | C4           | CS C6<br>Plate material Typ | C7<br>Temp of Operation<br>1 70<br>1 125<br>1 125<br>1 125                  | C8 28<br>Battery Life (In Hour)<br>80<br>75<br>20<br>70<br>62<br>58       | C9 C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>125<br>125<br>125 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 transition of the Replicate<br>Impurity (No Replicate)<br>1<br>4<br>2<br>3<br>9<br>6<br>6 | C13 RESI1 C0.000000 C0.0000000 C0.000000 C0.000000 C0.000000 C0.0000000 C0.000000 C0.000000 C0.000000 C0.000000 C0.000000 C0.000000 C0.00000 C0.0000 C0.00000 C0.0000 C0.00000 C0.0000 C0.000 C0.0000 C0.0000 C0.0000 C0.0000 C0.00 | CI4 | CIS |   |
| T urity (No Replicate)  | 6 7<br>6 2 0ipp<br>2 0ipp<br>2 0ipp<br>2 0ipp<br>2 Spra<br>2 Spra<br>2 Spra<br>2 Spra<br>2 Spra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-T C3<br>thod Adhesive Force<br>ying 5.6<br>jing 5.4<br>jing 5.4<br>jing 5.4<br>jing 6.3<br>rtic factorial Designand Tr<br>ic factorial Designand Tr | C4           | CS C6<br>Plate material Ty  | C7<br>Temp of Operation<br>1 70<br>1 70<br>1 125<br>1 125<br>1 125<br>1 125 | C8 58<br>Battery Life (In Hour)<br>80<br>75<br>20<br>70<br>82<br>58<br>4  | C9 C10<br>Temp<br>123<br>124<br>125<br>125<br>125<br>125<br>155        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 g<br>Impurity (No Replicate)<br>4<br>2<br>3<br>9<br>0<br>6                                | C13<br>RESI1<br>0.0000000<br>0.0000000<br>0.0000000<br>0.0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C14 | CIS |   |

So, in this case interaction plot is not given, but we can go over here and go to interaction plots over here.

(Refer Slide Time: 22:40)

| File  | Edit Data        | Calc Stat<br>Calc Stat         | Graph View I                            | Help Ass       | istent Add<br>  ∫x  }=<br> \$ [2]   #<br>  Y [2] | itional Tool<br>-2      <br>-2      <br>-2      <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2   <br>-2 | s<br> シス <br>  者  'Y )                         | ¢<br>≤∎8⊻*≎                           | 🕅 i a" t <mark>ë</mark> a" | ey 83 |      |      |          |                         |             |     |     |   |
|-------|------------------|--------------------------------|-----------------------------------------|----------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------|----------------------------|-------|------|------|----------|-------------------------|-------------|-----|-----|---|
| Facto | orial Plots for  | Impurity                       | * X                                     |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |                                       |                            |       |      |      |          |                         |             |     |     |   |
| I AS  | torial Plo       | ts for lr                      | npurity (No                             | Replic         | ate)                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |                                       |                            |       |      |      |          |                         |             |     |     | ٠ |
|       |                  |                                |                                         |                | ,                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |                                       |                            |       |      | _    |          |                         |             |     |     |   |
| . 1   | IOTE * There     | are no vali                    | d interactions to                       | plot.          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Interaction                                    | Plot                                  |                            |       |      | ×    |          |                         |             |     |     |   |
|       |                  | Ma                             | in Effects Plot                         | for Imp        | urity (No<br>ans                                 | Replicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C1 Primer<br>C2 Metho<br>C3 Adhes              | Type<br>d<br>ve Force<br>Timpurity (N | io Replicate)'             |       |      | -    |          |                         |             |     |     |   |
|       |                  |                                | Temp                                    |                |                                                  | Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C7 Temp                                        | of Operato<br>Life (In )              | 170                        |       |      |      |          |                         |             |     |     |   |
|       | a (vo kepiicate) |                                | /                                       |                |                                                  | $\wedge$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C10 Temp<br>C11 Press<br>C12 Impur<br>C13 RESI | re<br>try (No Re<br>try (No Re        | il interaction plot mat    | rix   | Opto | C    |          |                         |             |     |     |   |
|       | 5                |                                |                                         |                | <b>`</b>                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Help                                           |                                       | 0                          | ĸ     | Can  | cel  |          |                         |             |     |     | ٣ |
| +     | C1               | C2-T<br>Mathod                 | C3<br>Adharing Forra                    | C4             | CS                                               | Dista mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C6                                             | C7<br>Terms of Operation              | C8                         | a to  | C9   | C10  | C11      | C12 E                   | C13         | C14 | C15 | - |
| 7     | 2                | Dinning                        | Auriesive Porce                         |                |                                                  | Plate ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tenar type                                     | 70                                    | battery the (in r          | 80    |      | 125  | Pressure | impurity (ivo repicate) | +0.0000000  |     |     |   |
| 8     | 2                | Dipping                        | 4.9                                     |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                              | 70                                    |                            | 75    |      | 125  | 35       |                         | 0.0000000   |     |     |   |
| 9     | 2                | Dipping                        | 5.4                                     |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                              | 125                                   |                            | 20    |      | 125  | 40       | 2                       | -0.00000000 |     |     |   |
| 10    | 2                | Spraving                       | 5.8                                     |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                              | 125                                   |                            | 70    |      | 125  | 45       | 3                       | -0.0000000  |     |     |   |
| 11    | 2                | Spraving                       | 6.1                                     |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                              | 125                                   |                            | 82    |      | 150  | 25       | 9                       | 0.0000000.  |     |     |   |
| 12    | 2                | Spraving                       | 6.3                                     |                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                              | 125                                   |                            | 58    |      | 150  | 30       | 6                       | 0.0000000   |     |     |   |
| 111   | H + A            | isymetric Fa<br>Factorial Desi | ctorial Design and<br>gn and Two-way Al | Tw<br>VOVA.mwo | (                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |                                       | 4                          |       |      |      |          |                         |             |     |     |   |
| NPT   | O Type           | here to se                     | earch                                   |                |                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . :                                            | 🖻 🎽 (                                 | ) 🗖 🤇                      | R     | 0    | • ×B |          | 🦲 ^ @                   | 900 / 40    | T   | 201 | 4 |

And using this what we will do is that we will use impurities and we will give temperature and pressure over here display full interaction plot.

## (Refer Slide Time: 22:49)



If you do that you will you will find some displays like this in the interaction plot when we are going by that. So, this is the zigzag pattern what we have seen. So in this case what do you see is that patterns are not intersecting each other most of the time that are patterns are more or less parallel like that.

So, we can expect that there is no interactions as such, but in the Montgomery's books also this was proved that there is no interaction between the variables temperature and pressure over here.

So, these things are confirmed by a separate test and MINITAB does not give you options for that. But what I am trying to say is that two variables are there and I can graphically see whether interaction is present or not. And we can also calculate that one using the mathematical model that is given in Montgomery's books.

(Refer Slide Time: 23:38)

| File E                 | ib - Untitled<br>dit Data               | Calc Stat<br>■ ●   ●<br>□ □ □ □   ●<br>@   王 +Y | Gray       | oh View Help Assistant<br>Scatterplot<br>Matrix Plot<br>Bubble Plot<br>Marginal Plot               | Additiona<br>To | al Tools<br>to the<br>math and<br>math and<br>the set of the set o | ン ぷ<br>売 (Y | <b>€</b><br>⊠∎⊛                                   | K≠#         | i d" të d"         | -Y ¥1 | E  |       |          |                 |           |                  |     |     | ð × |
|------------------------|-----------------------------------------|-------------------------------------------------|------------|----------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------|-------------|--------------------|-------|----|-------|----------|-----------------|-----------|------------------|-----|-----|-----|
| Interac<br>Interaction | tion Plot fo<br>METRIC FACT<br>action F | Plot for                                        | - 10 M     | Histogram<br>Dotplot<br>Stem-and-Leaf<br>Probability Plot                                          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                   |             |                    |       |    |       |          |                 |           |                  |     |     | •   |
|                        |                                         | Inter                                           | Z          | Empirical CDF<br>Probability Distribution Plot                                                     | olic            | ate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                   | ~           |                    |       |    |       |          |                 |           |                  |     |     |     |
| 12                     |                                         | Temp                                            | 幸田田へ 国の 凶い | Boxplot<br>Individual Value Plot<br>Line Plot<br>Bar Chart<br>Pie Chart<br>Pie Chart<br>Area Graph |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12<br>9 -+  | Temp<br>100<br>125<br>150<br>Pressure<br>25<br>20 |             |                    |       |    |       |          |                 |           |                  |     |     |     |
| +                      | CI                                      | C2-T                                            | 0          | 3D Scatterplot                                                                                     |                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6           | 30                                                | c7          | C8                 |       | C9 | C10   | C11      | C12             | 2         | C13              | C14 | C15 |     |
| Pr                     | imer Type                               | Method                                          | 8          | 3D Surface Plot                                                                                    | Pla             | te mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | erial Typ   | Temp of                                           | Operation E | lattery Life (In H | our)  |    | Temp  | Pressure | Impurity (No Re | eplicate) |                  |     |     |     |
| 7                      | 2                                       | Dipping                                         |            | 5.6                                                                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                   | 70          |                    | 80    |    | 125   | 30       |                 | 1         |                  |     |     |     |
| 8                      | 2                                       | Dipping                                         |            | 4.9                                                                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                   | 70          |                    | 75    |    | 125   | 35       |                 | 4         |                  |     |     |     |
| 9                      | 2                                       | Dipping                                         |            | 5.4                                                                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                   | 125         |                    | 20    |    | 125   | 40       |                 | 2         |                  |     |     |     |
| 10                     | 2                                       | Spraying                                        |            | 5.8                                                                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                   | 125         |                    | 70    |    | 125   | 45       |                 | 3         |                  |     |     |     |
| 11                     | 2                                       | Spraying                                        |            | 6.1                                                                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                   | 125         |                    | 82    |    | 150   | 25       |                 | 9         |                  |     |     |     |
| 12                     | H + A                                   | Spraving<br>symetric Far<br>actorial Desi       | torial     | 6.3<br>Design and Tw                                                                               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                   | 125         | 4                  | 58    |    | 150   | 30       |                 | 6         |                  | -   | T   |     |
| NPTE                   | ₽ Type                                  | here to se                                      | arch       |                                                                                                    | 0               | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6           | â                                                 | M (         | ) = 0              | ) (   | 8  | 16 XB | 23       |                 | ^ ĝ       | 900 <i>//</i> 40 | 5   |     | YE  |

So, in this case we can graphically also see 3D surface plot that we are generating over here.

(Refer Slide Time: 23:47)

| Minita<br>File Ec | in Data      | Calc Stat                                    | Graph Vi<br>Crilla<br>Y⊠⊠®                | ew Help<br>He Ala (<br>B B La | p Assis          | tant Add<br>fx }=<br>₩<br>Y ≥ ■ | átional Tools<br>                     | <b>€</b><br>⊠∎8⊻*∛                                                    | ) 🗄 i 🗗 🐻 🗗 🗸                                 | ( 改臣   | 2  |      |          |                         |           |     |     | Ø    |
|-------------------|--------------|----------------------------------------------|-------------------------------------------|-------------------------------|------------------|---------------------------------|---------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|--------|----|------|----------|-------------------------|-----------|-----|-----|------|
| Interac           | tion Plot fo | r Impurit                                    | * x                                       |                               |                  |                                 |                                       |                                                                       |                                               |        |    |      |          |                         |           |     |     |      |
| H ASV             | ETRIC FACT   | TORIAL DESIG                                 | IN AND TWO A                              | NAY ANON                      | A MWX            |                                 |                                       |                                                                       |                                               |        |    |      |          |                         |           |     |     |      |
| Intera            | action       | Plot for                                     | Impurity                                  | (No F                         | Replic           | ate)                            |                                       |                                                                       |                                               |        |    |      |          |                         |           |     |     |      |
|                   |              |                                              |                                           |                               |                  |                                 |                                       |                                                                       |                                               |        |    |      |          |                         |           |     |     | - 12 |
| u-                |              | Inter                                        | raction Plo                               | at for In<br>Data 1           | npurity<br>Means |                                 | eplicate)<br>0 45<br>5<br>6<br>1<br>0 | V<br>Surface Plots<br>Surface Wrefran<br>Help<br>Pressure<br>25<br>10 |                                               | Cancel | ×  |      |          |                         |           |     |     |      |
|                   | C1           | C2-T                                         | G                                         |                               | C4               | C5                              | C6                                    | C7                                                                    | C8                                            |        | (9 | C10  | C11      | C12 m                   | C13       | C14 | C15 | T    |
| Pri               | mer Type     | Method                                       | Adhesive F                                | orce                          |                  |                                 | Plate material Type                   | Temp of Operation                                                     | Battery Life (In Ho                           | ur)    |    | Temp | Pressure | Impurity (No Replicate) |           |     |     |      |
|                   | 2            | Dipping                                      |                                           | 5.6                           |                  |                                 |                                       | 7                                                                     | 0                                             | 80     |    | 125  | 30       | 1                       |           |     |     |      |
|                   | 2            | Dipping                                      |                                           | 4.9                           |                  |                                 |                                       | 7                                                                     | 0                                             | 75     |    | 125  | 35       | 4                       |           |     |     |      |
|                   | 2            | Dipping                                      |                                           | 5.4                           |                  |                                 |                                       | 12:                                                                   | 5                                             | 20     |    | 125  | 40       | 2                       |           |     |     |      |
|                   | 2            | Spraying                                     |                                           | 5.8                           |                  |                                 |                                       | 12:                                                                   | 5                                             | 70     |    | 125  | 45       | 3                       |           |     |     |      |
|                   | 2            | Spraying                                     |                                           | 6.1                           |                  |                                 |                                       | 12                                                                    | 5                                             | 82     |    | 150  | 25       | 9                       |           | -   | 1   |      |
|                   | 2            | Spraving                                     |                                           | 6.3                           |                  |                                 |                                       | 12:                                                                   | 5                                             | 58     |    | 150  | 30       | 6                       |           |     |     |      |
|                   | symetric i   | isymetric Fa<br>Factorial Desi<br>here to se | ictorial Design<br>ign and Two-v<br>earch | n and Tw.<br>way ANOV         | -<br>Amwx        |                                 | 0 🖪 🖥                                 | <b>N</b>                                                              | <<br>() () () () () () () () () () () () () ( | 8      |    | ×B   | 21       | <b>₩</b>                | <br>% @ 4 | X   |     |      |

So, in this case may be wire frames also you can use.

(Refer Slide Time: 23:51)

| File Ed  | b - Untitled<br>dit Data Calc S<br>@ X @ 6<br>III II II II II II<br>@ 1 | at Graph View<br>S C □ #<br>'Y ⊵ © ■<br>'Y ⊵ © ■ | Help Assi<br>4 000<br>8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | stant Addit<br>∫fr }=•<br>↓ ∰ #<br>↓ Y ⋈ ■ | ional Tools<br>- E 青 静   ジ ぷ   &<br>電 兼 巻   11 区 国<br>感 ピ ★                                                                                                               | @K★\$8 c                                                                                                                | P t <mark>a d</mark> " 'Y % 🗄 |        |               |                     |                  |     |     | <i>ā</i> > |
|----------|-------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------|---------------|---------------------|------------------|-----|-----|------------|
| Interact | tion Plot for Impurit                                                   | * X                                              |                                                               |                                            |                                                                                                                                                                           |                                                                                                                         |                               |        |               |                     |                  |     |     |            |
| Intera   | Action Plot fo                                                          | sign and two wa                                  | No Repli                                                      | cate)                                      | 3D Surface Plot: Wirefram                                                                                                                                                 | e                                                                                                                       |                               | ×      | 1             |                     |                  |     |     | •          |
|          | Int                                                                     | eraction Plot 1                                  | for Impuri<br>Data Means<br>3 30                              | IS 40                                      | C1 Primer Type<br>C3 Adhesive Force<br>C6 Patternatical Type<br>C7 Terms of Operation<br>C8 Battery Life Children<br>C10 Temp<br>C11 Pressure<br>C12 Impurity (No Replica | Z variable:<br>Impurity (No Replicate<br>Y variable:<br>Temp<br>X variable:<br>Pressure<br>Sgrface Options<br>Qata View | jy<br>Şcale<br>Dgta Optons    | Labels |               |                     |                  |     |     | •          |
| 12       |                                                                         | 1.                                               |                                                               |                                            | Select                                                                                                                                                                    |                                                                                                                         |                               |        |               |                     |                  |     |     | Ŧ          |
| 4        | C1 C2-T                                                                 | G                                                | C4                                                            | CS                                         | Нер                                                                                                                                                                       |                                                                                                                         | y.                            | Cancel | C11           | C12 5               | C13              | C14 | C15 |            |
| Pri      | mer Type Metho                                                          | d Adhesive For                                   | ce                                                            |                                            | Plate material Type Temp                                                                                                                                                  | of Operation Battery                                                                                                    | Life (In Hour)                | Temp   | Pressure Impu | rity (No Replicate) |                  |     |     |            |
| 7        | 2 Dipping                                                               | 3                                                |                                                               |                                            | 1                                                                                                                                                                         | 70                                                                                                                      | 80                            | 125    | 30            | 1                   |                  |     |     |            |
| 8        | 2 Dipping                                                               | 4                                                | 1.9                                                           |                                            |                                                                                                                                                                           | 70                                                                                                                      | 75                            | 120    | 50            | 4                   |                  |     |     |            |
| 10       | 2 Dipping<br>2 Spravio                                                  |                                                  | LB                                                            |                                            | 1                                                                                                                                                                         | 125                                                                                                                     | 20                            | 125    | 45            | 2                   |                  |     |     |            |
| 11       | 2 Spraying                                                              | 6                                                | 1                                                             |                                            | 1                                                                                                                                                                         | 125                                                                                                                     | 82                            | 150    | 25            | 9                   |                  | _   |     |            |
| 12       | 2 Spravin                                                               | 1 6                                              | 1.3                                                           |                                            | 1                                                                                                                                                                         | 125                                                                                                                     | 58                            | 150    | 30            | 6                   |                  |     |     |            |
| 4.5.5    | Asymetric Factorial D                                                   | Factorial Design a<br>esign and Two-way          | nd Tw                                                         |                                            |                                                                                                                                                                           |                                                                                                                         | (                             |        |               |                     |                  | 1   |     |            |
| NPTE.    | O Type here to                                                          | search                                           |                                                               | (                                          | o 📑 🔒 🖆                                                                                                                                                                   | i 🖬 🛞 i                                                                                                                 | • 🤉 🚯                         |        | 23 💽          |                     | <b>900</b> / (10 | 15  | 3   | 4          |

So, instead of this impurity we will take temperature and pressure over here and I click OK.

