
Quality Control and Improvement with MINITAB Prof. Indrajit Mukherjee Shailesh J. Mehta School of Management Indian Institute of Technology, Bombay

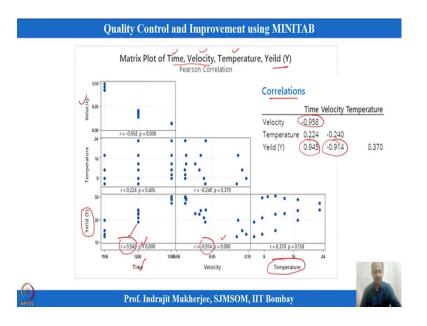
Lecture - 27 Multicollinearity, Best Subset Regression, Multiple Regression, Basics on Design of Experiment

Hello and welcome to our session 27 on Quality Control and Improvement with MINITAB. I am Professor Indrajit Mukherjee from Shailesh J Mehta School of Management, IIT Bombay. So, previous session what we are doing is that, we are discussing about the multiple regression and multicollinearity problems like that. So, we will take another examples to again emphasize on the importance of how to tackle Multicollinearity like that ok.

(Refer Slide Time: 00:45)

So multicollinearity, what we have explained is that relationship between X variables that exist, and that can distort the relationship between what is and we are not able to generalize the equations which can be used in reality for prediction like that ok. So, we need to deal with this and variation inflation factor that we have to calculate and try to see that it is not more than 5.

(Refer Slide Time: 01:12)


And, if it is more than 5 then we have to adopt some other means to deal with that. And how to deal with that? That we have mentioned over here. That means, highly correlated variables, one of them will we can take and the other ones can be eliminated. And, we can attempt stepwise regression method which takes care of which can suggest that which are the variables to be taken and we can reconfirm the multicollinearity exist or not in the final models like that ok.

And, we can also see best subset regression where multiple options exist because we do not want to stop only considering what stepwise regression gives. Because, some sometimes what happens say, alternate model is easy to control in real life; that means, those variables are easy to control which is suggested.

And if it is fine, if we have to sacrifice some amount of R square values or something like that, that is not a constraint for us in production processes, but variables which are very difficult to control and stepwise regression keeps those variables in the final equation then it becomes difficult for us to change that one, if we adopt that one, so in that case it becomes difficult. So, best subset regression gives you some more options to select the variables like that.

Then, appropriate methods like partial least square regression, principal component regression all these things can be adopted ok.

(Refer Slide Time: 02:27)

So, we will take one more examples where we have variables like, yield is the Y characteristics and this depends on time, velocity and temperature. These are the variable X that was considered to be significant or potential variables and we want to get a model out of this regression model out of this. All are continuous variable over here, so in this case.

And when we did the correlation analysis of this correlation analysis, what we observe is that velocity is highly correlated with time variables over here and then we can see that yield is highly correlated with time, velocity over here. So, but this P-Value will indicate whether which of the variable is highly correlated.

So, yield is one of the variables. So this seems to be significant over here, velocity is also significant over here, but temperature does not seem to be significantly influencing the yields over here ok. And, what we can see is that temperature with time is not significant, temperature with velocity is also not significant ok.

So, velocity with time is highly correlated, this with time velocity and time is highly correlated over here. So, this correlation matrix gives you some preliminary information, what is expected means when we run the regression analysis, what is expected in all these variables. So what we can see is that time and velocity are two variables which are highly correlated, so one we have to adopt over here. So how do we select which one to adopt over here? So, maybe when we do a trial and error basis.

If we have to select the variables the policy may be that, because yield is the correlation coefficient is 945 for time and for velocity is 914 maybe this variable we should select like that ok. Time may be the only variable and replace the velocity with the time like that.

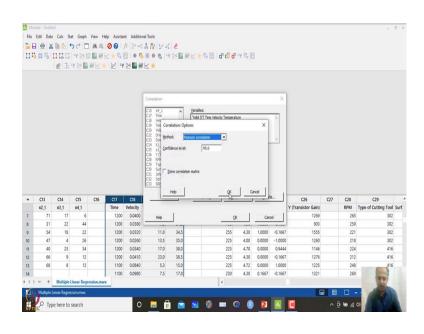
So, yield has to be regressed with time and, if temperature is significant then we will include that one. So anyhow, this is the suggested one of the guidelines. So, which is highly correlated with the Y variable, we can select that one. And, we want to see that what happens if we select stepwise regression what happens like that.