(Refer Slide Time: 23:57)



I will get some surface what zigzag patterns that we have seen.

## (Refer Slide Time: 24:02)



So, in this case these graphs can be changed and I can customize the surface patterns over here. So, may be some colours we can use over here and wire colours also we can use like this and we can click OK. So, this is the surface that we are generating over here.

(Refer Slide Time: 24:14)



We can rotate the surface and we can see what is happening when I rotate this one. We can change the colour too.

## (Refer Slide Time: 24:23)



So, this is too dark surface colour we can change it to yellow let us say and we can change this one.

(Refer Slide Time: 24:28)



This is the surface that is been generated over here. So, there are two lower peaks that we can see one at 30 and one at 40 approximately around 40. So, this is the surface plot and when you we can also draw the contour plot over here.

# (Refer Slide Time: 24:42)

| Minit<br>File I            | ab-Untitled<br>Edit Data Calc Stat                                   | Gra   | ph View Help Assistant                                         | Additional Tools                                                  |                     |                |                      |            |    |           |          |                  |            |                |     |     | 8 | × |
|----------------------------|----------------------------------------------------------------------|-------|----------------------------------------------------------------|-------------------------------------------------------------------|---------------------|----------------|----------------------|------------|----|-----------|----------|------------------|------------|----------------|-----|-----|---|---|
|                            | ● ▲ ◎ ▲ ⑤<br>● ■ □ □ □ □ □ □<br>● 王 ⑨                                |       | Scatterplot<br>Matrix Plot<br>Bubble Plot<br>Marginal Plot     | 41)<br>15日日<br>15日日<br>15日日<br>15日日<br>15日日<br>15日日<br>15日日<br>15 | <b>e</b><br>× • • • | 8 <b>K *</b> 4 | 🔛 i 🗗 🔂 🗗 'Y         | <i>η</i> , | 8  |           |          |                  |            |                |     |     |   |   |
| Surface<br>ASYL<br>Surface | te Plot of Impurity (N<br>METRIC FACTORIAL DESIG<br>ace Plot of Impu | ▲小田国  | Histogram<br>Dotplot<br>Stem-and-Leaf<br>Probability Plot      | o vs Pressure                                                     |                     |                |                      |            |    |           |          |                  |            |                |     |     |   | • |
|                            | Surface Plot                                                         | NA    | Empirical CDF<br>Probability Distribution Plot                 | emp, Pressure                                                     |                     | ~              |                      |            |    |           |          |                  |            |                |     |     |   |   |
|                            |                                                                      | 韓世辺之  | Boxplot<br>Interval Plot<br>Individual Value Plot<br>Line Plot |                                                                   |                     |                |                      |            |    |           |          |                  |            |                |     |     |   |   |
| 4                          | 12 .<br>purity (No Replicate) 8 .                                    |       | Bar Chart<br>Pie Chart<br>Time Series Plot<br>Area Graph       |                                                                   |                     |                |                      |            |    |           |          |                  |            |                |     |     |   |   |
|                            | 4 .                                                                  |       | Contour Riot                                                   | 7                                                                 |                     | 1              |                      |            |    |           |          |                  |            |                |     |     |   | ۲ |
| +                          | C1 C2-T                                                              | 1     | 3D Scatterplot                                                 | C6                                                                |                     | C7             | C8                   | 8          | C9 | C10       | C11      | C12              | 2          | C13            | C14 | C15 |   |   |
| PI                         | rimer Type Method                                                    | ø     | 3D Surface Plot                                                | Plate material Type                                               | Temp o              | f Operation    | Battery Life (In Hou | r)         |    | Temp      | Pressure | Impurity (No Rep | icate)     |                |     |     |   |   |
| 8                          | 2 Dipping                                                            |       | 4.9                                                            | 1                                                                 |                     | 70             | 2                    | 5          |    | 125       | 35       |                  | 4          |                |     |     |   |   |
| 9                          | 2 Dipping                                                            |       | 5.4                                                            | 1                                                                 |                     | 125            | 2                    | 0          |    | 125       | 40       |                  | 2          |                |     |     |   |   |
| 10                         | 2 Spraying                                                           |       | 5.8                                                            | 1                                                                 |                     | 125            | 7                    | 0          |    | 125       | 45       |                  | 3          |                |     |     |   |   |
| 11                         | 2 Spraying                                                           |       | 6.1                                                            | 1                                                                 |                     | 125            | 8                    | 2          |    | 150       | 25       |                  | 9          |                | -   | -   |   |   |
| 12<br>H d D                | 2 Spraving<br>H + Asymetric Far                                      | toria | 6.3<br>I Design and Tw                                         | 1                                                                 |                     | 125            | 4                    | 8          |    | 150       | 30       |                  | 6          |                |     | R   |   |   |
| E                          | Asymetric Factorial Desi                                             | gn an | d Two-way ANOVA mwx                                            |                                                                   |                     |                |                      |            |    |           |          |                  | <b>III</b> | - 🗆            | V   | 1   | h |   |
| NPTE                       | O Type here to se                                                    | arch  |                                                                | 0 📄 🗄                                                             |                     | 2              |                      | (          | B  | <u>**</u> | 2        | <b>E</b>         | ١ĝ         | 10 <i>il</i> 4 | 1   | El  |   |   |

(Refer Slide Time: 24:44)

| <b>њ</b> М | initab - Untitled   |              |                       |            |               |                                                               |                                       |                     |            |     |                      |                |     |     | 8 ×   |
|------------|---------------------|--------------|-----------------------|------------|---------------|---------------------------------------------------------------|---------------------------------------|---------------------|------------|-----|----------------------|----------------|-----|-----|-------|
| File       | Edit Data           | Calc Stat    | t Graph View H        | Help Ass   | istant Additi | onal Tools                                                    |                                       |                     |            |     |                      |                |     |     |       |
| 1          | 8 8 X               | 064          | C □ # 44              | 00         | fx 30 -       | 2 品 静 シ 水 き                                                   |                                       |                     |            |     |                      |                |     |     |       |
| 111        |                     |              | YNDER                 | KH         | 6 图 #         | 5 # # 兆 ·Y >>■                                                | 金大士な団                                 | of the of the lite  |            |     |                      |                |     |     |       |
|            |                     | 120          | VNDRK                 | 14         | W De M        |                                                               | 1 10 LL 11 11 12                      |                     |            |     |                      |                |     |     |       |
| _          |                     | 22. Juder    |                       |            |               |                                                               |                                       |                     |            |     |                      |                |     |     |       |
| Sur        | face Plot of Im     | ourity (N    | ~ X                   |            |               |                                                               |                                       |                     |            |     |                      |                |     |     |       |
| <b>H</b> / | SYMETRIC FACT       | ORIAL DESI   | GN AND TWO-WAY AN     | WWA.MW     | (             |                                                               |                                       |                     |            |     |                      |                |     |     |       |
| Su         | rface Plot          | of Imp       | urity (No Rep         | plicate    | ) vs Temp     | Contour Plot                                                  |                                       |                     | >          | ~   |                      |                |     |     |       |
|            |                     |              |                       |            |               |                                                               | 1                                     |                     |            |     |                      |                |     |     |       |
| Γ          | Sur                 | face Plo     | t of Impurity (N      | lo Repl    | icate) vs Te  | C1 Primer Type<br>C3 Adhesive Force<br>C6 Plate material Type | Z variables:<br>Timpurity (No Replice | ate)'               | ~          |     |                      |                |     |     |       |
|            |                     |              |                       |            |               | C7 Temp of Operation<br>C8 Battery Life (In Hou               | r                                     |                     | ~          |     |                      |                |     |     |       |
|            |                     |              |                       |            |               | C10 Temp<br>C11 Pressure                                      | Y variable:                           |                     |            |     |                      |                |     |     |       |
|            |                     |              | A                     |            |               | C12 Impurity (No Replic                                       | а Тетр                                |                     |            |     |                      |                |     |     |       |
|            |                     |              |                       |            |               |                                                               | X variable:                           |                     |            |     |                      |                |     |     |       |
|            |                     |              | 1                     | Λ          |               |                                                               | Pressure                              |                     |            |     |                      |                |     |     |       |
|            |                     |              | $\langle   \rangle$   | $\sqrt{1}$ | 1             |                                                               |                                       |                     |            |     |                      |                |     |     |       |
|            |                     | 12           | - /                   | 11         | YI            |                                                               | Contour Options                       | Scale               | Labels     |     |                      |                |     |     |       |
|            | opurity (No Rep     | licate) 8    | 11                    |            | 11            | 1                                                             |                                       |                     |            |     |                      |                |     |     |       |
|            |                     | 4            | $\langle \rangle$     |            | LF            | SBect                                                         | gata wew                              | Data Options        |            |     |                      |                |     |     |       |
| -          |                     | (1) T        |                       |            |               | Help                                                          |                                       | ox                  | Cancel     |     | c12                  | 643            |     |     |       |
| •          | CI<br>Drimor Tumo   | Mathod       | LS<br>Adhacing Earca  | 64         | 6             | Diste material Tune Ten                                       | an of Operation Batt                  | any life (18) Hourt | Tomo       | Cil | uritu (Ma Banlicata) | CIS            | C14 | CIS |       |
| 7          | 2                   | Dinning      | Addresive Porce       |            |               | nate material type Ten                                        | 70                                    | an an               | 125        | 20  | unty (NO Replicate)  |                |     |     |       |
| 8          | 2                   | Dipping      | 4.9                   |            |               | 1                                                             | 70                                    | 75                  | 125        | 35  | 4                    |                |     |     |       |
| 0          | 2                   | Dipping      | 5.4                   |            |               | 1                                                             | 125                                   | 20                  | 125        | 40  | 2                    |                |     |     |       |
| 10         | 2                   | Spraying     | 5.8                   |            |               | 1                                                             | 125                                   | 70                  | 125        | 45  | 3                    |                |     |     |       |
| 11         | 2                   | Spraying     | 6.1                   |            |               | 1                                                             | 125                                   | 82                  | 150        | 25  | 9                    |                | _   |     |       |
| 12         | 2                   | Spraving     | 6.3                   |            |               | 1                                                             | 125                                   | 58                  | 150        | 30  | 6                    |                |     |     |       |
| 4          | рн + <mark>А</mark> | symetric Fa  | actorial Design and 1 | ſw         |               |                                                               |                                       | 4                   |            |     |                      |                | -   | M   |       |
| 1          | Asymetric F         | actorial Des | ign and Two-way AN    | IOWA.mwo   | -             |                                                               |                                       |                     |            |     |                      |                | 10  | 6   |       |
| 1          | Vor                 |              |                       |            |               |                                                               |                                       |                     | 100 00     | -   |                      |                | 1   |     | AL    |
| NP         | C Type              | here to s    | earch                 |            | C             | , 🖻 🕫 🛛                                                       | a 🔛 🧶                                 | - Q B               | <b>111</b> | M [ | √ 6                  | <b>m</b> /2 40 | 1   |     | 1 the |

So, when you draw the contour plot it will be more easier to see.

## (Refer Slide Time: 24:56)



What you will observe is that there are two pressure points over here. So, in this case what you see around 30 and around 40 we are getting a impurity which is less than 2 like that.

This is the darkest position over here. So, around 40 and 30 the optimality is somewhere we can see the combination which is giving you optimality over here. So, in this case the combination can be 30, 125 or 40, 125 like that because what we have seen is that there is no interaction.

(Refer Slide Time: 25:26)



So, we can have a main effect plot and we can see so, in this case ANOVA analysis main effect plot.

(Refer Slide Time: 25:31)

| 11                    | Edit Data                                                                                  | Calc Stat<br>■ 15   ←<br>1 13 13  <br>@   ± ~                | t Graph View H<br>→ C □ A A<br>Y ⊠ G ■ B<br>Y ⊠ B ∠ H          | Help Assi | istant Additions<br>fx }= =:<br>} 10 + 10<br>+ 10<br>+ 10 + 10<br>+ 10<br>+ 10<br>+ 10<br>+ | (Tools<br>本計 シポ -<br>※来我 ->> 2<br>≪★                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>¢</b><br>≚∎@⊻★¤®                                                                       | i d" t <mark>ë</mark> d" 'Y <sup>1</sup> )                 | 13                   |                                                |                                               |                                                           |     |     |     | Ð |
|-----------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|-----|-----|-----|---|
| Cont                  | our Plot of In                                                                             | npurity (                                                    | * X                                                            |           |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |                                                            |                      |                                                |                                               |                                                           |     |     |     |   |
| I AS                  | DYMETRIC FACT                                                                              | ORIAL DESI                                                   | GN AND TWO-WAY AN                                              | OVA.MWX   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |                                                            |                      |                                                |                                               |                                                           |     |     |     |   |
| Cor                   | ntour Plo                                                                                  | t of Imp                                                     | purity (No Re                                                  | plicate   | e) vs Temp                                                                                  | vs Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |                                                            |                      |                                                |                                               |                                                           |     |     |     |   |
| _                     |                                                                                            |                                                              |                                                                |           |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |                                                            |                      |                                                |                                               |                                                           |     |     |     |   |
|                       | Co                                                                                         | ntour Pla                                                    | ot of Impurity (M                                              | No Repl   | icate) vs Tem                                                                               | p, P Main Effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Plot                                                                                      |                                                            |                      | ×                                              |                                               |                                                           |     |     |     |   |
|                       | 150                                                                                        |                                                              |                                                                |           | -                                                                                           | C1 Primer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tune Responses:                                                                           |                                                            |                      |                                                |                                               |                                                           |     |     |     |   |
|                       |                                                                                            |                                                              |                                                                |           |                                                                                             | C2 Metho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Impurity (No Ro                                                                           | epicate)'                                                  | _                    | _                                              |                                               |                                                           |     |     |     |   |
|                       | 140                                                                                        |                                                              |                                                                |           |                                                                                             | C6 Platen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of Operativ Factors:                                                                      |                                                            |                      |                                                |                                               |                                                           |     |     |     |   |
|                       |                                                                                            |                                                              |                                                                |           |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |                                                            |                      |                                                |                                               |                                                           |     |     |     |   |
|                       |                                                                                            |                                                              |                                                                |           |                                                                                             | C8 Batter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Life (In F Temp Pressure                                                                  |                                                            |                      | 0                                              |                                               |                                                           |     |     |     |   |
|                       | 130                                                                                        |                                                              |                                                                | 1         |                                                                                             | C8 Batter<br>C10 Temp<br>C11 Press<br>C12 Impuri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y Life (In F Temp Pressure<br>are<br>ity (No Re                                           |                                                            |                      | 0                                              |                                               |                                                           |     |     |     |   |
|                       | 130 ·                                                                                      |                                                              |                                                                |           |                                                                                             | C3 Batter<br>C10 Temp<br>C11 Press<br>C12 Impur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | re<br>ty (No Re                                                                           |                                                            |                      | \$                                             |                                               |                                                           |     |     |     |   |
|                       | 130 ·                                                                                      |                                                              |                                                                |           |                                                                                             | C3 Batter<br>C10 Temp<br>C11 Press<br>C12 Impur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | y Life (In F Temp Pressure<br>are<br>by (No Re                                            |                                                            | Option               | 8                                              |                                               |                                                           |     |     |     |   |
|                       | 130 -<br>d.<br>4<br>120 -                                                                  |                                                              |                                                                |           |                                                                                             | C3 Batter<br>C10 Temp<br>C11 Press<br>C12 Input<br>Selet<br>Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y Life (In F Temp Pressure<br>are<br>by (No Re                                            | [20K                                                       | Option               | 18                                             |                                               |                                                           |     |     |     |   |
|                       | 130 ·                                                                                      | 24                                                           |                                                                | 64        |                                                                                             | C3 Batter<br>C10 Temp<br>C11 Press<br>C12 Impur<br>Sele<br>Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rune (In F<br>are by (No Re                                                               | Lox _                                                      | Option<br>Can:       | ×                                              | <i>(</i> 1                                    | 62                                                        | (12 | 614 | (15 |   |
| •                     | 130<br>120<br>120                                                                          | C2-T<br>Method                                               | C3<br>Adhesive Force                                           | 64        | C5 Pla                                                                                      | C3 Batter<br>C10 Temp<br>C11 Press<br>C12 Impur<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lute (In F<br>re<br>aγ φίο Re<br>2<br>C7<br>Temp of Operation Ba                          | C8 z                                                       | Option<br>Cano<br>C9 | cel                                            | C11<br>Pressure                               | C12 g<br>Impurity (No Replicate)                          | C13 | C14 | CIS |   |
| •                     | 130<br>120<br>120<br>C1<br>Primer Type<br>2                                                | C2-T<br>Method<br>Dipping                                    | C3<br>Adhesive Force<br>5.6                                    | 64        | CS Pla                                                                                      | C3 Botter<br>C10 Terp<br>C11 Press<br>C12 Input<br>Scient<br>Help<br>C6<br>te material Type<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | re φr φlo Re<br>2<br>C7<br>Temp of Operation Ba<br>70                                     | C8 g<br>ttery Life (in Hour)<br>80                         | Optor<br>Can:<br>C9  | C10<br>Temp<br>125                             | C11<br>Pressure<br>30                         | C12 g<br>Impurity (No Replicate)                          | C13 | C14 | C15 |   |
| ¢<br>7<br>8           | 130 ·<br>120 ·<br>120 ·<br>C1<br>Primer Type<br>2<br>2                                     | C2-T<br>Method<br>Dipping<br>Dipping                         | C3<br>Adhesive Force<br>5.6<br>4.9                             | 64        | C5<br>Pla                                                                                   | CG Botter<br>CII D Terp<br>CII Press<br>CII P | re for (No Re                                                                             | C8 s<br>ttery Life (in Hour)<br>80<br>75                   | Option<br>Cano<br>C9 | Ct0<br>Temp<br>125<br>125                      | C11<br>Pressure<br>30<br>35                   | C12 g<br>Impurity (No Replicate)<br>1<br>4                | C13 | C14 | C15 |   |
| 4<br>7<br>8<br>9      | 130<br>130<br>120<br>C1<br>Primer Type<br>2<br>2<br>2                                      | C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping              | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4                      | C4        | C5 Pla                                                                                      | CG Botter<br>CII D Teep<br>CII Press<br>CII P | C7<br>Temp of Operation Ba<br>70<br>70<br>125                                             | C8 s<br>ttery Life (in Hour)<br>80<br>75<br>20             | Option<br>Can:<br>C9 | Ct0<br>Temp<br>125<br>125<br>125               | C11<br>Pressure<br>30<br>35<br>40             | C12 g<br>Impurity (No Replicate)<br>4<br>2                | C13 | C14 | C15 |   |
| 4<br>7<br>8<br>9<br>0 | 130<br>130<br>120<br>C1<br>Primer Type<br>2<br>2<br>2<br>2<br>2                            | C2-T<br>Method<br>Dipping<br>Dipping<br>Spraying             | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8               | 64        | CS Pla                                                                                      | Cill Difference<br>Cill Difference<br>Cill Press<br>Cill Press<br>C                                                          | C7<br>Temp of Operation Ba<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70    | C8 s<br>ttery Life (in Hour)<br>80<br>75<br>20<br>70       | Optor<br>Can:<br>C9  | C10<br>Temp<br>125<br>125<br>125               | C11<br>Pressure<br>30<br>35<br>40<br>45       | C12 z<br>Impurity (No Replicate)<br>4<br>3<br>3           | C13 | C14 | C15 |   |
| 4<br>7<br>8<br>9<br>0 | 130<br>130<br>120<br>120<br>C1<br>Primer Type<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | C2-T<br>Method<br>Dipping<br>Dipping<br>Spraying<br>Spraying | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.4<br>5.8<br>6.1 | C4        | CS Pla                                                                                      | C6 Better<br>C10 Temp<br>C11 Press<br>C12 Impur<br>Selo<br>Help<br>C6<br>te material Type<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C7 Temp Pressure<br>2 C7 Temp of Operation Ba<br>70<br>70<br>70<br>70<br>70<br>125<br>125 | C8 s<br>ttery Life (in Hour)<br>80<br>75<br>20<br>70<br>82 | Optor<br>Cano<br>C9  | C10<br>Temp<br>125<br>125<br>125<br>125<br>125 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25 | C12 g<br>Impurity (No Replicate)<br>4<br>2<br>3<br>9<br>9 | C13 | C14 | CIS |   |

We want to see which is the combination which we should use. So, temperature and pressure like this and I click OK main effect plot.

(Refer Slide Time: 25:37)



So, in this case 30 or 40 any of these options and temperature is coming out to be this if we enlarge this one the best combination is coming out where I want to minimize the impurities over here. What I can do is that take impurity because interaction is not prominent.

So, temperature is around 125 and pressure can be either 30 or 40 like that these are the two combinations that we can think of ok minute I have gives you another option over here because the variables are continuous over here the two variables are continuous and also the CTQ is continuous over here. MINITAB also gives you an option for optimization of this what should be the combination of temperature and pressure that will give you lowest impurities like that.

(Refer Slide Time: 26:22)

|                                  | Edit Data -                                                        | Calc Stat                                                                | Graph View H Basic Statistics<br>Regression<br>ANDVA<br>DOE<br>Control Charts<br>Quality Tools<br>Relability/Sourceal<br>Predictive Analytics<br>Relability/Sourceal<br>Tables<br>Noopaurmetrics<br>Equivalence Tests<br>Source Tests | elp Assistant | tant Add<br>fx ==<br>ian One-<br>ian One- | Stional Tools<br>                                       | Repeat Core     Referent Lin     New Proj | er Model                                                         | a fitted mo | del                                                   |                                                     |                                                            |     |     | -   | 6 |
|----------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------|-------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|-----|-----|-----|---|
|                                  |                                                                    |                                                                          |                                                                                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         | New Workshi                                                                                                                                                                                                                          | eet Ctri+N                                                       |             |                                                       |                                                     |                                                            |     |     |     |   |
| •                                | a                                                                  | C2-T                                                                     | G                                                                                                                                                                                                                                     | C4            | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C6                                                      | New Workshi                                                                                                                                                                                                                          | cet Ctrl+N                                                       | 0           | C10                                                   | C11                                                 | C12 m                                                      | C13 | C14 | C15 |   |
| +                                | C1<br>Primer Type                                                  | C2-T<br>Method                                                           | C3<br>Adhesive Force                                                                                                                                                                                                                  | 64            | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C6<br>Plate material Type                               | New Workshi<br>C7<br>Temp of Operation                                                                                                                                                                                               | C8 2<br>Battery Life (in Hour)                                   | (9          | C10<br>Temp                                           | C11<br>Pressure                                     | C12 p<br>Impurity (No Replicate)                           | C13 | C14 | C15 |   |
| +                                | C1<br>Primer Type<br>2 I                                           | C2-T<br>Method<br>Dipping                                                | C3<br>Adhesive Force<br>5.6                                                                                                                                                                                                           | 64            | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C6<br>Plate material Type<br>1                          | C7<br>C7<br>Temp of Operation<br>70                                                                                                                                                                                                  | C8 g<br>Battery Life (in Hour)<br>80                             | C9          | C10<br>Temp<br>125                                    | C11<br>Pressure<br>30                               | C12 g<br>Impurity (No Replicate)<br>1                      | C13 | C14 | C15 |   |
| *<br>7<br>8                      | C1<br>Primer Type<br>2 1<br>2 1                                    | C2-T<br>Method<br>Dipping<br>Dipping                                     | C3<br>Adhesive Force<br>5.6<br>4.9                                                                                                                                                                                                    | C4            | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C6<br>Plate material Type<br>1<br>1                     | C7<br>C7<br>Temp of Operation<br>70<br>70                                                                                                                                                                                            | CB 2<br>Battery Life (in Hour)<br>80<br>75                       | (9          | C10<br>Temp<br>125<br>125                             | C11<br>Pressure<br>30<br>35                         | C12 gr<br>Impurity (No Replicate)<br>1<br>4                | C13 | C14 | C15 |   |
| 4<br>7<br>8<br>9                 | C1<br>Primer Type<br>2 1<br>2 1<br>2 1                             | C2-T<br>Method<br>Dipping<br>Dipping                                     | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4                                                                                                                                                                                             | C4            | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C6<br>Plate material Type<br>1<br>1<br>1                | C7<br>C7<br>Temp of Operation<br>70<br>125                                                                                                                                                                                           | C8 2<br>Battery Life (In Hour)<br>80<br>75<br>200                | 0           | C10<br>Temp<br>125<br>125<br>125                      | C11<br>Pressure<br>30<br>35<br>40                   | C12 gr<br>Impurity (No Replicate)<br>1<br>4<br>2           | CI3 | C14 | C15 |   |
| +<br>7<br>8<br>9                 | C1<br>Primer Type<br>2 1<br>2 1<br>2 1<br>2 2                      | C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraying              | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.4<br>6.1                                                                                                                                                                               | C4            | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C6<br>Plate material Type<br>1<br>1<br>1<br>1           | C7<br>C7<br>Temp of Operation<br>70<br>125<br>125                                                                                                                                                                                    | CB CB Battery Life (In Hour)<br>50<br>75<br>20<br>70<br>70       | C9          | C10<br>Temp<br>125<br>125<br>125<br>125               | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25       | C12 pr<br>Impurity (No Replicate)<br>1<br>4<br>2<br>3<br>3 | CI3 | C14 | C15 |   |
| +<br>7<br>8<br>9<br>0<br>11<br>2 | C1<br>Primer Type<br>2 1<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2 | C2-T<br>Method<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying | C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1<br>6.3                                                                                                                                                                        | C4            | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1 | C7<br>C7<br>Temp of Operation<br>70<br>70<br>125<br>125<br>125<br>125<br>125                                                                                                                                                         | CB CB Battery Life (In Hour)<br>80<br>75<br>20<br>70<br>82<br>58 | 0           | C10<br>Temp<br>125<br>125<br>125<br>125<br>150<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 p<br>Impurity (No Replicate)<br>4<br>2<br>3<br>9<br>6  | CI3 | C14 | CIS |   |

So, in this case what you can do is that in *ANOVA* analysis, *GLM*, there is a option of there is an option of response optimizer over here and there is also a predictor that you can also use over here.

(Refer Slide Time: 26:35)

| File | Edit Data   | Calc Stat                    | Graph View H<br>C □ AL AL<br>Y ≥ 0 ■ 8     | elp Assi     | stant Additional Tools<br>fx == t t tools<br>y tool tools tools<br>fx == t tools tools<br>y tool tools tools<br>fx == t | ₩4 <b>2</b><br># \\\\\>                                      | 8K**81 <b>6</b>                                        | 🐻 🗗 'Y 🏷 🗒 |           |          |                       |     |     | - 17 |  |
|------|-------------|------------------------------|--------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|------------|-----------|----------|-----------------------|-----|-----|------|--|
|      |             | 80 JE -                      |                                            |              | Predict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                                                        |            |           | ×        | 1                     |     |     |      |  |
|      |             |                              |                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Besone:  <br>If Indude (pr.<br>Enter induidue<br>Temp<br>125 | Impurty (No Replicate) aristes in prediction di values | •          |           |          |                       |     |     |      |  |
| +    | CI          | C2-T                         | C3                                         | C4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                                                        |            | . 1       | 1        | C12 2                 | C13 | C14 | C15  |  |
|      | Primer Type | Method                       | Adhesive Force                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | opuip                                                  | vēno Sinah | Jew Mode. | <u> </u> | purity (No Replicate) |     |     |      |  |
| 7    | 2           | Dipping                      | 5.6                                        |              | Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |                                                        | OK         | Cancel    | 1        | 1                     |     |     |      |  |
| 8    | 2           | Dipping                      | 4.9                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                            | 136                                                    |            | 175       |          | 4                     |     |     |      |  |
| 9 10 | 2           | Spraving                     | 5.4                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                            | 125                                                    | 20         | 125       | 45       | 2                     |     |     |      |  |
| 11   | 2           | Spraving                     | 6.1                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                            | 125                                                    | 82         | 150       | 25       | 9                     | 2   |     |      |  |
| 12   | 2           | Spraving                     | 6.3                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                            | 125                                                    | 58         | 150       | 30       | 6                     | _   | (   |      |  |
| 4    | Asymetric F | symetric Fa<br>actorial Desi | ctorial Design and Tr<br>gn and Two-way AN | W<br>OVA.mwx |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | 4                                                      |            |           |          |                       |     | 1   |      |  |

So, I can take a combination of let us say temperature over 125 and pressure is approximately let us say 30 and what is the predicted value.

(Refer Slide Time: 26:49)

| Minitab - Untit  | ed            |                     |          |             |                                        |                   |                     |        |       |          |                         |           |      |      | 8 |
|------------------|---------------|---------------------|----------|-------------|----------------------------------------|-------------------|---------------------|--------|-------|----------|-------------------------|-----------|------|------|---|
| File Edit Dat    | Calc Sta      | Graph View H        | Help Ass | istant Add  | itional Tools                          |                   |                     |        |       |          |                         |           |      |      |   |
| 8 8 2            | DAL           | 00 144              | 00       | 1 fx 3=     | -2 & B 2/ A                            |                   |                     |        |       |          |                         |           |      |      |   |
|                  | nnul          | YNO CR              | IK + I   | 1. 图 +      | □ ···································· |                   | E CAR A             | 化四     |       |          |                         |           |      |      |   |
| 4.0 m 0          |               | V NEGL              | 1.1.4    | LV NO E     |                                        |                   |                     | -7 0.5 |       |          |                         |           |      |      |   |
|                  | - 92 444      |                     | A 121    |             |                                        |                   |                     |        |       |          |                         |           |      |      |   |
| Prediction for I | npurity (N    | × ×                 |          |             |                                        |                   |                     |        |       |          |                         |           |      |      |   |
| ASYMETRIC FA     | CTORIAL DESI  | GN AND TWO-WAY AT   | NOVA.MWO |             |                                        |                   |                     |        |       |          |                         |           |      |      |   |
| Prediction       | for Impu      | irity (No Rep       | licate)  |             |                                        |                   |                     |        |       |          |                         |           |      |      |   |
| Terms            |               |                     |          |             |                                        |                   |                     |        |       |          |                         |           |      |      |   |
| Temp Pressu      | re            |                     |          |             |                                        |                   |                     |        |       |          |                         |           |      |      |   |
|                  |               |                     |          |             |                                        |                   |                     |        |       |          |                         |           |      |      |   |
| Settings         |               |                     |          |             |                                        |                   |                     |        |       |          |                         |           |      |      |   |
| Variable         | Satting       |                     |          |             |                                        |                   |                     |        |       |          |                         |           |      |      |   |
| Temp             | 125           |                     |          |             |                                        |                   |                     |        |       |          |                         |           |      |      |   |
| Pressure         | 30            |                     |          |             |                                        |                   |                     |        |       |          |                         |           |      |      |   |
|                  |               |                     |          |             |                                        |                   |                     |        |       |          |                         |           |      |      |   |
| Prediction       |               |                     |          |             |                                        |                   |                     |        |       |          |                         |           |      |      |   |
| Fit              | SE Fit        | 95% CI              | 95       | % PI        |                                        |                   |                     |        |       |          |                         |           |      |      |   |
| 0.933323         | 0.783865 (+   | 0.874263, 2.74093)  | (-2.2711 | 9, 4.13786) |                                        |                   |                     |        |       |          |                         |           |      |      |   |
| CI               | C2-T          | C3                  | C4       | CS          | C6                                     | C7                | C8                  | a C9   | C10   | C11      | C12 12                  | C13       | C14  | C15  | T |
| Primer Typ       | e Method      | Adhesive Force      |          |             | Plate material Type                    | Temp of Operation | Battery Life (In Ho | ur)    | Temp  | Pressure | Impurity (No Replicate) |           |      |      |   |
|                  | 2 Dipping     | 5.6                 |          |             | 1                                      | 70                |                     | 80     | 125   | 30       | 1                       |           |      |      |   |
|                  | 2 Dipping     | 4.9                 |          |             | 1                                      | 70                |                     | 75     | 125   | 35       | 4                       |           |      |      |   |
|                  | 2 Dipping     | 5.4                 |          |             | 1                                      | 125               |                     | 20     | 125   | 40       | 2                       |           |      |      |   |
|                  | 2 Spraying    | 5.8                 |          |             | 1                                      | 125               |                     | 70     | 125   | 45       | 3                       |           |      |      |   |
|                  | 2 Spraying    | 6.1                 |          |             | 1                                      | 125               |                     | 82     | 150   | 25       | 9                       |           | 115  |      |   |
|                  | 2 Spraving    | 6.3                 |          |             | 1                                      | 125               |                     | 58     | 150   | 30       | 6                       |           |      | -    |   |
| ары +            | Asymetric Fa  | actorial Design and | Iw       |             |                                        |                   | ( )                 |        |       |          |                         |           |      |      |   |
| Asymetri         | Factorial Des | ign and Two-way AM  | VOWA.mwx |             |                                        |                   |                     |        |       |          |                         | - 🗆       | 1.10 | 1    |   |
| O Tu             | e here to s   | earch               |          |             | 0 🗖 🖶                                  |                   |                     |        | 10 20 | 52       | A 6                     | 0m /d d   | 6    | TEA. | 1 |
| PTEL             | re mere to s  | concin              |          |             |                                        |                   |                     |        | en on |          | 💶 · · · ·               | 100 100 4 |      |      |   |

What we can see over here is around fit value is 0.93, 0.933. So, near to we can assume let us say near to one like that. So, impurity is less than two what we have seen in contour plot also. So, prediction seems to be ok.

# (Refer Slide Time: 27:04)

| Minitab - Untitleo                            | ł                                                     |                                                                 |                 |                       |                     |                    |                        |    |      |          |                |                 |              |      | -   | 8 |
|-----------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------|-----------------------|---------------------|--------------------|------------------------|----|------|----------|----------------|-----------------|--------------|------|-----|---|
| File Edit Data                                | Calc Sta                                              | t Graph View Help                                               | p Assist        | ant Ada               | itional Tools       |                    |                        |    |      |          |                |                 |              |      |     |   |
| 🖌 👲 🖬                                         | 0 6                                                   | <b>Basic Statistics</b>                                         | •               | fx 3                  | -2 古静 2/ 4 4        | 2                  |                        |    |      |          |                |                 |              |      |     |   |
| 1500                                          | 110                                                   | Regression                                                      | •               | 1971 1 44             | PL HE AL AL SV IS   | BELA               | 🗄 🗗 🗗 🗗 'Y 🖉           | 图  |      |          |                |                 |              |      |     |   |
|                                               | 10 :                                                  | ANOVA                                                           | •               | One-                  | Nay                 |                    |                        |    |      |          |                |                 |              |      |     |   |
|                                               | tana   P                                              | DOE                                                             |                 | Anah)                 | sis of Means        |                    |                        |    |      |          |                |                 |              |      |     |   |
| Prediction for Im                             | purity (                                              | Control Charts                                                  | •               | Balan                 | ced ANOVA           | A 41.4 141         |                        |    |      |          |                |                 |              |      |     |   |
| ASYMETRIC FAC                                 | TORIAL                                                | Quality lools                                                   | 1               | Gene                  | al Linear Model     | M Fit General Line | ear Model              |    |      |          |                |                 |              |      |     |   |
| Prediction f                                  | or In                                                 | Reliability/Survival<br>Predictive Analytics                    | ;,              | Fully                 | Nested ANOVA        | 1 Comparisons.     |                        |    |      |          |                |                 |              |      |     |   |
| Temp Pressure                                 | -                                                     | Multivariate                                                    | ٠,              | A Gene                | al MANOVA           | Factorial Plots.   |                        |    |      |          |                |                 |              |      |     | 1 |
|                                               |                                                       | Time Series<br>Tables                                           | ;               | o <sup>2</sup> Test f | or Equal Variances  | Contour Plot       |                        |    |      |          |                |                 |              |      |     |   |
| Settings                                      |                                                       | Nonparametrics                                                  |                 | Interv                | al Plot             | Sunace Plot        |                        |    |      |          |                |                 |              |      |     |   |
| Variable S                                    | etting                                                | Equivalence Tests                                               |                 | 🐴 Main                | Effects Plot        | Researce Oatio     | nie Piota.             |    |      |          |                |                 |              |      |     |   |
| Temp                                          | 125                                                   | Power and Sample Size                                           |                 | > Intera              | ction Plot          | A subjetut opti    | ingo at                |    |      |          |                |                 |              |      |     |   |
| Fit<br>0.933333 0                             | SE Fit<br>.783865 (+                                  | 95% CI<br>0.874263, 2.74093) (-                                 | 95%<br>2.27119, | 4.13786)              |                     |                    |                        |    |      |          |                |                 |              |      |     |   |
| + C1                                          | C2-T                                                  | C3                                                              | C4              | C5                    | C6                  | C7                 | C8 👩                   | C9 | C10  | C11      | C12            | 2               | C13          | C14  | C15 |   |
| Primer Type                                   | Method                                                | Adhesive Force                                                  |                 |                       | Plate material Type | Temp of Operation  | Battery Life (In Hour) |    | Temp | Pressure | Impurity (No R | eplicate)       |              |      |     |   |
| 1 2                                           | Dipping                                               | 5.6                                                             |                 |                       | 1                   | 70                 | 80                     |    | 125  | 30       |                | 1               |              |      |     |   |
| 3 2                                           | Dipping                                               | 4.9                                                             |                 |                       | 1                   | 70                 | 75                     |    | 125  | 35       |                | 4               |              |      |     |   |
| 2                                             | Dipping                                               | 5.4                                                             |                 |                       | 1                   | 125                | 20                     |    | 125  | 40       |                | 2               |              |      |     |   |
| 0 2                                           | Spraying                                              | 5.8                                                             |                 |                       | 1                   | 125                | 70                     |    | 125  | 45       |                | 3               |              |      |     |   |
|                                               | Cormina                                               | 61                                                              |                 |                       | 1                   | 125                | 82                     |    | 150  | 25       |                | 9               |              | -    | _   |   |
| 11 2                                          | spraying                                              | 0.1                                                             |                 |                       |                     |                    |                        |    |      |          |                |                 |              | 1000 |     |   |
| 11 2<br>2 2                                   | Spraying                                              | 6.3                                                             |                 |                       | 1                   | 125                | 58                     |    | 150  | 30       |                | 6               |              |      | 3   |   |
| Н 2<br>2 2<br>4 b н + 1                       | Spraving<br>Spraving<br>Asymetric Fi                  | 6.3<br>actorial Design and Tw.                                  |                 |                       | 1                   | 125                | 58                     |    | 150  | 30       |                | 6               |              | 4    | R   |   |
| 11 2<br>2 2<br>4 b н + 1<br>2 - Asymetric     | Spraving<br>Spraving<br>Asymetric Fi<br>Factorial Des | 6.3<br>actorial Design and Tw.                                  | -<br>IA.mwx     |                       | 1                   | 125                | 58                     |    | 150  | 30       |                | 6               | 0 -          | N    | R   |   |
| 1 2<br>2 2 2<br>4 Б. Н. + Д<br>4 Б. Акутеtric | Spraying<br>Spraving<br>Asymetric Fi<br>Factorial Des | 6.3<br>actorial Design and Tw.<br>ign and Two-way ANOV<br>earch | a.<br>Mariwa    |                       | 0                   | 125                | 58                     | R  | 150  | 30       | •              | 6<br>111<br>~ 6 | <br>940 @ 40 | X    | R   |   |