(Refer Slide Time: 04:38)

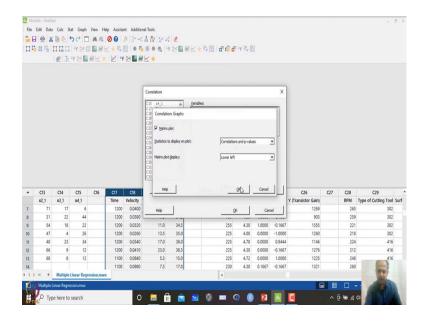
File		Calc Si	ליר יז ⊠נ	1 H H		fx]= -1	は日日 2/2 ●服素者		s K +	(🌣 🔠 🐻 🐻 I	9" Y 10 [1						8
								Mi		open Ctr1+0 Project Ctr1+Shift								
								1	New Wor	ksheet Ctrl+N								
•	C13	C14	C15	C16	C17	C18	C19	C20 5	Vew Wor	ksheet Ctrl+N	C23	C24	C25	C26	C27	C28	C29	
	x2_1	x3_1	C15 x4_1	C16	C17 Vortime	Velocity	Temperature	C20 g Yeild (Y)		C22 Drive in time (X1)	Dose (X2)	X1_STD	x2_STD	Y (Transistor Gain)	C27	RPM	Type of Cutting Too	
	x2_1 71	x3_1 17	x4_1 6	C16	1200	Velocity 0.0400	Temperature 5.3	C20 5 Yeild (Y) 28.0		C22 Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	Q7	RPM 265	Type of Cutting Too 302	2
	x2_1 71 31	x3_1 17 22	x4_1 6 44	C16	1200 1200	Velocity 0.0400 0.0380	Temperature 5.3 7.5	C20 5 Yeild (Y) 28.0 31.5		C22 Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	C27	RPM 265 259	Type of Cutting Too 303 303	2
	x2_1 71 31 54	x3_1 17 22 18	x4_1 6 44 22	C16	1200 1200 1200	Velocity 0.0400 0.0380 0.0320	Temperature 5.3 7.5 11.0	C20 5 Yeild (Y) 28.0 31.5 34.5		C22 Drive in time (X1) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	C27	RPM 265 259 221	Type of Cutting Too 302 302 303 303 303	2 2 2
	x2_1 71 31 54 47	x3_1 17 22 18 4	x4_1 6 44 22 26	C16	1200 1200 1200 1200	Velocity 0.0400 0.0380 0.0320 0.0260	Temperature 5.3 7.5 11.0 13.5	C20 75 Yeild (Y) 28.0 31.5 34.5 35.0		C22 Drive in time (Xt) 225 195 255 225	Dose (X2) 4,60 4.30 4.30 4.00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	C27	RPM 265 259 221 218	Type of Cutting Too 300 300 300 300 300 300 300	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
,	x2_1 71 31 54 47 40	x3_1 17 22 18 4 23	x4_1 6 44 22 26 34	C16	1200 1200 1200 1200 1200	Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	Temperature 5.3 7.5 11.0 13.5 17.0	C20 2 Yeild (Y) 28.0 31.5 34.5 35.0 38.0		C22 Drive in time (Xt) 225 195 255 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cutting Too 300 300 300 300 416	2 2 2 2 6
)	x2_1 71 31 54 47 40 66	x3_1 17 22 18 4	x4_1 6 44 22 26 34 12	C16	1200 1200 1200 1200 1200 1200 1200	Velocity 0.0400 0.0380 0.0320 0.0260 0.0260 0.0340 0.0410	Temperature 5.3 7.5 11.0 13.5 17.0 23.0	C20 2 Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.5		C22 Drive in time (Xt) 195 2255 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	27	RPM 265 259 221 218 224 212	Type of Cutting Too 300 300 300 300 416 416	2 2 2 2 6 6
, , , , , , , , , , , , , , , , , , ,	x2_1 71 31 54 47 40	x3_1 17 22 18 4 23	x4_1 6 44 22 26 34	C16	1200 1200 1200 1200 1200 1200 1200 1100	Velocity 0.0400 0.0380 0.0320 0.0260 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	C20 28 Veild (Y) 28.0 31.5 34.5 35.0 38.0 38.5 15.0		C22 Drive in time (X1) 225 195 225 225 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	C27	RPM 265 259 221 218 224 212 212 248	Type of Cutting Too 300 300 300 300 416	2 2 2 2 6 6
	x2_1 71 31 54 47 40 66 68	x3_1 17 22 18 4 23 9 8	x4_1 6 44 22 26 34 12 12		1200 1200 1200 1200 1200 1200 1200 1100 1100	Velocity 0.0400 0.0380 0.0320 0.0260 0.0260 0.0340 0.0410	Temperature 5.3 7.5 11.0 13.5 17.0 23.0	C20 2 Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.5		C22 Drive in time (XI) 225 195 225 225 225 225 225 225 225 225 225 2	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	Q7	RPM 265 259 221 218 224 212	Type of Cutting Too 300 300 300 300 416 416	2 2 2 2 6 6
	х2_1 71 31 54 47 40 66 68 68 н +	x3_1 17 22 18 4 23 9 8 8 Multiple	x4_1 6 44 22 26 34 12 12 12 Uinear Regr		1200 1200 1200 1200 1200 1200 1200 1100 1100	Velocity 0.0400 0.0380 0.0320 0.0260 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	C20 28 Veild (Y) 28.0 31.5 34.5 35.0 38.0 38.5 15.0		C22 Drive in time (X1) 225 195 225 225 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225 1321		RPM 265 259 221 218 224 212 248 260	Type of Cutting Too 300 300 300 300 300 410 410 410 410	2 2 2 2 6 6
, , , , , , , , , , , , , , , , , , ,	х2_1 71 31 54 47 40 66 68 68 н +	x3_1 17 22 18 4 23 9 8	x4_1 6 44 22 26 34 12 12 12 Uinear Regr		1200 1200 1200 1200 1200 1200 1200 1100 1100	Velocity 0.0400 0.0380 0.0320 0.0260 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3 7.5	C20 28 Veild (Y) 28.0 31.5 34.5 35.0 38.0 38.5 15.0		C22 Drive in time (XI) 225 195 225 225 225 225 225 225 225 225 225 2	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225		RPM 265 259 221 218 224 212 212 248	Type of Cutting Too 300 300 300 300 300 410 410 410 410	2 2 2 2 6 6