And GLM models also we can develop.

(Refer Slide Time: 27:09)

| File | Edit Data         | Calc Stat            | Graph View<br>→ □ # #<br>→ ▷ □ = = = = = = = = = = = = = = = = = = | Help Ass       | istant A                   | ddtional Tools<br>'= -Σ ,        | 2 <b>.</b> 8k*4)<br>4     | ii o' c <mark>i</mark> o'' | Y 与 图   |         |     |                 |          |            |     |     | 8   |
|------|-------------------|----------------------|--------------------------------------------------------------------|----------------|----------------------------|----------------------------------|---------------------------|----------------------------|---------|---------|-----|-----------------|----------|------------|-----|-----|-----|
| Pre  | diction for Im    | ourity (N            | * X                                                                |                |                            |                                  |                           |                            |         |         |     |                 |          |            |     |     |     |
|      | SYMETRIC FAC      | TORIAL DESIG         | IN AND TWO-WAY A                                                   | NOVAMWO        |                            | General Linear Model             |                           |                            |         |         | ×   |                 |          |            |     |     |     |
| Pre  | diction f         | or Impu              | rity (No Reg                                                       | olicate)       |                            | C1 Primer Type                   | Responses:                |                            |         |         | _   |                 |          |            |     |     | •   |
| -    | arms              |                      |                                                                    |                |                            | C3 Adhesive Force                | 'Impurity (No Replicate)' |                            |         |         | ^   |                 |          |            |     |     |     |
| 1    | emp Pressure      | -                    |                                                                    |                |                            | C7 Temp of Operato               |                           |                            |         |         |     |                 |          |            |     |     | î   |
|      |                   |                      |                                                                    |                |                            | C8 Battery Ufe (In H<br>C10 Temp | Eactors:                  |                            |         |         | _   |                 |          |            |     |     |     |
| 9    | ettings           |                      |                                                                    |                |                            | C11 Pressure                     | Temp Pressure             |                            |         |         | ^   |                 |          |            |     |     |     |
|      | e turiga          |                      |                                                                    |                |                            | I in party for her               |                           |                            |         |         |     |                 |          |            |     |     |     |
| -    | emp               | 125                  |                                                                    |                |                            |                                  |                           |                            |         |         | v   |                 |          |            |     |     |     |
| F    | ressure           | 30                   |                                                                    |                |                            |                                  | Covariates:               |                            |         |         |     |                 |          |            |     |     |     |
| P    | Fit<br>0.933333 0 | SE Fit<br>783865 (-0 | 95% CI<br>0.874263, 2.74093)                                       | 95<br>(-2.2711 | i% <b>PI</b><br>9, 4.1378/ |                                  | Random/Nest               | Hodel                      | Optiogs | Coging  | ~   |                 |          |            |     |     |     |
| +    | C1                | C2-T                 | C3                                                                 | C4             | CS                         | Select                           | Stepwise                  | graphs                     | Besults | Storage |     | C12             | 2        | C13        | C14 | C15 |     |
|      | Primer Type       | Method               | Adhesive Force                                                     |                |                            | 1                                |                           | 6                          |         |         | ire | Impurity (No Re | plicate) |            |     |     |     |
| 7    | 2                 | Dipping              | 5.6                                                                |                |                            | Help                             |                           |                            |         | Cancel  | 30  |                 | 1        |            |     |     |     |
| 8    | 2                 | Dipping              | 4.9                                                                |                |                            |                                  | 1 /0                      |                            | 15      | 125     | 35  |                 | 4        |            |     |     |     |
| 9    | 2                 | Dipping              | 5.4                                                                |                |                            |                                  | 1 125                     |                            | 20      | 125     | 40  |                 | 2        |            |     |     |     |
| 10   | 2                 | Spraying             | 5.8                                                                |                |                            |                                  | 1 125                     |                            | /0      | 125     | 43  |                 | 3        |            |     |     |     |
| 11   | 4                 | Soraving             | 6.1                                                                |                |                            |                                  | 1 125                     |                            | 62      | 150     | 25  |                 | 9        |            | (   | -   |     |
| 14   | ы +               | symetric Fa          | ctorial Design and                                                 | Twee           |                            |                                  | 123                       | 4                          | ~       | 130     | 20  |                 | 0        |            | 1   | H   |     |
| 1    | Anometric         | actorial Dari        | an and Turnum Al                                                   | AI/AIA muse    |                            | _                                |                           | 130                        | _       | _       | -   |                 | HTR.     | <b>—</b> — | 1   | Ali |     |
| 0    | symetric          | actorial Desi        | ign and into way to                                                | TO DAINWA      |                            |                                  |                           |                            |         | -       |     |                 |          |            | 100 |     | 100 |
| 24   | O Type            | here to se           | earch                                                              |                |                            | 0                                | 🖂 🗹 🖗                     |                            |         | The X   | 22  |                 | ^ @ !    | 10 10 00   |     |     | NY  |

Only thing is that I have to use this impurity over here and I have to see what temperature and pressure over here and the model will not take interaction. So, that is not required.

#### (Refer Slide Time: 27:20)

| Reg fies Dus Cut: Sut Graph View High Austant Additional Parks           Reg fies Dus Cut: Sut Graph View High Austant Additional Parks           Reg fies Dus Cut: Sut Graph View High Austant Additional Parks           Reg fies Dus Cut: Sut Graph View High Austant Additional Parks           Central Linear Model: Impurity (No Replicate) versus Temp, Pressure           Source State State State Parks           Source State State State State Parks           Pressure State State State State Parks           Source State State State Parks           Pressure State State State State State Parks           Pressure State State State Parks           Pressure State State State Parks           Pressure Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| City         City <th< th=""><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| Image: Init initial and the set of the initial and the set of the                                                                                                                                |                     |
| Colspan=1 C                                                                                                                                            |                     |
| APPRETER FACIOBAL DEBON AD THOMEWAINTAME           Seneral Linear Model: Impurity (No Replicate) versus Temp, Pressure           25         0.33         0.99         0.46         0.09         0.54         0.02         1.60           35         2.33         0.99         3.84         0.002         1.60         0.02         1.60           Regression Equation           Impury (No Replicate)         - 6333 Pressure, 30         0.023 1.60         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000         - 0.000 </th <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| Seneral Linear Model: Impurity (No Replicate) versus Temp, Pressure           35         0.333         0.939         0.56         0.59         0.467         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.933         0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| 25         0.33         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0.59         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| Start         Color         Color <th< th=""><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| 15         2.33         6.95         3.44         0.001         1.60           Regression Equation<br>- 0.331 Pressure, 20 - 0.667 Pressure, 20 - 0.667 Pressure, 20 - 0.333 Pressure, 20 - 0.667 Pressure, 20 - 0.676 Pressure, 20 - 0.676 Pressure, 20 - 0.667 Pressure, 20 - 0.676 Pressu                                                                                                                                                                                                                |                     |
| 40         -1.60         0.593         -2.81         0.023         1.60           Regression Equation<br>Impury 196e Registeret<br>- 0.333 Premus, 05-0.667 Pressure, 15: 3.437 Pressure, 15:<br>-1.667 Pressure, 40: 0.667 Pressure, 15: 3.437 Pressure, 15:<br>-1.667 Pressure, 40: 0.667 Pressure, 40:<br>-1.667 Pr |                     |
| Regression Equation<br>Impurity No Replace:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| Regression Equation           impurity No Replaced         5331-6779.5128 Teng. 125 -3.427 Teng. 125 -3.437 Teng. 125 -3.44                                                                                                                                                                               |                     |
| Impury IVo Explore 10 - 233 Temp. 125 + 243 Temp. 125<br>+ 0.333 Temp. 126 / 248 Temp. 125 + 243 Temp. 125<br>+ 0.457 Pressure, 10 + 0.457 Pressure,                                                                                                                                      |                     |
| + 0.333 Pressure, 26 - 0.687 Pressure, 25<br>- 1.687 Pressure, 40 - 0.687 Pressure, 25<br>Stand Diagroups (No<br>Obs Medicane<br>Fit Resid State Resid<br>CI C2-T CJ C4 C5 C6 C7 C8 C9 C1 C12 C13<br>Prime Type (Mod Addeever Force C C C1) C12 C12 C13<br>Prime Type (Mod Addeever Force C C C C C1) C12 C12 C13<br>Prime Type (Mod Addeever Force C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| Fits and Diagnostics for Unusual Observations           Prime type           Otics         Reliand         Fit         Relia         State         Clip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| Fit sand Diagnostics for Unusual Observations           Impurity No           Obs         Cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| Price and business to the transmission of transmissi oretransmission of transmission of transmission of tra                                                                                                                                            |                     |
| Interpret Vite         Order         Relation of State Relati                                                                                                                                                  |                     |
| C1         C2+7         C3         C4         C5         C5         C7         C8         g         C9         C10         C11         C12         g         C13           Primer Type         Method         Adheske Fore         Plate material Type         Temp of Operation         Battery Life (In Hour)         Temp         Pressure         Impurity Hos Replicater)         S825           2         Dipping         4.64          1         70         0.0         125         30          4.11377           2         Dipping         4.94          1         125         2.0         125         45          2.127249           2         Z Spraying         5.81          1         125         3.70         125         45          3.31822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| Primer Type         Method         Adhesive Fore         Plate material Type         Temp of Operation         Temp         Pressure         Impurity No Replication         SRES           2         Oppring         6.6         1         70         0.0         125         30         0.01           2         Oppring         6.4         1         70         75         125         35         4         1.1137           2         Oppring         5.4         0         1         125         20         125         45         2.12729           2         Spraying         5.8         0         1         125         70         125         45         3.31822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C14 C15             |
| 2 Opping         5.6         1         70         60         125         30         1         079           2 Opping         4.9         1         70         75         125         33         4         11127           2 Opping         5.4         1         125         20         125         40         2         12728           2 Opping         5.8         1         125         70         125         45         3         3.3142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| 2 Opping         4.9         1         70         75         125         35         4         11117           2 Opping         5.4         1         125         20         125         40         2         12728           2 Spring         5.8         1         125         70         125         45         2         3.03182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| 2 Dipping         5.4         1         125         20         125         40         2         127289           2 Spraying         5.8         1         125         70         125         45         3         -0.31822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| 2 Spraying 5.8 1 125 70 125 45 3 -0.31822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| A 100 A 100 A 100 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| 2 spraying 6.1 1 125 82 150 25 9 0.15911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| 2 Spraving 6.3 1 125 58 150 30 6 -1.35245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                 |
| 1 b H + Asymetric Factorial Design and Tw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                   |
| 🙀 Asymetric Factorial Design and Two-way ANOVA.mwx 🔤 📰 🔲 🗕                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| 🖓 🖓 Type here to search 🛛 🔿 🧮 🚔 🛸 🐋 🚳 🗰 🚱 🔞 📶 🕅 🕅 🕅 🗖 🔷 ۵ 🖗 🖉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A REAL PROPERTY AND |

So, in this case we will have a generalised linear model and in this case we can make a prediction out of this.

(Refer Slide Time: 27:24)

| M    | initab - Untitle | d             |                         |            |             |                     |         |                   |                        |           |         |       |          |                |           |           |     | -   | 8   | 2 |
|------|------------------|---------------|-------------------------|------------|-------------|---------------------|---------|-------------------|------------------------|-----------|---------|-------|----------|----------------|-----------|-----------|-----|-----|-----|---|
| File | Edit Data        | Calc Sta      | t Graph View H          | lelp Assis | tant Add    | litional Tools      |         |                   |                        |           |         |       |          |                |           |           |     |     |     |   |
| 1    | a 👲 🛪            | 06            | <b>Basic Statistics</b> | ,          | fx 💡        | -2 人間 2/ 4 、        | 2       |                   |                        |           |         |       |          |                |           |           |     |     |     |   |
|      | 000              | 110           | Regression              | ,          | . 1571 i at | お田本本「いう             |         | K*1               | 4 🗄 🖬 🖬 🗗 🗗            | 4 23      | 10      |       |          |                |           |           |     |     |     |   |
|      |                  | 11            | ANOVA                   | ,          | One-        | Nay                 |         |                   |                        |           |         |       |          |                |           |           |     |     |     |   |
| _    |                  |               | DOE                     | ,          | Analy       | sis of Means        |         |                   |                        |           |         |       |          |                |           |           |     |     |     |   |
| Ge   | neral Linear N   | todel: Ir     | Control Charts          | '          | A Balan     | ced ANOVA           |         |                   |                        |           |         |       |          |                |           |           |     |     |     |   |
| 8    | SYMETRIC FAC     | TORIAL        | Quality lools           | 1          | Gener       | al Linear Model     | AP PR   | General Li        | near Model             |           |         |       |          |                |           |           |     |     |     |   |
| Ge   | neral Lin        | ear N         | Predictive Analytics    | ,          | -CE Fully   | Nested ANOVA        | LY Pre  | mparison:<br>dict | ha                     |           |         |       |          |                |           |           |     |     |     |   |
|      | 25               | 0.333         | Multivariate            | ,          | A Gener     | al MANOVA           | > Fac   | torial Plot       | See                    |           |         |       |          |                |           |           |     |     | ^   |   |
|      | 35               | 2.333         | Time Series             | ,          | a) Test l   | Farral Variances    | C.      |                   |                        |           |         |       |          |                |           |           |     |     |     |   |
|      | 40 .             | 1.667         | Tables                  | ,          | L leten     | al Dist             | 🗑 Su    |                   |                        |           |         |       |          |                |           |           |     |     |     |   |
|      |                  |               | Nonparametrics          | ,          | A Main      | Effects Dist        | KO      | erlaid Con        |                        |           |         |       |          |                |           |           |     |     |     |   |
| 5    | Regression       | Equat         | Equivalence Tests       | 1          | N Intera    | ction Plot          | 🔶 Res   | ponse Op          | timizer                |           |         |       |          |                |           |           |     |     |     |   |
|      |                  |               | Power and Sample S      | 100 1      |             | 101 - 0 4/77 4/0    |         | 10                |                        |           |         |       |          |                |           |           |     |     |     |   |
| F    | its and Dia      | ignostics     | for Unusual Ob          | servatio   | ns          |                     |         | 0                 | ptimize one or more fi | tted resp | ponses. |       |          |                |           |           |     |     |     |   |
| ŧ.   | CI CI            | C2-T          | C3                      | C4         | CS          | C6                  | (       | 7                 | C8                     |           | (9      | C10   | C11      | C12            |           | C13       | C14 | C15 | T   |   |
|      | Primer Typ       | e Method      | Adhesive Force          |            |             | Plate material Type | Temp of | Operatio          | n Battery Life (In H   | (our)     |         | Temp  | Pressure | Impurity (No F | eplicate) | SRES      |     |     |     |   |
| 7    |                  | 2 Dipping     | 5.6                     |            |             | 1                   |         | 7                 | 0                      | 80        |         | 125   | 30       |                | 1         | 0.07956   |     |     |     |   |
| 8    |                  | 2 Dipping     | 4.9                     |            |             | 1                   |         | 7                 | 0                      | 75        |         | 125   | 35       |                | 4         | -1.11378  |     |     |     |   |
| 9    |                  | 2 Dipping     | 5.4                     |            |             | 1                   |         | 12                | 5                      | 20        |         | 125   | 40       |                | 2         | 1.27289   |     |     |     |   |
| 10   |                  | 2 Spraying    | 5.8                     |            |             | 1                   |         | 12                | 5                      | 70        |         | 125   | 45       |                | 3         | -0.31822  |     |     |     |   |
| 11   |                  | 2 Spraying    | 6.1                     |            |             | 1                   |         | 12                | 5                      | 82        |         | 150   | 25       |                | 9         | -0.15911  | -   |     |     |   |
| 12   | -                | 2 Spraving    | 6.3                     |            |             | 1                   |         | 12                | 5                      | 58        |         | 150   | 30       |                | 6         | -1.35245  | 20  | 10  |     |   |
| 4    | рн +             | Asymetric F   | actorial Design and Tv  | w          |             |                     |         |                   | 4                      |           |         |       |          |                |           |           |     | 1   |     |   |
| Á    | Asymetric        | Factorial Des | sign and Two-way ANI    | 0WA.mwx    |             |                     |         |                   |                        |           |         |       |          | <b></b>        |           |           |     | 20  |     |   |
| V    | O Tun            | a hare to r   | aarch                   |            |             | 0 =                 | -       | -                 |                        | 2         |         | -     | 51       |                | A 6       | 0m // 16  | 18  | 21  | 1   |   |
| a a  | ryp              | e nere to s   | caren                   |            |             |                     |         |                   |                        | R         | •       | Su Su |          |                |           | MA 1/2 40 | 12  |     | 100 |   |

And I know this MINITAB does it automatically for you when I am; when I am mentioning predict. So, it is developing the equations and based on that it is predicting basically. So, what I am interested in response optimization; that means, this is a response surface that is developed with the CTQ and temperature and pressure over here. So, I want to identify which is the optimal condition.

## (Refer Slide Time: 27:50)

| File                                                                      |                                                                                                                                                        |                                                                                                                     |                                                                                                      |                                                                                                                                                                              |              |                                                              |                                                                                                                                                                                             |                                                                                                                                                                                                                         |     |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     | ā. |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------|-----------------------------------------------------|-----------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----|-----|----|
|                                                                           | Edit Data                                                                                                                                              | Calc Stat                                                                                                           | Graph Vi                                                                                             | ew Help Ass                                                                                                                                                                  | istant Ad    | ditional Tools                                               |                                                                                                                                                                                             | _                                                                                                                                                                                                                       |     |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     |    |
| <u>-</u> E                                                                | 1 👲 🔏 🛙                                                                                                                                                | 101                                                                                                                 | 000                                                                                                  | H Response Op                                                                                                                                                                | timizer      |                                                              |                                                                                                                                                                                             | ×                                                                                                                                                                                                                       |     |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     |    |
| ПЦ                                                                        |                                                                                                                                                        | 101 10                                                                                                              | Y≥Ø                                                                                                  |                                                                                                                                                                              |              |                                                              |                                                                                                                                                                                             | 🗗 🐻 🗗 LY 1                                                                                                                                                                                                              | 4四  |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     |    |
|                                                                           | 1                                                                                                                                                      | 11日                                                                                                                 |                                                                                                      | Optimize up                                                                                                                                                                  | to 25 respon | nses:                                                        |                                                                                                                                                                                             |                                                                                                                                                                                                                         |     |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     |    |
| Gene                                                                      | eral Linear Moi                                                                                                                                        | del: Imp                                                                                                            | * X                                                                                                  | Resp<br>Impurity (No                                                                                                                                                         | Replicate)   | Goal<br>Minimize •                                           | Target                                                                                                                                                                                      |                                                                                                                                                                                                                         |     |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     |    |
| III AS                                                                    | SYMETRIC FACTO                                                                                                                                         | DRIAL DESIN                                                                                                         | IN AND TWO-                                                                                          | uone y ore                                                                                                                                                                   | (arrival)    | Const optimize                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                         |     |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     | •  |
| Gen                                                                       | heral Line                                                                                                                                             | ar woo                                                                                                              | iei: impu                                                                                            | 1                                                                                                                                                                            |              |                                                              |                                                                                                                                                                                             |                                                                                                                                                                                                                         |     |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     |    |
| 2 3                                                                       | 25 0.3<br>30 -1.0                                                                                                                                      | 333 0.<br>567 0.                                                                                                    | 593 0.5<br>593 -2.8                                                                                  | 6                                                                                                                                                                            |              |                                                              |                                                                                                                                                                                             |                                                                                                                                                                                                                         |     |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     | *  |
| 4                                                                         | 40 -1.0                                                                                                                                                | 567 0.                                                                                                              | 593 -2.8                                                                                             | 1                                                                                                                                                                            |              |                                                              |                                                                                                                                                                                             |                                                                                                                                                                                                                         |     |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     |    |
| Re                                                                        | earession E                                                                                                                                            | quation                                                                                                             |                                                                                                      |                                                                                                                                                                              |              | Setupi Os                                                    | tons Graphs                                                                                                                                                                                 |                                                                                                                                                                                                                         |     |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     |    |
| Im                                                                        | npurity (No Rep                                                                                                                                        | plicate)                                                                                                            | 5.333 - 0.7                                                                                          | 3                                                                                                                                                                            |              | Besuits Str                                                  | xage Vew Model                                                                                                                                                                              |                                                                                                                                                                                                                         |     |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     |    |
|                                                                           |                                                                                                                                                        |                                                                                                                     | * 0.333 Pr                                                                                           | 6                                                                                                                                                                            |              |                                                              |                                                                                                                                                                                             |                                                                                                                                                                                                                         |     |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     |    |
|                                                                           |                                                                                                                                                        |                                                                                                                     | - 1.667 Pre                                                                                          | H III                                                                                                                                                                        | 1            |                                                              | or 1 or 1                                                                                                                                                                                   |                                                                                                                                                                                                                         |     |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     |    |
|                                                                           |                                                                                                                                                        |                                                                                                                     | - 1.667 Pre                                                                                          | Help                                                                                                                                                                         |              | _                                                            | QK Cancel                                                                                                                                                                                   |                                                                                                                                                                                                                         |     |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     |    |
| Fit                                                                       | ts and Diag                                                                                                                                            | nostics                                                                                                             | - 1.667 Pre                                                                                          | Help                                                                                                                                                                         | ons          | _                                                            | <u>QK</u> Cancel                                                                                                                                                                            |                                                                                                                                                                                                                         |     |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     |    |
| Fit                                                                       | ts and Diag<br>Impurit<br>Obs Repl                                                                                                                     | y (No<br>icate)                                                                                                     | • 1.667 Pre<br>for Unusua                                                                            | Heb<br>al Observation<br>Std Resid                                                                                                                                           | ons          |                                                              | QK Cancel                                                                                                                                                                                   |                                                                                                                                                                                                                         |     |                                                              |                                                     |                       |                                                                  |                                                                                   |     |     | *  |
| Fit                                                                       | ts and Diag<br>Impurit<br>Obs Repl<br>C1                                                                                                               | y (No<br>icate)<br>C2-T                                                                                             | - 1.667 Pre<br>for Unusua<br>Fit Resid<br>C3                                                         | Heb<br>al Observation<br>Std Resid<br>C4                                                                                                                                     | ons          |                                                              | gK Cancel                                                                                                                                                                                   | C8 .                                                                                                                                                                                                                    | (9  | C10                                                          | C11                                                 | C12                   | D                                                                | C13                                                                               | C14 | C15 | ¥  |
| Fit                                                                       | ts and Diag<br>Impurit<br>Obs Repl<br>C1<br>Primer Type                                                                                                | y (No<br>icate)<br>C2-T<br>Method                                                                                   | - 1.667 Pre<br>for Unusua<br>Fit Resid<br>C3<br>Adhesive F                                           | Help<br>Help<br>Al Observation<br>Std Resid<br>C4<br>orce                                                                                                                    | ons<br>CS    | C6<br>Plate material Type                                    | QK Cancel                                                                                                                                                                                   | C8 g                                                                                                                                                                                                                    | C9  | C10<br>Temp                                                  | C11<br>Pressure                                     | C12<br>Impurity (No R | eplicate)                                                        | C13<br>SRES                                                                       | C14 | CIS |    |
| Fit<br>(<br>+<br>7                                                        | its and Diag<br>Impurit<br>Obs Repl<br>C1<br>Primer Type<br>2 I                                                                                        | y (No<br>icate)<br>C2-T<br>Method<br>Dipping                                                                        | <ul> <li>1.667 Pre</li> <li>for Unusua</li> <li>Fit Resid</li> <li>C3</li> <li>Adhesive F</li> </ul> | Std Resid<br>C4<br>orce<br>5.6                                                                                                                                               | cs           | C6<br>Plate material Type<br>1                               | QK Cancel<br>C7<br>Temp of Operation B:<br>70                                                                                                                                               | C8 ttery Ufe (in Hour)                                                                                                                                                                                                  | C9  | C10<br>Temp<br>125                                           | C11<br>Pressure<br>30                               | C12<br>Impurity (No R | eplicate)                                                        | C13<br>SRES<br>0.07956                                                            | C14 | C15 |    |
| Fit<br>(<br>+<br>7<br>8                                                   | ts and Diag<br>Impurit<br>Obs Repl<br>C1<br>Primer Type<br>2 1<br>2 1                                                                                  | y (No<br>icate)<br>C2-T<br>Method<br>Dipping<br>Dipping                                                             | + 1.667 Pre<br>for Unusua<br>Fit Resid<br>C3<br>Adhesive F                                           | Hep<br>Hep<br>Std Resid<br>C4<br>orce<br>5.6<br>4.9                                                                                                                          | cs           | C6<br>Plate material Type<br>1                               | C7<br>C7<br>Temp of Operation B<br>70<br>70                                                                                                                                                 | C8 c8 cttery Life (in Hour)                                                                                                                                                                                             | C9  | C10<br>Temp<br>125<br>125                                    | Ct1<br>Pressure<br>30<br>35                         | C12<br>Impurity (No R | eplicate)<br>1<br>4                                              | C13<br>SRES<br>0.07956<br>-1.11378                                                | C14 | C15 | ¥  |
| Fi.                                                                       | ts and Diag<br>Impurit<br>Obs Repl<br>C1<br>Primer Type<br>2 1<br>2 1<br>2 1<br>2 1                                                                    | y (No<br>icate)<br>C2-T<br>Method<br>Dipping<br>Dipping                                                             | - 1.667 Pro<br>for Unusua<br>Fit Resid<br>C3<br>Adhesive F                                           | Help<br>Help<br>Std Resid<br>C4<br>orce<br>5.6<br>4.9<br>5.4                                                                                                                 | cs           | C6<br>Plate material Type<br>1<br>1<br>1                     | C7 Cancel<br>C7 Femp of Operation B.<br>70<br>70<br>125                                                                                                                                     | C8 e<br>ttery Life (in Hour)<br>80<br>75<br>20                                                                                                                                                                          | C9  | C10<br>Temp<br>125<br>125<br>125                             | C11<br>Pressure<br>30<br>35<br>40                   | C12<br>Impurity (No R | eplicate)<br>1<br>4<br>2                                         | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289                                     | C14 | C15 | ¥  |
| Fir<br>(<br>4<br>7<br>8<br>9<br>10                                        | tts and Diag<br>Impurit<br>Obs C1<br>Primer Type<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1                                 | y (No<br>icate)<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Spraying                                                 | - 1.667 Pro<br>for Unusua<br>Fit Resid<br>C3<br>Adhesive F                                           | Std Resid<br>C4<br>orce<br>5.6<br>4.9<br>5.4<br>5.8                                                                                                                          | CS           | C6<br>Plate material Type<br>1<br>1<br>1                     | QK         Cancel           C7         Temp of Operation B           70         70           125         125                                                                                | C8 s<br>ttery Life (In Hour)<br>80<br>75<br>20<br>70                                                                                                                                                                    | C9  | Ct0<br>Temp<br>125<br>125<br>125<br>125                      | C11<br>Pressure<br>30<br>35<br>40<br>45             | C12<br>Impurity (No R | eplicate)<br>1<br>4<br>2<br>3                                    | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822                         | C14 | C15 |    |
| Fit<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1) | ts and Diag<br>Impurit<br>Obs C1<br>Primer Type<br>2 1<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2                                                              | y (No<br>icate)<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Spraying<br>Spraying                                     | - 1.667 Pro<br>for Unusua<br>Fit Resid<br>C3<br>Adhesive F                                           | Heb           Std Resid           C4           5.6           4.9           5.4           5.8           6.1                                                                   | C5           | C6<br>Plate material Type<br>1<br>1<br>1<br>1                | Cr         Cr           C7         Temp of Operation         B.           70         70         125           125         125         125                                                   | C8 s<br>ttery Life (In Hour)<br>80<br>75<br>20<br>70<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82<br>82                                                                                      | C9  | Ct0<br>Temp<br>125<br>125<br>125<br>125<br>125<br>125        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25       | C12<br>Impurity (No R | eplicate)<br>1<br>4<br>2<br>3<br>9                               | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911             | C14 | C15 |    |
| Fi<br>6<br>7<br>8<br>9<br>0<br>11<br>2                                    | ts and Diag<br>Impurit<br>Obs Read<br>C1<br>Primer Type<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | y (No<br>icate)<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying                         | - 1.667 Pro<br>for Unusua<br>Fit Resid<br>C3<br>Adhesive F                                           | Heb<br>Heb<br>Std Resid<br>C4<br>C4<br>C4<br>S.6<br>5.6<br>5.6<br>5.4<br>5.8<br>6.1<br>6.3                                                                                   | CS           | C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1      | Create         Cancel           C7         B           Temp of Operation B         70           70         70           125         125           125         125           125         125 | C8 20<br>ttery Life (In Hour)<br>80<br>75<br>20<br>70<br>82<br>82<br>88                                                                                                                                                 | 0   | Ct0<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>Impurity (No R | eplicate)<br>1<br>4<br>2<br>3<br>9<br>6                          | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911<br>-1.35245 | C14 | CIS |    |
| Fir<br>(0<br>+ 5<br>77<br>88<br>99<br>100<br>111<br>12<br>4 5             | ts and Diag                                                                                                                                            | y (No<br>icate)<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying<br>spraying  | - 1.667 Pro<br>for Unusua<br>Fit Resid<br>C3<br>Adhesive F                                           | Heb<br>Heb<br>Std Resid<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4                                                                                          | CS           | C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | C7           Temp of Operation B:           70           70           125           125           125           125                                                                         | C8 8<br>ttery Life (In Hour)<br>80<br>75<br>20<br>70<br>82<br>58                                                                                                                                                        | (3) | Ct0<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>Impurity (No R | eplicate)<br>1<br>4<br>2<br>3<br>9<br>6                          | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911<br>-1.35245 | C14 | CIS |    |
| Fit 6<br>4 5<br>7 8<br>8 9<br>10<br>11<br>12<br>4 10                      | ts and Diag<br>Impurit<br>Obs Repl<br>C1<br>Primer Type<br>2 1<br>2 1<br>2 1<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2                          | y (No<br>icate)<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying<br>Spraying  | - 1.667 Pro<br>for Unusu:<br>Fit Resid<br>C3<br>Adhesive F                                           | Help           B         Observativ           Std Resid         C4           C4         5.6           4.9         5.4           5.8         6.1           6.3         and Tw | cs           | C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | QK Cancel<br>C7 Temp of Operation B,<br>70<br>70<br>125<br>125<br>125<br>125<br>125                                                                                                         | C8 te<br>ttery Life (In Hour)<br>75<br>20<br>70<br>82<br>54<br>4                                                                                                                                                        | (3) | C10<br>Temp<br>125<br>125<br>125<br>125<br>150               | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>Impurity (No R | eplicate)<br>1<br>4<br>2<br>3<br>9<br>6                          | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911<br>-1.35245 | C14 | C15 |    |
| Fit 6<br>4 5<br>7 8<br>9 10<br>11<br>12<br>4 10                           | ts and Diag<br>Impurit<br>Obs Repl<br>C1<br>Primer Type<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1                          | y (No<br>icate)<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying<br>spraying<br>straying | - 1.667 Pro<br>for Unusua<br>Fit Resid<br>C3<br>Adhesive F                                           | Heb<br>Heb<br>Std Resid<br>C4<br>Std Resid<br>C4<br>S.6<br>4.9<br>S.4<br>5.8<br>6.1<br>6.3<br>and Two<br>Sty ANOVA.mov                                                       | CS           | C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1      | C7         C7           Temp of Operation B         70           70         125           125         125           125         125           125         125                               | C8 c<br>ttery Life (in Hour)<br>60<br>75<br>20<br>75<br>20<br>75<br>20<br>75<br>20<br>75<br>20<br>75<br>20<br>75<br>20<br>82<br>98<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 0   | Ct0<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>Impurity (No R | 2<br>eplicate)<br>1<br>4<br>4<br>2<br>3<br>3<br>9<br>9<br>6<br>6 | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911<br>-1.35245 | C14 | CIS |    |

So, MINITAB uses an optimization techniques to do that. So, I want to minimize let us say impurities over here.