So, this is the data set C11 to C20. This is the data set that we are having and we want to; we want to implement this.

(Refer Slide Time: 04:48)

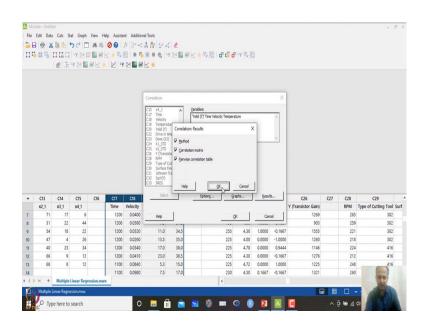

	Edit Data		at Graph Basic Stati Regression ANOVA		Assistant	Store Descrip	riptive Statistics		K I	- 4 🗄 🗗 🗗 t	P 44 85 8	1						
		<u>ac</u> ,	DOE Control C Quality To Reliability Predictive Multivaria Time Senis Tables Nonparan Equivalen Power ann	ols /Survival Analytics te ts netrics	ε • <u>Μ</u> σ ¹ Δ	1-Sample Z. 1-Sample L. 2-Sample L. Paired L. 1 Proportion 2 Proportion 1-Sample Pc 2-Sample Pc 2-Sample Pc 1 Variance 2 Variances Coverlation Covariance Normality Ta	 S isson Rate isson Rate St		New	Open Cr/HO Project Cr/HShift rksheet Cr/HN								
+	C13	C14	C15	C16	C17				C21	C22	C23	C24	C25	C26	C27	C28	C29	
	x2_1	x3_1	x4_1		There A		-Fit Test for Poi	sson		Drive in time (X1)	Dose (X2)	X1_STD	x2_STD	Y (Transistor Gain)		RPM	Type of Cutting Tool	Surf
	71	17	6		1200	0.0400	5.3	28.0		225	4.60	0.0000	0.6667	1269		265	302	
7					1200	0.0380	7.5	31.5		195	4.30	-1.0000	-0.1667	903		259	302	
7	31	22	44		1200					200		1.0000	-0.1667	1555		221	302	
		22	44	_	1200	0.0320	11.0	34.5		255	4.30	1.0000		1000			200	
8	31					0.0320	11.0 13.5	34.5		255	4.30	0.0000	-1.0000	1260		218	302	
8 9	31 54	18	22		1200			_										
8 9 10	31 54 47	18 4	22 26		1200 1200	0.0260	13.5	35.0		225	4.00	0.0000	-1.0000	1260		218	302	
8 9 10 11	31 54 47 40	18 4 23	22 26 34		1200 1200 1200	0.0260 0.0340	13.5 17.0	35.0 38.0		225 225	4.00 4.70	0.0000	-1.0000	1260 1146		218	302 416	
8 9 10 11 12	31 54 47 40 66	18 4 23 9	22 26 34 12		1200 1200 1200 1200	0.0260 0.0340 0.0410	13.5 17.0 23.0	35.0 38.0 38.5		225 225 225	4.00 4.70 4.30	0.0000 0.0000 0.0000	-1.0000 0.9444 -0.1667	1260 1146 1276		218 224 212	302 416 416 416	

So, what we have done is that basic statistics over here we have gone to correlation.