(Refer Slide Time: 27:59)

| 16                                                   | sponse Optimizer: S                                                                                                                                               | Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                  |                                         |                                                                  |                                                                 |                                                                                   |                                                                             | ×                                                     |                                                     |                         |                                                  |                                                                                   |     |     |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|-----------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|-------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------|-----|-----|
|                                                      | Response<br>mpurity (No Replicate)                                                                                                                                | Goal<br>) Minimize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 0            | Lower            | Target                                  | Upper<br>20                                                      | Weight<br>1                                                     | t Impor                                                                           | ance                                                                        |                                                       |                                                     |                         |                                                  |                                                                                   |     |     |
| eral L                                               |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                  |                                         |                                                                  |                                                                 |                                                                                   |                                                                             |                                                       |                                                     |                         |                                                  |                                                                                   |     |     |
| IMET                                                 |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                  |                                         |                                                                  |                                                                 |                                                                                   |                                                                             |                                                       |                                                     |                         |                                                  |                                                                                   |     |     |
| era                                                  |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                  |                                         |                                                                  |                                                                 |                                                                                   |                                                                             |                                                       |                                                     |                         |                                                  |                                                                                   |     |     |
|                                                      |                                                                                                                                                                   | De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | irability func | tions for di     | fferent goals - how weij                | hts affect their                                                 | shapes                                                          |                                                                                   |                                                                             |                                                       |                                                     |                         |                                                  |                                                                                   |     |     |
| 5 7                                                  | Minimize the response                                                                                                                                             | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | Hit a tar        | get value                               |                                                                  | Maxin                                                           | nize the response                                                                 |                                                                             |                                                       |                                                     |                         |                                                  |                                                                                   |     |     |
|                                                      | 1                                                                                                                                                                 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | 1                | 0.1 0.1                                 |                                                                  | 1                                                               | weight                                                                            | _                                                                           |                                                       |                                                     |                         |                                                  |                                                                                   |     |     |
| gre                                                  |                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                  |                                         |                                                                  |                                                                 | 1                                                                                 |                                                                             |                                                       |                                                     |                         |                                                  |                                                                                   |     |     |
|                                                      | 4 1                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | - 4              | 1 1 1 1                                 |                                                                  |                                                                 |                                                                                   |                                                                             |                                                       |                                                     |                         |                                                  |                                                                                   |     |     |
| purit                                                | d 1                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | d                |                                         |                                                                  | d                                                               | 1 10                                                                              |                                                                             |                                                       |                                                     |                         |                                                  |                                                                                   |     |     |
| npurit                                               | d 10<br>0 Target                                                                                                                                                  | Upper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | d<br>0           | r Target Ug                             | arr.                                                             | d                                                               | Lower Taro                                                                        | rt                                                                          |                                                       |                                                     |                         |                                                  |                                                                                   |     |     |
| npunit                                               | d 10<br>0 Target                                                                                                                                                  | Upper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | d<br>0 Low       | 1 1 1<br>er Target Up                   | ser                                                              | 0                                                               | Lower Targ                                                                        | et                                                                          |                                                       |                                                     |                         |                                                  |                                                                                   |     |     |
| ts ar                                                | d 10<br>Target                                                                                                                                                    | Upper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | d<br>0 Low       | r Target Up                             | zer                                                              | 0                                                               | Lower Targ                                                                        | et Cance                                                                    |                                                       |                                                     |                         |                                                  |                                                                                   |     |     |
| its ar                                               | d 10<br>Target                                                                                                                                                    | Upper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | d<br>0 Low       | r Target Up                             | zer                                                              | 0                                                               | Lower Targ                                                                        | etCance                                                                     |                                                       |                                                     |                         |                                                  |                                                                                   |     |     |
| ts ar —<br>Im<br>Dbs                                 | d 10<br>Target<br>Help<br>Replicate)                                                                                                                              | Upper<br>Fit Resid Std                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Resid          | d<br>0<br>Low    | er Target Up                            | xer                                                              | 0                                                               | Lower Targ                                                                        | et Cance                                                                    |                                                       |                                                     |                         |                                                  |                                                                                   |     |     |
| ts ar —<br>Im<br>Dbs                                 | d<br>10<br>Target<br>Help<br>Ipurity (No<br>Replicate)<br>F<br>C2-T                                                                                               | Upper<br>Fit Resid Std<br>C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Resid<br>C4    | d<br>0 Low<br>CS | r Target Up                             | c                                                                | 7                                                               | Lower Targ                                                                        | cance                                                                       | C10                                                   | C11                                                 | C12                     | 2                                                | C13                                                                               | C14 | C15 |
| punt<br>is ar<br>Dbs<br>C1<br>Primer Tj              | d<br>10<br>Target<br>Help<br>rpurity (No<br>Replicate)<br>F<br>C2-T<br>ype Method A                                                                               | Upper<br>Fit Resid Std<br>C3<br>dhesive Force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Resid<br>C4    | d<br>0 Low       | r Target Up<br>C6<br>Plate material Typ | C<br>De Temp of C                                                | 7<br>Operation B                                                | C8<br>Lattery Life (in Hou                                                        | cance                                                                       | C10<br>Temp                                           | C11<br>Pressure                                     | C12<br>Impurity (No Rep | vlicate)                                         | C13<br>SRES                                                                       | C14 | C15 |
| purit<br>is ar<br>lm<br>Dbs<br>C1<br>Primer Ty       | d<br>Target<br>Help<br>Purity (No<br>Replicate)<br>F<br>C2-T<br>ype Method A<br>2 Dipping<br>2 Dipping                                                            | Upper<br>Fit Resid Std<br>C3<br>dhesive Force<br>5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Resid<br>C4    | d<br>Low         | r Target Up<br>C6<br>Plate material Ty  | C<br>De Temp of C                                                | 7<br>Dperation B<br>70                                          | C8<br>Lattery Life (in Hou                                                        | c C9                                                                        | C10<br>Temp<br>125                                    | C11<br>Pressure<br>30                               | C12<br>Impurity (No Rep | vicate)                                          | C13<br>SRES<br>0.07956                                                            | C14 | C15 |
| s ar<br>Im<br>Obs<br>C1<br>trimer Ty                 | Hep<br>Hep<br>Target<br>Hep<br>Purity (No<br>Replicate)<br>F<br>C2-T<br>ype Method A<br>2 Dipping<br>2 Dipping                                                    | Upper<br>Fit Resid Std<br>C3<br>dhesive Force<br>5.6<br>4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Resid<br>C4    | d<br>0 Low<br>CS | C6<br>Plate material Typ                | c C C C C C C C C C C C C C C C C C C C                          | 7<br>Dperation B<br>70<br>70                                    | C8<br>Lattery Life (In Hou                                                        | ct Cance                                                                    | C10<br>Temp<br>125<br>125                             | C11<br>Pressure<br>30<br>35                         | C12<br>Impurity (No Rep | plicate)                                         | C13<br>SRES<br>0.07956<br>-1.11378                                                | C14 | C15 |
| purit<br>is ar<br>lm<br>Dbs<br>C1<br>Primer Ty       | d<br>10<br>Target<br>Heb<br>purity (No<br>Replicate)<br>F<br>C2-T<br>Method A<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Dipping                                 | Upper<br>Fit Resid Std<br>C3<br>dhesive Force<br>5.6<br>4.9<br>5.4<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Resid<br>C4    | d<br>0 Low<br>CS | C6<br>Plate material Typ                | C<br>De Temp of C<br>1<br>1                                      | 7<br>Dperation B<br>70<br>70<br>125<br>125                      | C8<br>Lattery Life (In Hou                                                        | et Cance                                                                    | C10<br>Temp<br>125<br>125<br>125                      | C11<br>Pressure<br>30<br>35<br>40                   | C12<br>Impurity (No Rep | Sicate)                                          | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289                                     | C14 | C15 |
| s ar —<br>Im<br>bbs<br>C1<br>trimer Ty               | d<br>10<br>Target<br>Help<br>Help<br>C2-T<br>ype Method A<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying                                      | Upper<br>Upper<br>Fit Resid Std<br>C3<br>C3<br>dhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Resid<br>C4    | d<br>0 Low<br>CS | c6<br>Plate material Typ                | C C Temp of C 1 1 1 1 1 1 1                                      | 7<br>Dperation B<br>70<br>70<br>125<br>125<br>125               | C8<br>Rattery Life (in Hou<br>7<br>2<br>7                                         | et Cance                                                                    | C10<br>Temp<br>125<br>125<br>125<br>125               | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25       | C12<br>Impurity (No Rep | 2<br>blicate)<br>1<br>4<br>2<br>3<br>9           | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911             | C14 | C15 |
| s ar<br>Im<br>Im<br>C1<br>trimer T;                  | d 10<br>Target<br>Heb<br>Purity (No<br>Replicate) F<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying<br>2 Spraying                                           | Upper<br>Fit Resid Std<br>C3<br>dhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1<br>6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Resid<br>C4    | d<br>0 Low<br>CS | La C6<br>Plate material Ty              | C C C Temp of C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1              | 7<br>Dperation B<br>70<br>125<br>125<br>125<br>125              | C8<br>Lower Tary<br>C8<br>Lattery Life (in Hou<br>2<br>7<br>2<br>2<br>7<br>8<br>8 | t Cance                                                                     | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>Impurity (No Rep | bicate)<br>1<br>4<br>2<br>3<br>9<br>6            | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911<br>-1.35245 | C14 | CIS |
| punt<br>s ar —<br>Im<br>Xbs<br>C1<br>trimer Ty       | d 10<br>Target<br>Heb<br>V C2-T 4<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>4 Spraying                                               | Upper<br>Upper<br>Fit Resid Std<br>C3<br>dhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1<br>6.3<br>orial Design and<br>Design | Resid<br>C4    | d<br>Low<br>CS   | r Target Upp                            | C<br>C<br>Temp of C<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 7<br>Dperation B<br>70<br>125<br>125<br>125<br>125              | C8<br>C8<br>C8<br>C8<br>C8<br>C8<br>C8<br>C8<br>C8<br>C8<br>C8<br>C8<br>C8<br>C   | c C9<br>C C9<br>C 0<br>C 9<br>C 9<br>C 9<br>C 9<br>C 9<br>C 9<br>C 9<br>C 9 | Ct0<br>Temp<br>125<br>125<br>125<br>125<br>150<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>Impurity (No Rep | 5<br>0/icate)<br>1<br>4<br>2<br>3<br>9<br>9<br>6 | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911<br>-1.35245 | C14 | CIS |
| рипt<br>S ar —<br>Im<br>Im<br>Sbs<br>C1<br>rrimer T; | d 10<br>Target<br>Heb<br>Purity (No<br>Realicate) I<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>2 Spraying | Upper<br>Fit Resid Std<br>C3<br>dhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1<br>6.3<br>rial Design and T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Resid<br>C4    | d<br>0<br>Low    | C6<br>Plate material Ty                 | C<br>C<br>Temp of C<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | 7<br>Dperation B<br>70<br>70<br>125<br>125<br>125<br>125<br>125 | C8<br>C8<br>C8<br>C8<br>C8<br>C8<br>C8<br>C8<br>C8<br>C8<br>C8<br>C8<br>C8<br>C   | c C9<br>C C9<br>C9<br>C9<br>C9<br>C9<br>C9<br>C9<br>C9<br>C9<br>C9          | Ct0<br>Temp<br>125<br>125<br>125<br>125<br>150<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>Impurity (No Rep | 2<br>dicate)<br>1<br>4<br>2<br>3<br>9<br>6       | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911<br>-1.35245 | C14 | C15 |

So, in setup what you have to do is that, this MINITAB automatically takes, but you can change the upper limit over here. So, if you want upper limits can be changed and target may be we can make it 0 and this may be upper bound may be 20. And this depends on you. So, there is no as such hard and first rules over here.

## (Refer Slide Time: 28:16)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nespons                                                                                                                                                                                                        | e Optimizer: Opti                                                                                                                                                                                        | ons                                        |                |                                               |                                                          |                                                | ×                                                      |                                                                |                                                        |                              |                                            |                                                                                   |     |     | a. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|-----------------------------------------------|----------------------------------------------------------|------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------|-----|-----|----|
| rile cdit Dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Constra                                                                                                                                                                                                        | aints                                                                                                                                                                                                    |                                            |                |                                               |                                                          |                                                |                                                        |                                                                |                                                        |                              |                                            |                                                                                   |     |     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                | Variable                                                                                                                                                                                                 | Constraint                                 | -              | Hold Value                                    | Lower                                                    | Upper                                          |                                                        |                                                                |                                                        |                              |                                            |                                                                                   |     |     |    |
| 1.0 11 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Temp                                                                                                                                                                                                           |                                                                                                                                                                                                          | Constrain to region                        | · 100          |                                               | 100                                                      | · 150                                          | *                                                      |                                                                |                                                        |                              |                                            |                                                                                   |     |     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pressu                                                                                                                                                                                                         | re                                                                                                                                                                                                       | Constrain to region                        | ¥ 25           |                                               | - 25                                                     | • 45                                           | •                                                      |                                                                |                                                        |                              |                                            |                                                                                   |     |     |    |
| General Linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r Mode                                                                                                                                                                                                         |                                                                                                                                                                                                          |                                            |                |                                               |                                                          |                                                |                                                        |                                                                |                                                        |                              |                                            |                                                                                   |     |     |    |
| ASYMETRIC F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACTOR                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                            |                |                                               |                                                          |                                                |                                                        |                                                                |                                                        |                              |                                            |                                                                                   |     |     |    |
| General Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | inea                                                                                                                                                                                                           |                                                                                                                                                                                                          |                                            |                |                                               |                                                          |                                                |                                                        |                                                                |                                                        |                              |                                            |                                                                                   |     |     |    |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.33                                                                                                                                                                                                           |                                                                                                                                                                                                          |                                            |                |                                               |                                                          |                                                |                                                        |                                                                |                                                        |                              |                                            |                                                                                   |     |     |    |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.66                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                            |                |                                               |                                                          |                                                |                                                        |                                                                |                                                        |                              |                                            |                                                                                   |     |     |    |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.33                                                                                                                                                                                                           |                                                                                                                                                                                                          |                                            |                |                                               |                                                          |                                                |                                                        |                                                                |                                                        |                              |                                            |                                                                                   |     |     |    |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.66                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                            |                |                                               |                                                          |                                                |                                                        |                                                                |                                                        |                              |                                            |                                                                                   |     |     |    |
| Deserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                            |                |                                               |                                                          |                                                |                                                        |                                                                |                                                        |                              |                                            |                                                                                   |     |     |    |
| Regressio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on Eq                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                            |                |                                               |                                                          |                                                |                                                        |                                                                |                                                        |                              |                                            |                                                                                   |     |     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Confide                                                                                                                                                                                                        | ence level for all int                                                                                                                                                                                   | ervals: 9                                  | 15             |                                               |                                                          |                                                |                                                        |                                                                |                                                        |                              |                                            |                                                                                   |     |     |    |
| Fits and D<br>Imp<br>Obs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Confide<br>Diagn Type of<br>purity<br>Replic Her                                                                                                                                                               | ence level for all int<br>f confidence level:                                                                                                                                                            | ervals: 9<br>Two-sided                     | 15<br>¥        |                                               |                                                          | 6 1                                            | Cancel                                                 |                                                                |                                                        |                              |                                            |                                                                                   |     |     |    |
| Fits and C<br>Imp<br>Obs 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Confide<br>Diagn Ivpe of<br>purity<br>Replic He                                                                                                                                                                | ence level for all int<br>f confidence level:                                                                                                                                                            | ervals: 9<br>Two-sided                     | i5<br>V        |                                               |                                                          |                                                | Cancel                                                 | 9 C10                                                          | C11                                                    | C12                          | 5                                          | C13                                                                               | C14 | C15 |    |
| Fits and D<br>Imp<br>Obs<br>C1<br>Primer Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Confide<br>Diagn Ivpe of<br>purity<br>Replic He<br>vpe Method                                                                                                                                                  | ence level for all int<br>f confidence level:<br>lp                                                                                                                                                      | ervals: 9<br>Two-sided                     | Plate ma       | terial Type Ter                               | mp of Operation                                          | n Battery Life (Ir                             | Cancel Hour)                                           | 39 C10<br>Temp                                                 | C11<br>Pressure II                                     | C12<br>mpurity (No Rep       | Sicate)                                    | C13<br>SRES                                                                       | C14 | C15 |    |
| Fits and D<br>Obs 1<br>Primer Ty<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Confide<br>Diagn Type of<br>purity<br>Replic He<br>ype Method<br>2 Dipping                                                                                                                                     | ence level for all int<br>f confidence level:<br>lp<br>Adhesive Force<br>5.0                                                                                                                             | ervals: 9                                  | Plate mat      | terial Type Ter<br>1                          | mp of Operation<br>71                                    | n Battery Life (Ir                             | Cancel<br>Hour)<br>80                                  | 9 C10<br>Temp<br>125                                           | C11<br>Pressure II<br>30                               | C12<br>mpurity (No Rep       | slicate)                                   | C13<br>SRES<br>0.07956                                                            | C14 | C15 | ¥  |
| Fits and D<br>Obs 1<br>Primer Ty<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Confide<br>Diagn Ivpe of<br>purity<br>Replic He<br>/pe Method<br>2 Dipping<br>2 Dipping                                                                                                                        | ance level for all int<br>f confidence level:<br>lp<br>Adhesive Force<br>5.6<br>4.5                                                                                                                      | ervals: 9                                  | Plate mat      | terial Type Ter<br>1<br>1                     | -<br>mp of Operation<br>71<br>71                         | Battery Life (Ir                               | Cancel<br>Hour)<br>80<br>75                            | 9 Ct0<br>Temp<br>125<br>125                                    | C11<br>Pressure II<br>30<br>35                         | C12<br>mpurity (No Rep       | slicate)<br>1                              | C13<br>SRES<br>0.07956<br>-1.11378                                                | C14 | C15 | v  |
| Fits and E<br>Imp<br>Obs 1<br>Primer Ty<br>7<br>8<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Confide<br>Diagn Type of<br>purity<br>Replic He<br>ype Method<br>2 Dipping<br>2 Dipping<br>2 Dipping                                                                                                           | ance level for all int<br>f confidence level:<br>lo<br>Adhesive Force<br>5.6<br>4.5<br>5.4                                                                                                               | ervals: 9                                  | Plate ma       | terial Type Ter<br>1<br>1<br>1                | mp of Operation<br>71<br>71<br>12:                       | Battery Life (Ir<br>0<br>5                     | Cancel<br>Hour)<br>80<br>75<br>20                      | 9 C10<br>Temp<br>125<br>125<br>125                             | C11<br>Pressure II<br>30<br>35<br>40                   | C12<br>npurity (No Rep       | blicate)                                   | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289                                     | C14 | CIS |    |
| Fits and E<br>Imp<br>Obs C1<br>Primer Ty<br>8<br>9<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Confee<br>Diagn<br>Ivpe or<br>purity<br>Replic<br>He<br>Method<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraying                                                                                            | ence level for all int<br>f confidence level:<br>b<br>Adhesive Force<br>5.6<br>4.5<br>5.4<br>5.8                                                                                                         | ervals: 9                                  | v<br>Plate mai | terial Type Ter<br>1<br>1<br>1<br>1           | mp of Operation<br>71<br>72<br>12:<br>12:                | Battery Life (Ir<br>0<br>5<br>5                | Cancel<br>Hour)<br>80<br>75<br>20<br>70                | 9 Ct0<br>Temp<br>125<br>125<br>125<br>125                      | C11<br>Pressure II<br>30<br>35<br>40<br>45             | C12<br>npurity (No Rep       | blicate)<br>1<br>4<br>2<br>3               | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822                         | C14 | C15 |    |
| Fits and C<br>Imp<br>Obs<br>F<br>Primer Ty<br>P<br>P<br>O<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Confide<br>purity<br>Replic<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying                                                                                                                 | troe level for all int<br>f confidence level:<br>b<br>Adhesive Force<br>5.6<br>4.5<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4                                                        | ervals: 9                                  | Plate mai      | terial Type Ter<br>1<br>1<br>1<br>1<br>1      |                                                          | n Battery Life (Ir<br>0<br>5<br>5<br>5         | Cancel                                                 | 9 Ct0<br>Temp<br>125<br>125<br>125<br>125<br>125<br>125        | C11<br>Pressure II<br>30<br>35<br>40<br>45<br>25       | C12<br>npurity (No Rep       | <b>Sicate</b> )<br>1<br>4<br>2<br>3<br>9   | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911             | C14 | C15 |    |
| Fits and C<br>Imp<br>Obs 1<br>Primer Ty<br>7<br>3<br>0<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Confide<br>Diagn<br>Type of<br>punity<br>Replic<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying<br>2 Spraying                                                                               | ance level for all int<br>f confidence level:<br>b<br>Adhesive Force<br>5.4<br>5.5<br>5.5<br>5.6<br>6.1<br>6.3                                                                                           | ervals: 9                                  | Plate mat      | terial Type Tee<br>1<br>1<br>1<br>1<br>1<br>1 | mp of Operation<br>71<br>12:<br>12:<br>12:<br>12:<br>12: | Battery Life (Ir<br>0<br>5<br>5<br>5<br>5      | Cancel                                                 | 9 Ct0<br>Temp<br>125<br>125<br>125<br>125<br>125<br>125<br>150 | C11<br>Pressure II<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>npurity (No Rep       | 2<br>Nicate)<br>1<br>4<br>2<br>3<br>9<br>6 | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911<br>-1.35245 | C14 | C15 |    |
| Fits and D<br>Imp<br>Obs I<br>Primer Ty<br>F<br>C1<br>Primer Ty<br>F<br>C1<br>Primer Ty<br>F<br>C2<br>Primer Ty<br>F<br>C4<br>Primer Ty<br>F<br>C4<br>Prim Ty<br>F<br>C4<br>Primer Ty<br>F<br>C4<br>Prim Ty<br>C4<br>Prim Ty<br>F<br>C4<br>Prim Ty<br>F<br>C4<br>Pri | Confide<br>Diagn<br>Type of<br>punity<br>Replic<br>2 Disping<br>2 Disping<br>2 Disping<br>2 Spraying<br>2 Spraying<br>2 Spraying                                                                               | ance level for al int<br>f confidence level:<br>b<br>Adhesive Force<br>5.4<br>5.5<br>5.5<br>5.5<br>6.1<br>6.1<br>6.1<br>6.1<br>6.2<br>6.1<br>6.1<br>6.1<br>6.1<br>6.1<br>6.1<br>6.1<br>6.1<br>6.1<br>6.1 | ervals: 9<br>Two-sided                     | Plate mat      | terial Type Te<br>1<br>1<br>1<br>1<br>1<br>1  | mp of Operation<br>71<br>12:<br>12:<br>12:<br>12:        | bak                                            | Cancel<br>Hourt)<br>80<br>75<br>20<br>70<br>82<br>58   | 9 Ct0<br>Temp<br>125<br>125<br>125<br>125<br>150<br>150        | C11<br>Pressure II<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>npurity (No Rep       | 2<br>vicate)<br>1<br>4<br>2<br>3<br>9<br>6 | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911<br>-1.35245 | C14 | C15 |    |
| Fits and D<br>Imp<br>Obs I<br>Primer Ty<br>P<br>Pimer Ty<br>P<br>P<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Confid<br>Diagn<br>Type or<br>purity<br>ree<br>Prevention<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>2 Spraying | ance level for all int<br>f confidence levels<br>Adhesive Force<br>5.6<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4                                                             | ervels: 9                                  | Plate mat      | terial Type Tee<br>1<br>1<br>1<br>1<br>1<br>1 |                                                          | Battery Life (Ir<br>0<br>5<br>5<br>5<br>5<br>4 | Cancel<br>(Hour)<br>80<br>75<br>20<br>70<br>82<br>58   | 9 Ct0<br>Temp<br>125<br>125<br>125<br>125<br>150<br>150        | C11<br>Pressure II<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>npurity (No Rep       | 2<br>1<br>4<br>2<br>3<br>9<br>6            | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911<br>-1.35245 | C14 | C15 |    |
| Fits and C<br>Dbs 1<br>Primer Ty<br>Primer Ty<br>2<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Confid<br>Diagn<br>Type or<br>purity<br>Realic<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>2 Spraying                                                     | ance level for all int<br>f confidence level:<br>b<br>Adhesive Force<br>5.6<br>4.5<br>5.7<br>6.1<br>6.1<br>6.1<br>6.1<br>6.1<br>6.1<br>6.1<br>6.1<br>6.1<br>6.1                                          | rvels: 9 Two-side Two-side Two-side Norman | Plate mail     | terial Type Tee<br>1<br>1<br>1<br>1<br>1      | mp of Operation<br>71<br>12:<br>12:<br>12:<br>12:<br>12: | Battery Life (Ir<br>0<br>5<br>5<br>5<br>5<br>4 | Cancel  <br> Hour)<br>80<br>75<br>20<br>70<br>82<br>58 | 9 C10<br>Temp<br>125<br>125<br>125<br>125<br>150<br>150        | C11<br>Pressure II<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>mpurity (No Rep<br>To | 2<br>dicate)<br>1<br>4<br>2<br>3<br>9<br>6 | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911<br>-1.35245 | C14 | C15 | -  |