(Refer Slide Time: 04:52)

File	3 👲 X	Calc Si	5¢ □ Y ≥ 0	1 A 4		fx]= -:	古野 ダイ 憲兼者 Y		8⊻★48	a" (<mark>8</mark> a	- Y X E	C)						× 0	
							Correlation						×						
							C15 x4_1 C17 Time C18 Velocity C19 Temperatu C10 Velocity C11 Time C12 Drive in thi C13 Doore (X2) C14 X1_STD C25 x2_STD C20 Surface Fil C10 Surface Fil C11 Jehnson fil C12 Sartford C13 SRES	e (X1) or Gai itting '	<u>Yariables:</u> Yeld (Y) Time Ve	odty Tempera	ture		× ×						
		C14		C16	C17		Select	1	Optiong	G	iphs	Resul	b	C26	C27	C28	C29		
+	C13 x2_1	x3_1	C15 x4_1	C16	Time	C18 Velocity		_						Y (Transistor Gain)	ar	RPM	Type of Cutting	Tool St	
7	71	17	6		1200	0.0400		1			. 1		. 1	1269		265		302	
8	31	22	44		1200	0.0380	Help			0	ĸ	Can	CE	903		259		302	
9	54	18	22		1200	0.0320	11.0	34.5		255	4.30	1.0000	-0.1667	1555		221		302	
10	47	4	26		1200	0.0260	13.5	35.0		225	4.00	0.0000	-1.0000			218		302	
11	40	23	34		1200	0.0340	17.0	38.0		225	4.70	0.0000	0.9444			224		416	
12	66	9	12		1200	0.0410	23.0	38.5		225	4.30	0.0000	-0.1667	1276		212		416	
13	68	8	12		1100	0.0840	5.3	15.0		225	4.72	0.0000	1.0000	1225		248		416	
14					1100	0.0980	7.5	17.0		230	4.30	0.1667	-0.1667	1321		260		3	
H d	1	Multiple Linear Regre		ression.mv	vx	0	a f		≥ 0	•	<u>२</u> (8	2				0 W A		5	

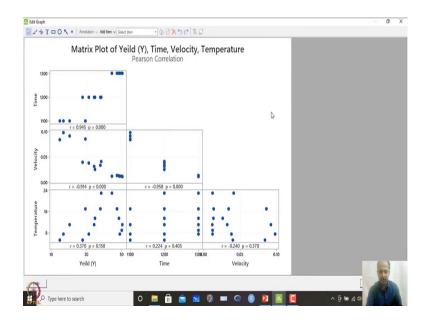
And then we have identified which are the variables over here. We want to understand the relationship. So, yield is the first variable time, velocity and temperature. (Refer Slide Time: 05:02)



(Refer Slide Time: 05:07)

And, in options what we have given, Pearson correlation we want to see. And then in graphs what we want is that correlation with P-Values.

(Refer Slide Time: 05:11)



And if I click ok, and results what we have mentioned is we can also see pairwise correlation table.

(Refer Slide Time: 05:15)

File	itab - Untitle Edit Data		at Graph	View H	elp Assista	nt Additio	inal Tools										-	Ð
1	1 @ X	06	50 0	1 16 14	00	fx 3ª -	18 2	40										
11			YXE		K+141	1 H	服養先	YN	RK.	為圖 000	P 4Y KA							
					14 4													
			_				· Late ···											
	elation: Yeik																	
	ULTIPLE LINE																	
20	relation	: Yeild (Y), Tim	e, Velo	city, Tem	nperatu	re											
		A Antoine I		ald on a	time Vela	alter Tax	nperature											
		Matrix P	101 01 10		Correlation		nperature											
	1000	_																
	g 100-					2												
	-					1-5												
	100- ••	1 = 0.945 p =	0.000			_												
		r=0.545 p=	0.000	1														
	4.10	• •		1														
	elocity 500	·		1	I	C18	C19	<i>C</i> 0 -	C21	C22	C23	C24	(25	(26	C27	C28	(29)	
	4.10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A	CI4	C15	C16	C17	C18 Velocity	C19 Temperature	C20 12 Yeild (Y)	C21	C22 Drive in time (X1)	C23 Dose (X2)	C24 X1 STD	C25 x2 STD	C26 Y (Transistor Gain)	Q7	C28 RPM	C29 Type of Cutting Too	ol S
	elocity 500	·		C16	C17 Time 1200		C19 Temperature 5.3		C21	C22 Drive in time (X1) 225		C24 X1_STD 0.0000		C26 Y (Transistor Gain) 1269	Q7	C28 RPM 265	C29 Type of Cutting Too 300	
	630 633 605 C13 X2_1	C14 x3_1	C15 x4_1	C16	Time	Velocity	Temperature	Yeild (Y)	C21	Drive in time (X1)	Dose (X2)	X1_STD	x2_STD	Y (Transistor Gain)	Q7	RPM	Type of Cutting Too	2
	630 600 C13 X2_1 71	C14 x3_1 17	C15 x4_1 6	C16	Time 1200	Velocity 0.0400	Temperature 5.3	Yeild (Y) 28.0	C21	Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	C27	RPM 265	Type of Cutting Too 302	2
	4.00 Alloope C13 X2_1 71 31	C14 x3_1 17 22	C15 x4_1 6 44	C16	Time 1200 1200	Velocity 0.0400 0.0380	Temperature 5.3 7.5	Yeild (Y) 28.0 31.5	C21	Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903 1555	C27	RPM 265 259	Type of Cutting Too 303 303	2
	4.46 Alsone C13 X2_1 71 31 54	C14 x3_1 17 22 18	C15 x4_1 6 44 22	C16	Time 1200 1200 1200	Velocity 0.0400 0.0380 0.0320	Temperature 5.3 7.5 11.0	Yeild (Y) 28.0 31.5 34.5	C21	Drive in time (X1) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	Q7	RPM 265 259 221	Type of Cutting Too 303 303 303	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	400 Aligo option C13 X2_1 71 31 54 47	C14 x3_1 17 22 18 4	C15 x4_1 6 44 22 26	C16	Time 1200 1200 1200 1200	Velocity 0.0400 0.0380 0.0320 0.0260	Temperature 5.3 7.5 11.0 13.5	Yeild (Y) 28.0 31.5 34.5 35.0	C21	Drive in time (X1) 225 195 255 225	Dose (X2) 4.60 4.30 4.30 4.00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	C27	RPM 265 259 221 218	Type of Cutting Too 300 300 300 300 300 300 300	2 2 2 2 6
	400 cos	C14 x3_1 17 22 18 4 23	C15 x4_1 6 44 22 26 34	C16	Time 1200 1200 1200 1200 1200	Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	Temperature 5.3 7.5 11.0 13.5 17.0	Yelld (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	Q7	RPM 265 259 221 218 224	Type of Cutting Too 300 300 300 300 416	2 2 2 6 6
	400 005 - C13 x2_1 71 31 54 47 40 66	C14 x3_1 17 22 18 4 23	C15 x4_1 6 44 22 26 34 12	C16	Time 1200 1200 1200 1200 1200 1200	Velocity 0.0400 0.0380 0.0320 0.0260 0.0260 0.0340 0.0410	Temperature 5.3 7.5 11.0 13.5 17.0 23.0	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (X1) 225 195 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	C27	RPM 265 259 221 218 224 212	Type of Cutting Too 300 300 300 300 416 416 416 416	2 2 2 2 6 6
	400 005 - C13 x2_1 71 31 54 47 40 66	C14 x3_1 17 22 18 4 23 9 8	C15 x4_1 6 44 22 26 34 12		Time 1200 1200 1200 1200 1200 1200 1200 1100	Velocity 0.0400 0.0380 0.0320 0.0260 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 225 225 225 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	27	RPM 265 259 221 218 224 212 248	Type of Cutting Too 300 300 300 300 416 416 416 416	2 2 2 6 6
	ала Alcone C13 X2_1 71 31 54 47 40 66 68 0 H +	C14 x3_1 17 22 18 4 23 9 8 Muttiple	C15 x4_1 6 44 22 26 34 12 12 12		Time 1200 1200 1200 1200 1200 1200 1200 1100	Velocity 0.0400 0.0380 0.0320 0.0260 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 255 225 225 225 225 225 225 225 225 2	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225 1321		RPM 265 259 221 218 224 212 248 260	Type of Cutting Too 300 300 300 300 300 410 410 410 410	2 2 2 6 6
	ала Alcone C13 X2_1 71 31 54 47 40 66 68 0 H +	C14 x3_1 17 22 18 4 23 9 8	C15 x4_1 6 44 22 26 34 12 12 12		Time 1200 1200 1200 1200 1200 1200 1200 1100	Velocity 0.0400 0.0380 0.0320 0.0260 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3 7.5	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.5 15.0 17.0		Drive in time (Xt) 225 195 255 225 225 225 225 225 225 225 225 2	Dose (X2) 4.60 4.30 4.30 4.30 4.70 4.30 4.72 4.30	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225		RPM 265 259 221 218 224 212 248	Type of Cutting Too 300 300 300 300 410 410 410 410 410	2 2 2 6 6