Whether you want to apply constraints over here because optimization we are doing and it will search around the surface that will be generated and based on that. So, I can give constraint to the region. So, within the region of experimentation let us constraint to the region over here.

(Refer Slide Time: 28:40)

| File                                                                                                                           |                                                                                                                                                    |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                          |           |                                                              |                                                                                                                                                                                                     |                        |                                                 |     |                                                       |                                                     |                             |                                                                                       |                                                    |     |     | 8 |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------|-----|-------------------------------------------------------|-----------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------|-----|-----|---|
|                                                                                                                                | Edit Data                                                                                                                                          | Calc Stat                                                                                                               | Graph View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Help Assistan                                                                                                                                                                                                                                                                            | nt Add    | ditional Tools                                               |                                                                                                                                                                                                     |                        |                                                 |     |                                                       |                                                     |                             |                                                                                       |                                                    |     |     |   |
| <u> </u>                                                                                                                       | X 👳 E                                                                                                                                              | 064                                                                                                                     | 00 - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Response Optimi                                                                                                                                                                                                                                                                          | zer       |                                                              |                                                                                                                                                                                                     | ×                      |                                                 |     |                                                       |                                                     |                             |                                                                                       |                                                    |     |     |   |
|                                                                                                                                | i m mit                                                                                                                                            | IIII                                                                                                                    | YNDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                          |           |                                                              |                                                                                                                                                                                                     | di ta d                | U LY IS                                         | 19  |                                                       |                                                     |                             |                                                                                       |                                                    |     |     |   |
|                                                                                                                                |                                                                                                                                                    | 0 20                                                                                                                    | NER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Optimize up to 25                                                                                                                                                                                                                                                                        | 5 respone | ses:                                                         |                                                                                                                                                                                                     |                        |                                                 | 123 |                                                       |                                                     |                             |                                                                                       |                                                    |     |     |   |
| _                                                                                                                              |                                                                                                                                                    | COL.   sales                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Respons                                                                                                                                                                                                                                                                                  | se        | Goal                                                         | Target                                                                                                                                                                                              |                        |                                                 |     |                                                       |                                                     |                             |                                                                                       |                                                    |     |     |   |
| Gen                                                                                                                            | ieral Linear M                                                                                                                                     | odel: Imp                                                                                                               | * X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Impurity (No Rep                                                                                                                                                                                                                                                                         | plcate)   | Minimize •                                                   |                                                                                                                                                                                                     |                        |                                                 |     |                                                       |                                                     |                             |                                                                                       |                                                    |     |     |   |
| ≣ AS<br>Ger                                                                                                                    | SYMETRIC FAC                                                                                                                                       | ear Moc                                                                                                                 | iel: Impur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Response Optin                                                                                                                                                                                                                                                                           | nizer: Gr | aphs                                                         |                                                                                                                                                                                                     | ×                      |                                                 |     |                                                       |                                                     |                             |                                                                                       |                                                    |     |     |   |
| -                                                                                                                              | 25                                                                                                                                                 | 0.333 0.                                                                                                                | 593 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ✓ Optimization                                                                                                                                                                                                                                                                           | n plot    |                                                              |                                                                                                                                                                                                     |                        |                                                 |     |                                                       |                                                     |                             |                                                                                       |                                                    |     |     | 1 |
|                                                                                                                                | 35 3                                                                                                                                               | 2.333 0.                                                                                                                | 593 3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |           |                                                              |                                                                                                                                                                                                     |                        |                                                 |     |                                                       |                                                     |                             |                                                                                       |                                                    |     |     |   |
|                                                                                                                                | 40 .                                                                                                                                               | .667 0.                                                                                                                 | 593 -2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Help                                                                                                                                                                                                                                                                                     | J         |                                                              | X Cancel                                                                                                                                                                                            |                        |                                                 |     |                                                       |                                                     |                             |                                                                                       |                                                    |     |     |   |
| R                                                                                                                              | egression                                                                                                                                          | Equation                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                          | -         | Setup Og                                                     | tons Graphs                                                                                                                                                                                         |                        |                                                 |     |                                                       |                                                     |                             |                                                                                       |                                                    |     |     |   |
|                                                                                                                                |                                                                                                                                                    |                                                                                                                         | + 0.333 Pres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                          |           |                                                              |                                                                                                                                                                                                     | -                      |                                                 |     |                                                       |                                                     |                             |                                                                                       |                                                    |     |     |   |
| Fi                                                                                                                             | its and Dia<br>Impur<br>Obs Re                                                                                                                     | ignostics<br>ity (No<br>plicate)                                                                                        | for Unusual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Heb<br>Observations<br>Std Resid                                                                                                                                                                                                                                                         |           |                                                              | QK Cancel                                                                                                                                                                                           |                        |                                                 |     |                                                       |                                                     |                             |                                                                                       |                                                    |     |     |   |
| Fi                                                                                                                             | its and Dia<br>Impur<br>Obs Re<br>C1                                                                                                               | gnostics<br>ity (No<br>plicate)<br>C2-T                                                                                 | for Unusual<br>Fit Resid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Help<br>Observations<br>Std Resid<br>C4                                                                                                                                                                                                                                                  | C5        | <br>C6                                                       | QK Cancel                                                                                                                                                                                           | <br>C8                 | 2                                               | 09  | C10                                                   | C11                                                 | C12                         | 72 C13                                                                                |                                                    | C14 | C15 |   |
| Fi                                                                                                                             | its and Dia<br>Impur<br>Obs Re<br>C1<br>Primer Type                                                                                                | ity (No<br>plicate)<br>C2-T<br>Method                                                                                   | Fit Resid<br>C3<br>Adhesive For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Heb<br>Observations<br>Std Resid<br>C4<br>ce                                                                                                                                                                                                                                             | CS        | C6<br>Plate material Type                                    | QK Cancel<br>C7<br>Temp of Operation                                                                                                                                                                | C8<br>Battery Life (In | E<br>Hour)                                      | 69  | C10<br>Temp                                           | C11<br>Pressure                                     | C12<br>Impurity (No Replica | C13<br>(e) SRES                                                                       |                                                    | C14 | C15 |   |
| Fi                                                                                                                             | its and Dia<br>Impur<br>Obs Re<br>C1<br>Primer Type<br>2                                                                                           | ity (No<br>plicate)<br>C2-T<br>Method<br>Dipping                                                                        | Fit Resid<br>C3<br>Adhesive For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Heb<br>Observations<br>Std Resid<br>C4<br>Ce<br>6.6                                                                                                                                                                                                                                      | CS        | C6<br>Plate material Type<br>1                               | QK Cancel<br>C7<br>Temp of Operation<br>70                                                                                                                                                          | C8<br>Battery Life (In | Hour)<br>80                                     | 0   | C10<br>Temp<br>125                                    | C11<br>Pressure<br>30                               | C12<br>Impurity (No Replica | C13<br>(e) SRES<br>1 0.079                                                            | 156                                                | C14 | C15 |   |
| Fi<br>Fi                                                                                                                       | its and Dia<br>Impur<br>Obs Re<br>C1<br>Primer Type<br>2<br>2                                                                                      | ity (No<br>plicate)<br>C2-T<br>Method<br>Dipping<br>Dipping                                                             | Fit Resid<br>C3<br>Adhesive For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Heb<br>Observations<br>Std Resid<br>C4<br>C2<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4                                                                                                                                                               | C5        | C6<br>Plate material Type<br>1<br>1                          | C7<br>C7<br>Temp of Operation<br>70<br>70                                                                                                                                                           | C8<br>Battery Life (In | 2<br>Hour)<br>80<br>75                          | 0   | C10<br>Temp<br>125<br>125                             | C11<br>Pressure<br>30<br>35                         | C12<br>Impurity (No Replica | C13<br>(e) SRE5<br>1 0.079<br>4 -1.112                                                | i<br>156<br>178                                    | C14 | CIS |   |
| Fi                                                                                                                             | its and Dia<br>Impur<br>Obs Re<br>C1<br>Primer Type<br>2<br>2<br>2<br>2                                                                            | ty (No<br>policate)<br>C2-T<br>Method<br>Dipping<br>Dipping                                                             | Fit Resid<br>C3<br>Adhesive For<br>5<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Heb<br>Observations<br>Std Resid<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4                                                                                                                                                                           | cs        | C6<br>Plate material Type<br>1<br>1                          | QK Cancel<br>C7<br>Temp of Operation<br>70<br>70<br>125                                                                                                                                             | C8<br>Battery Life (In | 80<br>75<br>20                                  | (9  | C10<br>Temp<br>125<br>125                             | C11<br>Pressure<br>30<br>35<br>40                   | C12<br>Impurity (No Replica | 2 C13<br>(e) SRES<br>1 0.075<br>4 -1.112<br>2 1.276                                   | i<br>156<br>178<br>189                             | C14 | CIS |   |
| Fi<br>Fi                                                                                                                       | its and Dia<br>Impur<br>Obs Re<br>C1<br>Primer Type<br>2<br>2<br>2<br>2<br>2<br>2                                                                  | ity (No<br>plicate)<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Spraying                                                 | Fit Resid<br>C3<br>Adhesive For<br>5<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Heb<br>Observations<br>Std Resid<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4                                                                                                                                                                           | C5        | C6<br>Plate material Type<br>1<br>1<br>1<br>1                | C7<br>C7<br>Temp of Operation<br>70<br>70<br>125<br>125                                                                                                                                             | C8<br>Battery Life (In | 80<br>75<br>20<br>70                            | 0   | C10<br>Temp<br>125<br>125<br>125                      | C11<br>Pressure<br>30<br>35<br>40<br>45             | CT2<br>Impurity (No Replica | C13<br>(e) SRE5<br>1 0.079<br>4 -1.112<br>2 1.272<br>3 -0.316                         | i<br>156<br>178<br>189                             | C14 | CIS |   |
| Fi<br>8<br>9<br>0<br>11                                                                                                        | its and Dia<br>Impur<br>Obs Re<br>C1<br>Primer Type<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                          | ity (No<br>policate)<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying                         | Fit Resid<br>C3<br>Adhesive For<br>5<br>4<br>5<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Heb           Observations           Std Resid           C4           ce           .66           .99           .64           .63           .64                                                                                                                                           | C5        | C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1           | C7<br>C7<br>Temp of Operation<br>70<br>70<br>125<br>125<br>125                                                                                                                                      | C8<br>Battery Life (In | 20<br>Hour)<br>80<br>75<br>20<br>70<br>82       | (9  | C10<br>Temp<br>125<br>125<br>125<br>125<br>125        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25       | C12<br>Impurity (No Replica | C13<br>(e) SRES<br>1 0.079<br>4 -1.112<br>2 1.276<br>3 -0.318<br>9 -0.159             | i<br>178<br>189<br>122<br>111                      | C14 | CIS |   |
| Fi<br>*<br>7<br>8<br>9<br>0<br>11<br>2                                                                                         | tts and Dia<br>Impur<br>Obs Re<br>Ct<br>Primer Type<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | ity (No<br>policate)<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying                         | Fit Resid<br>C3<br>Adhesive For<br>5<br>6<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heb           Observations           Std Resid           C4           C6           10           11           13                                                                                                                                                                          | G         | C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1      | C7           C7           Temp of Operation           70           70           125           125           125           125           125           125           125           125           125 | C8<br>Battery Life (In | 10<br>Hour)<br>80<br>75<br>20<br>70<br>82<br>58 | (9  | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>Impurity (No Replica | C13<br>(e) SRES<br>1 0.079<br>4 -1.112<br>2 1.277<br>3 -0.316<br>9 -0.159<br>6 -1.350 | i<br>156<br>178<br>189<br>122<br>111<br>145        | C14 | CIS |   |
| Fi<br>*<br>7<br>8<br>9<br>10<br>11<br>2<br>4<br>1                                                                              | its and Dia<br>Impur<br>Obs Re<br>Ct<br>Primer Type<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | ity (No<br>policate)<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying             | Fit Resid<br>C3<br>Adhesive For<br>5<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Heb           Observations           Std Resid           C4           ce           10           10           10           10           10           10           10           10           10           10           11           12           13           13           10           Tw | CS        | C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | C7<br>C7<br>Temp of Operation<br>70<br>70<br>125<br>125<br>125                                                                                                                                      | C8<br>Battery Life (in | 80<br>75<br>20<br>70<br>82<br>58                | 0   | C10<br>Temp<br>125<br>125<br>125<br>125<br>150        | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>Impurity (No Replica | C13<br>(e) SRE5<br>1 0.079<br>4 -1.112<br>2 1.277<br>3 -0.318<br>9 -0.159<br>6 -1.353 | \$<br>956<br>178<br>889<br>122<br>911<br>11<br>245 | C14 | CIS |   |
| Fi<br>*<br>7<br>8<br>9<br>10<br>11<br>12<br>4<br>1<br>12<br>4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Its and Dia<br>Impur<br>Obs Re<br>Ct<br>Primer Type<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | ity (No<br>plicate)<br>C2-T<br>Method<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying | Fit Resid<br>Fit Resid<br>C3<br>Adhesive For<br>5<br>4<br>5<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>8<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>8<br>8<br>7<br>8<br>7<br>8<br>8<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | Heb           Observations           Std Resid           C4           ce           .6           .9           .4           .5           .6           .10           .11           .13           .13           .14           .13           .14           .15           .16           .17    | C5        | C6<br>Plate material Type<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | C7<br>C7<br>Temp of Operation<br>70<br>70<br>125<br>125<br>125<br>125<br>125                                                                                                                        | C8<br>Battery Life (in | 80<br>75<br>20<br>70<br>82<br>58                | 0   | C10<br>Temp<br>125<br>125<br>125<br>125<br>150<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12<br>Impurity (No Replica | C13<br>(e) SRE5<br>1 0.075<br>4 -1.112<br>2 1.277<br>3 -0.316<br>9 -0.155<br>6 -1.352 | i<br>156<br>178<br>189<br>122<br>911<br>145        | C14 | CIS |   |

In this case I will click ok and graphically if you want to see optimization plot will be given and if you want to store something we can store and then we click OK what will happen is that.

## (Refer Slide Time: 28:48)

| Sile Edit Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |                                               |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     | -   | 0 : |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-----------------------------------------------|------------------------------------------------------------------|---------------------------|----------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|-----|-----|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Calc Stat                                                                                                                                    | Graph View H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lelo Assir | tant Add | itional Tools                                 |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00         | fx 3a    | -21 B W. d                                    |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nnn!                                                                                                                                         | W > A B A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L N        | 1971 4   | 花 湖 亲 共 LV                                    | S B G L & M                                                      | 59 . <b></b>              | v 12.59                                            |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
| 1.0 m -0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | Del 1 M  |                                               |                                                                  | Di la co a                | 1 19 15                                            |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | w r.                                                                                                                                         | C BEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12         | 161      | 199 15. 1                                     |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
| Response Optimi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ization: I                                                                                                                                   | ¥ X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |          |                                               |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
| ASYMETRIC FAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TORIAL DESI                                                                                                                                  | IN AND TWO-WAY AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XWM.AVO    |          |                                               |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
| Response C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ptimiza                                                                                                                                      | tion: Impurit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y (No F    | Replicat | te)                                           |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |                                               |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |                                               |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     | 2   |
| Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                              | Soal Lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tarnet     | Uppera   | Weight Importance                             |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
| Impurity (No F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Replicate)                                                                                                                                   | Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0          | 260      | 1 1                                           |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |                                               |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
| Variable Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nges                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |                                               |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
| Undekle 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |                                               |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
| Temo 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.125.150                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |          |                                               |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
| Pressure 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |                                               |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
| ressure au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , 30, 35, 40, 4                                                                                                                              | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          |                                               |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
| resole 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , 30, 35, 40, 4                                                                                                                              | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          |                                               |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
| Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , 30, 35, 40, 4                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          |                                               |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     |     |
| Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , 30, 35, 40, 4                                                                                                                              | Impurity (N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5          |          |                                               |                                                                  |                           |                                                    |                                                                            |                                                     |                                                                 |                                                                                   |     |     | v   |
| Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , 30, 35, 40, 4                                                                                                                              | Impurity (N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64         | 6        | 66                                            | a                                                                | <b>C8</b>                 | - 0                                                | C10                                                                        | CII                                                 | C12 -                                                           | CI3                                                                               | CIA | C15 | ¥   |
| Solution<br>C1<br>Primer Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2-T<br>e Method                                                                                                                             | Impurity (No<br>C3<br>Adhesive Force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C4         | CS       | C6<br>Plate material Type                     | C7<br>Temp of Operation                                          | C8<br>Battery Life (In H- | g C9<br>pur)                                       | C10<br>Temp                                                                | C11<br>Pressure                                     | C12 Z<br>Impurity (No Replicate)                                | C13<br>SRES                                                                       | C14 | C15 | ¥   |
| Solution<br>C1<br>Primer Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2-T<br>e Method<br>2 Dipping                                                                                                                | Impurity (Nr<br>C3<br>Adhesive Force<br>5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c4         | CS       | C6<br>Plate material Type                     | C7<br>Temp of Operation<br>70                                    | C8<br>Battery Life (In He | 2 C9<br>our)<br>80                                 | C10<br>Temp<br>125                                                         | C11<br>Pressure<br>30                               | C12 12<br>Impurity (No Replicate)                               | C13<br>SRES<br>0.07956                                                            | C14 | C15 | ¥   |
| Solution<br>C1<br>Primer Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2-T<br>e Method<br>2 Dipping<br>2 Dipping                                                                                                   | Impurity (N/<br>C3<br>Adhesive Force<br>5.6<br>4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C4         | CS       | C6<br>Plate material Type<br>1                | C7<br>Temp of Operation<br>70<br>70                              | C8<br>Battery Life (In He | z C9<br>pur)<br>80<br>75                           | C10<br>Temp<br>125<br>125                                                  | C11<br>Pressure<br>30<br>35                         | C12 12<br>Impurity (No Replicate)<br>1                          | C13<br>SRES<br>0.07956<br>-1.11378                                                | C14 | C15 | v   |
| Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C2-T<br>e Method<br>2 Dipping<br>2 Dipping                                                                                                   | Impurity (N-<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C4         | CS       | C6<br>Plate material Type<br>1                | C7<br>Temp of Operation<br>70<br>70<br>125                       | C8<br>Battery Life (in He | cg<br>pur)<br>80<br>75<br>20                       | Ct0<br>Temp<br>125<br>125<br>125                                           | C11<br>Pressure<br>30<br>35<br>40                   | C12 [2]<br>Impurity (No Replicate)<br>1<br>4<br>2               | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289                                     | C14 | C15 |     |
| Solution C1 Primer Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2-T<br>e Method<br>2 Dipping<br>2 Dipping<br>2 Spraying                                                                                     | Impurity (N-<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4         | CS       | C6<br>Plate material Type                     | C7<br>Temp of Operation<br>70<br>125<br>125                      | C8<br>Battery Life (in He | 2 C9<br>Dur)<br>80<br>75<br>20<br>70               | Ct0<br>Temp<br>125<br>125<br>125<br>125                                    | C11<br>Pressure<br>30<br>35<br>40<br>45             | C12 Z<br>Impurity (No Replicate)<br>1<br>4<br>2<br>3            | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822                         | C14 | C15 | ¥   |
| Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C2-T<br>e Method<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying                                                                       | Impurity (N<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>5.8<br>6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C4         | CS       | C6<br>Plate material Type<br>1<br>1           | C7<br>Temp of Operation<br>70<br>125<br>125<br>125<br>125        | C8<br>Battery Life (in H  | 2 C9<br>our)<br>80<br>75<br>20<br>70<br>82         | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>125                      | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25       | C12 p<br>Impurity (No Replicate)<br>1<br>4<br>2<br>3<br>9       | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911             | C14 | C15 |     |
| Solution C1 Primer Type C S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2-T<br>e Method<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying<br>2 Spraying                                                         | Impurity (N<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1<br>6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64         | CS       | C6<br>Plate material Type<br>1<br>1<br>1      | C7<br>Temp of Operation<br>70<br>125<br>125<br>125<br>125<br>125 | C8<br>Battery Life (in H  | 2 C9<br>50ut)<br>80<br>75<br>20<br>70<br>82<br>58  | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>125<br>125<br>150<br>150 | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 12<br>Impurity (No Replicate)<br>1<br>4<br>2<br>3<br>9<br>6 | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911<br>-1.35245 | C14 | C15 |     |
| Solution           •         C1           Primer Type           7         4           8         4           9         4           4         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2-T<br>Method<br>Dipping<br>Dipping<br>Dipping<br>Spraying<br>Spraying<br>Spraying<br>Spraying<br>Spraying                                  | Impurity (No<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1<br>6.3<br>sctorial Design and 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C4         | CS       | C6<br>Plate material Type<br>1<br>1<br>1      | C7<br>Temp of Operation<br>70<br>125<br>125<br>125<br>125<br>125 | C8<br>Battery Life (in He | 2 C9<br>20041)<br>80<br>75<br>20<br>70<br>82<br>58 | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>125<br>150               | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 p<br>Impurity (No Replicate)<br>4<br>2<br>3<br>9<br>6       | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911<br>-1.35245 | C14 | C15 |     |
| Solution Ct Primer Type 7 3 3 0 1 2 4 P H + 4 Ct Ct Primer Type 7 3 4 P Ct Ct Primer Type 7 4 P Ct P Ct Primer Type 7 4 P Ct P Ct Primer Type 7 4 P Ct P | C2-T<br>e Method<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>5 Spraying<br>5 Spraying<br>5 Spraying<br>5 Spraying | Impurity (N<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>5.8<br>6.1<br>6.3<br>ctorial Design and<br>7 no-way AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C4         | CS       | C6<br>Plate material Type<br>1<br>1<br>1<br>1 | C7<br>Temp of Operation<br>70<br>125<br>125<br>125<br>125<br>125 | C8<br>Battery Life (in He | 2 C9<br>20ur)<br>80<br>75<br>20<br>70<br>82<br>58  | C10<br>Temp<br>125<br>125<br>125<br>125<br>125<br>150<br>150               | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | C12 zz<br>Impurity (No Replicate)<br>4<br>2<br>3<br>9<br>6      | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911<br>-1.35245 | C14 | C15 |     |
| Solution C1 Primer Type Primer Type C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C2-T<br>e Method<br>2 Dipping<br>2 Dipping<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>2 Spraying<br>4 Symetric Fa                          | Impurity (N<br>C3<br>Adhesive Force<br>5.6<br>4.9<br>5.4<br>4.9<br>5.4<br>6.3<br>6.3<br>6.1<br>6.3<br>10<br>ctorial Design and To<br>involve Adhesive Adh | C4         | CS       | C6<br>Plate material Type                     | C7<br>Temp of Operation<br>70<br>125<br>125<br>125<br>125        | CB<br>Battery Life (In He | 5 C9<br>500000<br>75<br>20<br>70<br>82<br>58       | C10<br>Temp<br>125<br>125<br>125<br>125<br>150<br>150                      | C11<br>Pressure<br>30<br>35<br>40<br>45<br>25<br>30 | Ct2 zz<br>Impurity (No Replicate)<br>1<br>4<br>2<br>3<br>9<br>6 | C13<br>SRES<br>0.07956<br>-1.11378<br>1.27289<br>-0.31822<br>-0.15911<br>-1.35245 | CI4 | C15 |     |

It will give you a best combination like that. So, the best combination that is given by this MINITAB software is solution 1.

(Refer Slide Time: 28:53)

| Mi         | nitab - Untitle   | d              |                      |           |          |                                        |                        |                  |            |      |        |     |                      |             |     | -    | 8  |
|------------|-------------------|----------------|----------------------|-----------|----------|----------------------------------------|------------------------|------------------|------------|------|--------|-----|----------------------|-------------|-----|------|----|
| File       | Edit Data         | Calc Stat      | Graph View           | Help Assi | stant Ad | ditional Tools                         |                        |                  |            |      |        |     |                      |             |     |      |    |
|            |                   | 0000           | C B BB               | 00        |          | ************************************** |                        | A 150 L          | LW M       | 50   |        |     |                      |             |     |      |    |
|            | 0 11 00 1         | 1010           | NERE                 |           |          |                                        | C B C X                | -> 20 : 0, 0 0   |            | ¥ 83 |        |     |                      |             |     |      |    |
|            |                   | M. T. J        | CIPE                 | × : 🗠     | 1.61     | PEX                                    |                        |                  |            |      |        |     |                      |             |     |      |    |
| Res        | ponse Optim       | ization: I     | * X                  |           |          |                                        |                        |                  |            |      |        |     |                      |             |     |      |    |
| 8 4        | SYMETRIC FAC      | TORIAL DESIG   | IN AND TWO-WAY A     | NOVA.MWX  |          |                                        |                        |                  |            |      |        |     |                      |             |     |      |    |
| Re         | sponse C          | optimizat      | tion: Impuri         | ty (No I  | Replica  | te)                                    |                        |                  |            |      |        |     |                      |             |     |      |    |
| _          |                   |                |                      |           | _        |                                        |                        |                  |            |      |        |     |                      |             |     |      | 1  |
| s          | olution           |                |                      |           |          | *                                      |                        |                  |            |      |        |     |                      |             |     |      |    |
|            |                   |                | Impurity (N          | la        |          | Send to Microsoft®                     | Word                   |                  |            |      |        |     |                      |             |     |      |    |
|            |                   |                | Replicat             | e) Comp   | osite    | Send to Microsoft®                     | PowerPoint             |                  |            |      |        |     |                      |             |     |      |    |
| Con la con | iolution Te       | mp Pressu      | re F                 | it Desira | bility   | Send to Companion                      |                        |                  |            |      |        |     |                      |             |     |      |    |
| 1          | 12                | 5 40           | 0.93333              | 13 0.95   | 3333     | Send to Minitab Wo                     | rkspace"               |                  |            |      |        |     |                      |             |     |      |    |
|            |                   |                |                      |           |          | Copy at Physics                        | Ctri+C                 |                  |            |      |        |     |                      |             |     |      |    |
| 1          | Aultiple Re       | sponse Pr      | ediction             |           |          | Conv Column                            |                        |                  |            |      |        |     |                      |             |     |      |    |
| 1          | /ariable S        | ietting        |                      |           |          | Decimal Places                         | ,                      |                  |            |      |        |     |                      |             |     |      |    |
|            | Pressure          | 40             |                      |           |          | Print                                  |                        |                  |            |      |        |     |                      |             |     |      |    |
|            | lesnonse          |                | Fit SE Fit           | 95% CI    | 20       | × Delete                               |                        |                  |            |      |        |     |                      |             |     |      |    |
|            |                   |                |                      |           |          |                                        |                        |                  |            |      |        |     |                      |             |     |      |    |
|            | Cl<br>Drimar Turn | C2-T           | C3<br>Adhesive Force | C4        | CS       | C6<br>Diste material Tune              | C7<br>Temp of Operatic | C8               | E<br>Hourt | C9   | C10    | CII | C12                  | C13         | C14 | CIS  |    |
|            | enner type        | 2 Dipping      | 5.6                  |           |          | Plate material type                    | remp or operade        | n buttery bie (m | 80         |      | 125    | 30  | imparty (no repicate | 1 0.07956   |     |      |    |
|            |                   | 2 Dipping      | 4.9                  |           |          | 1                                      |                        | ro               | 75         |      | 125    | 35  |                      | 4 -1.11378  |     |      |    |
|            |                   | 2 Dipping      | 5.4                  |           |          | 1                                      | 12                     | 15               | 20         |      | 125    | 40  |                      | 2 1.27289   |     |      |    |
|            | 1                 | 2 Spraying     | 5.8                  |           |          | 1                                      | 12                     | 15               | 70         |      | 125    | 45  |                      | 3 -0.31822  |     |      |    |
|            |                   | 2 Spraying     | 6.1                  |           |          | 1                                      | 12                     | 15               | 82         |      | 150    | 25  |                      | 9 -0.15911  |     |      |    |
|            |                   | 2 Spraving     | 6.3                  |           |          | 1                                      | 12                     | 15               | 58         |      | 150    | 30  |                      | 6 -1.35245  |     |      |    |
| 4          | DH +              | Asymetric Fa   | ctorial Design and   | Tw        |          |                                        |                        | 4                |            |      |        |     |                      |             |     |      |    |
| 1          | Asymetric         | Factorial Desi | gn and Two-way Al    | NOVA.mwx  |          |                                        |                        |                  |            |      |        |     |                      | - 🗆         | 10  | 20   |    |
| N          | O Tvn             | e here to se   | earch                |           |          | 0 📮 🔒                                  | <b>a N</b>             | 10 - 0           | D          |      | III XB | 51  | A 6                  | i 940 @ dt  | 15  | TEN. | R  |
| P          | IL UP             | e mere to se   | Lonen                |           | _        | × <u>•</u> •                           |                        |                  | W.         | ♥ ∐  |        |     | <u> </u>             | 5 mm 118 41 | 1 3 | 1000 | 10 |

One of the solution is temperature combination of 125 and pressure at 40 that is giving me one indicator over here what I will just highlight over here which we will discuss afterwards.

#### (Refer Slide Time: 29:09)



And this is the indicator that MINITAB uses which is known as desirability which is known as desirability and this is the last quantity it is close to one indicates that that is the best solution we are near to the best solution basically ok we are trying to minimize and if the score is near to 1.

So, this is one of the measures that is used which is known as desirability and one of the measure here it is composite desirability, but we have only one CTQs that is why we will get the same measures of desirability and composite desirability over here that we will discuss afterwards. But my intention was to show that MINITAB can give you some solution if CTQ is continuous and temperature and pressure is continuous.

(Refer Slide Time: 29:49)



MINITAB can search on the surface using optimization algorithm and it can give you the best possible combination that is temperature at 125.

(Refer Slide Time: 29:55)

| otimal<br>0.9533 High | Temp<br>150 | Pressure<br>45 |   |  |
|-----------------------|-------------|----------------|---|--|
| Low                   | 100         | 25             | Ø |  |
| Impurity              |             |                |   |  |
| Minimum<br>y = 0.9333 |             |                |   |  |
| = 0.95333             |             | •              | • |  |
|                       |             |                |   |  |
|                       |             |                |   |  |
|                       |             |                |   |  |
|                       |             |                |   |  |
|                       |             |                |   |  |
|                       |             |                |   |  |
|                       |             |                |   |  |
|                       |             |                |   |  |
| ap                    |             |                |   |  |
|                       |             | · · ·          |   |  |

So, this you can see temperature at 125 and pressure at 40.

## (Refer Slide Time: 30:01)



And this you can see that there is a red, red highlights that you are seeing over here that is best combination. MINITAB has figured out like that and it will give you a y values of approximately 0.9333 ok. So, that is near to one we can assume like that impurity is less like that.

So, MINITAB gives you and this is the best option MINITAB using the search algorithm that it is using it will give you some best conditions. So, what we have done over here in two way analysis of variance, we have taken factors which are categorical and CTQ which is continuous.

So, the experiment was done and asymmetric design was used, and in this case there is no replicate basically n is equal to 1 means there is no replicate and how to analyse that one how to figure out whether interaction is there or not and how to see and how to optimize the data sets like that and find out the best combination of temperature and pressure like that.

So, those things are discussed over here more complex relationship and understanding of this theories can be seen using you can see Montgomery's books like that. So, we will stop over here and we will move on to a new topic. So, now, we are entering into design of experiments, but before that what is required is that we need to know one important topic which is known as measurement system analysis.

So, we will just discuss measurement system analysis and why it is required. Because before I go into design of experiments this is one of the area we should also understand because that is very helpful because if the instruments is not correct then the measurement that we are taking has no values basically.

So, until and unless we measure accurately and that has to be ensured. So, after experimentation this CTQ value that you are getting if the instrument is not correct these values will be different and the results will be different. So, the purpose will not be solved. I will not get the optimal condition and pseudo-optimal condition we will get. So, that is required. So, what is measurement system analysis, we will try to see in our next session.

Thank you for listening.