(Refer Slide Time: 05:16)

And if you click ok, this is the; this is the diagram that I have shown in the PPT slides like that. So, this shows relationship between yield and other variables. Yield is highly related with time, the P-Value is point near to 0 and velocity is also highly related with yield over here, but temperature does not seem to be significantly influencing over here.

So, this is the relationship and time is having a high time is not having a correlation with temperature over here ok, and velocity is having no correlation with temperature, but velocity is having a correlation with time over here. So that is reflected over here, temperature and time. So, this is highly 0.958 is the minus 0.958 is the.

(Refer Slide Time: 06:03)

			Basic Stat Regressio ANOVA		, ,	Fitted Lin Regressio	on		2 Fit	Regression Model	P LY X E	8						
	relation: Yeil	d (Y), Tin	DOE Control C Quality To		. 12	Nonlinea Stability	ar Regression Study		Y Pr	Model the rel	ationship be							
-	rrelation		Reliability		. 2		nal Regression east Squares		Ci	ctorial Plo continuous p interaction an entour Plo response if n inface Plot	d polynomia	d one respon al terms, or tr	se. Easily inc ansform the	lude				1
	1000 0000	Matr	Time Seri Tables Nonparar Equivalen Power an	metrics	, la	Binary Lo	itted Line Plot ogistic Regression Logistic Regressic I Logistic Regress Regression	on	* Re	sponse Optimizer								
	900 4.10 6.00 6.00	r=0.945 p=		1														
	eloc(ty	r=0.545 p=		1	I	CI8	C19	C20 -	621	())	C3	C24	C25	C/6	C77	C28	(29)	
	a.u.	r=0.945 p=		1 C16	C17 Time	C18 Velocity	C19 Temperature	C20 g Yeild (Y)	C21	C22 Drive in time (X1)	C23 Dose (X2)	C24 X1_STD	C25 x2_STD	C26 Y (Transistor Gain)	Q27	C28 RPM	C29 Type of Cutting Too	d Su
	A10- A10- A10- A10- A10- A10- A10- A10-	r=0.545 p=	C15	C16			Temperature		C21						C27			
	A10 005	r=0.545 p= C14 x3_1	C15	C16	Time	Velocity	Temperature 5.3	Yeild (Y)	C21	Drive in time (X1)	Dose (X2)	X1_STD	x2_STD	Y (Transistor Gain)	Q7	RPM	Type of Cutting Too	2
	A10 000 C13 X2_1 71	c14 x3_1 17	C15 x4_1 6	C16	Time 1200	Velocity 0.0400	Temperature 5.3 7.5	Yeild (Y) 28.0	C21	Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	Q7	RPM 265	Type of Cutting Too 302	2
7	A10 000 C13 X2_1 71 31	c14 x3_1 17 22	C15 x4_1 6 44	C16	Time 1200 1200	Velocity 0.0400 0.0380	Temperature 5.3 7.5 11.0	Yeild (Y) 28.0 31.5	C21	Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	Q7	RPM 265 259	Type of Cutting Too 303 303 303	2
7 B 9 0	410 600 600 71 71 31 54	r+0345 p+ C14 x3_1 17 22 18	C15 x4_1 6 44 22	C16	Time 1200 1200 1200	Velocity 0.0400 0.0380 0.0320	Temperature 5.3 7.5 11.0 13.5	Yeild (Y) 28.0 31.5 34.5	C21	Drive in time (X1) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	Q7	RPM 265 259 221	Type of Cutting Too 300 300 300 300 300	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7 B 9 0	430 Kiyoos C13 x2_1 71 31 54 47	<pre>ci4 x3_1 17 22 18 4</pre>	C15 x4_1 6 44 22 26	C16	Time 1200 1200 1200 1200	Velocity 0.0400 0.0380 0.0320 0.0260	Temperature 5.3 7.5 11.0 13.5 17.0	Yeild (Y) 28.0 31.5 34.5 35.0	C21	Drive in time (X1) 225 195 255 225	Dose (X2) 4,60 4,30 4,30 4,00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	Q7	RPM 265 259 221 218	Type of Cutting Too 300 300 300 300 300	2 2 2 2 2 5 5
7 8 9 10 11 12	**************************************	<pre>r+0345 p- r+0345 p- r</pre>	C15 x4_1 6 44 22 26 34	C16	Time 1200 1200 1200 1200 1200	Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	Temperature 5.3 7.5 11.0 13.5 17.0 23.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 255 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	Q27	RPM 265 259 221 218 224	Type of Cutting Too 300 300 300 300 416 416 416	2 2 2 5 5 5
+ 7 8 9 10 11 12 13 14	*** All 0 cos- C13 X2_1 71 31 54 47 40 66	C14 x3_1 17 22 18 4 23 9 8	C15 x4_1 6 44 22 26 34 12 12	C16	Time 1200 1200 1200 1200 1200 1200 1200 1100	Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (Xt) 225 195 255 225 225 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70 4,30	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	Q7	RPM 265 259 221 218 224 212	Type of Cutting Too 300 300 300 300 416 416 416 416	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

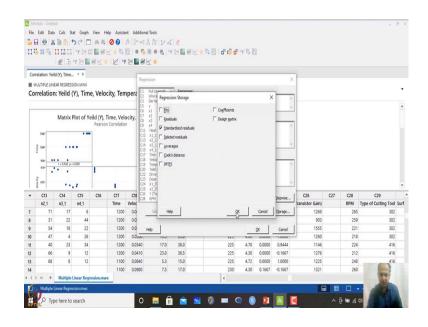
So, this is so what we can do is that we can go to stepwise regression. So I will use stepwise regression over here.

(Refer Slide Time: 06:09)

	relation: Yei																	
		ld (Y), Time				R	egression						×					
-		EAR REGRESS		. Valar	iter Terr		1 Pull strength	Responses										
CO	rrelation	n: Yeild (r), 11m	e, veloc	ity, ien	ipera a	2 Wrelength	Yeld (Y)					^	1				
_							5 Y						~					*
		Matrix	Plot of Y	eild (Y), T	ime, Vela		7 x2	Continuou	predictors:									
				Pearson	Correlation	n lo		Time Velo	sty Temperature				^	1				
	1000			1			12 x1_1											
	2 100						13 x2_1 14 x3_1						Y					
	Ē						15 x4_1 17 Time	Categorica	predictors:									
	100-	r=0.945 p=	0.000				18 Velocity 19 Temperature						^	1				
		• •		1			20 Yeld (r) 22 Drive in time (
	605	• • •					23 Dose (X2) 24 X1_STD						v					
	C13	C14	CIS	C16	C17	CIR	25 x2_STD 26 Y (Transistor (Model	Options	1 ~	ing	Description	C26	C27	C28	C29	
	x2_1	x3_1	x4_1		Time	Veloc	28 RPM ¥	J	Googen	Upoorga		grig	Stepwise	ransistor Gain)		RPM	Type of Cutting	Tool Sur
-	71	17	6		1200	0.0	Select		Validation	Graphs	Bet	ults	Storage	1269		265		302
7		22	44		1200	0.0								903		259		302
	31		22		1200	0.0	Help					QK	Cancel	1555		221		302
8	31 54	18			1200	0.0/200		33.0		663	4,00	quan	1.0000	1260		218		302
8 9 10	31 54 47	4	26					38.0		225	4.70	0.0000	0.9444	1146		224		416
8 9 10 11	31 54 47 40	4	34		1200	0.0340												
8 9 10 11 12	31 54 47 40 66	4 23 9	34 12		1200	0.0410	23.0	38.5		225	4.30	0.0000	-0.1667	1276		212		416
7 8 9 10 11 12 13 14	31 54 47 40	4	34				23.0			225 225 230	4.30 4.72 4.30	0.0000	-0.1667 1.0000 -0.1667	1276 1225 1321		212 248 260	-	416

(Refer Slide Time: 06:11)

i M	initab - Uni	titled					Regression: Stepwise	X					8 ×
Cor	rrelation: Y	ata Calc S Calc S Ca	5 ↔ □ □ 4 1 ≥ 0 4 4 ≥ 0 • x BONLMWX	#4 8 9 8 4	Ø Ø ≪ ★ ₩ ₩ ₩ ₩	fx 3 10 1 1 ≥ 1	Temperature						•
	Trender			eild (Y), 1	ime, Vela	ocity,							*
	100-				Correlatio	n	E = Indude term in every model [= Indude term in the initial model	L					
	100-	r=0.545 p	0.000				Alpha to remove: 0.15						
	elocity Se	·** •		1									¥
+	C13	C14	C15	C16	C17	CIE			C26	C27	C28	C29	
	x2_1	x3_1	x4_1		Time	Veloc			ransistor Gain		RPM	Type of Cutting Tool	
7	7		6		1200	0.0			126		265		
8	3		44		1200	0.0			903		259		
9	5		22		1200	0.0			155		221		
10	4		34		1200	0.0	Herardhy		126		218		
11	6		12		1200		₩ Qisplay the table of model selection details		127		212		
12	6		12		1100	0.0			122		248		
14					1100		Details about the method		132		260		
H 4	ры н	Multiple	Linear Regi	ression.mw			Digplay the graph of R-squared vs step					-	
1	Multip	le Linear Regro	ssion mwx				Help dt Cano	. 1		₩ ₩			
1	Vor	vpe here to	easeh								ê 🐿 🕼	4	
NP	TEL.	spe nere to	search				· <u> </u>			~	5- m 1/3		


So, fit regression model, and here only thing I have to do is that I have to introduce stepwise regression over here, and click ok.

(Refer Slide Time: 06:18)

Con	elation: Vel	ld (Y), Time	Y X			5								7					
B 1	ULTIPLE LIN	EAR REGRESS	ION.MWX	e. Velo	tity. Tem		gression: Validation	Yaldation	method:	K-fold cross-	validation		×						
	relation			eild (Y), 1	lime, Velo	ocity,		Numbe	er of folds ()	ows of each fold Q: number generator:	I.	2345							
	1000-			Pearsor	i Correlation				rows of ear	ch fold by ID column	1.								
	1930 - • · 4.10	r=0.945 p=	0.000			_													
	605	•••		ŀ															۳.
+	C13	C14	CIS	C16	C17	C18		□ Store	ID column 1	for K-fold cross-validatio	n			C26	C27	C28	C29		-
+	8			C16	C17 Time	C18 Veloc		∏ Store	ID column t	for K-fold cross-validatio	n			C26 Transistor Gain)	C27	C28 RPM	C29 Type of Cutting	fool Su	r rt
→ 7	C13	C14	C15	C16	Time 1200	Veloc 0.0	Select	☐ Store	ID column t	for K-foid cross-validatio	n			'ransistor Gain) 1269	Q7	RPM 265	Type of Cutting	302	
* 7 8	C13 x2_1 71 31	C14 x3_1 17 22	C15 x4_1 6 44	C16	Time	Veloc 0.0 0.0	Select	∏ Store	ID column t	for K-fold cross-validatio	n			Transistor Gain) 1269 903	C27	RPM 265 259	Type of Cutting	302 302	
	C13 x2_1 71 31 54	C14 x3_1 17	C15 x4_1 6 44 22	C16	Time 1200 1200 1200	Veloc 0.0 0.0 0.0	Select Help	j ∏ §tore	ID column t	for K-fold cross-validatio		×	Cancel	ransistor Gain) 1269 903 1555	C27	RPM 265 259 221	Type of Cutting	302 302 302	
8 9 10	C13 x2_1 71 31 54 47	C14 x3_1 17 22 18 4	C15 x4_1 6 44 22 26	C16	Time 1200 1200 1200 1200	Veloc 0.0 0.0 0.0 0.0	Help		ID column 1		_13		-	ransistor Gain) 1269 903 1555 1260	Q7	RPM 265 259 221 218	Type of Cutting	302 302 302 302	
8	6 C13 x2_1 71 31 54 47 40	C14 x3_1 17 22 18 4 23	C15 x4_1 6 44 22 26 34	C16	Time 1200 1200 1200 1200 1200	Veloc 0.0 0.0 0.0 0.0 0.0 0.0340	нер 17.0	38.0	ID column t	225	4.70	0.0000	0.9444	ransistor Gain) 1269 903 1555 1260 1146	27	RPM 265 259 221 218 224	Type of Cutting	302 302 302 302 302 416	
8 9 10 11 12	C13 x2_1 71 31 54 47 40 66	C14 x3_1 17 22 18 4 23 9	C15 x4_1 6 44 22 26 34 12	C16	Time 1200 1200 1200 1200 1200 1200	Veloc 0.0 0.0 0.0 0.0 0.0 0.0340 0.0410	Help 17.0 23.0	38.0 38.5	ID column f	225 225	4.70	0.0000	0.9444	ransistor Gain) 1269 903 1555 1260 1146 1276	Q7	RPM 265 259 221 218 224 212	Type of Cutting	302 302 302 302 416 416	
8 9 10 11	6 C13 x2_1 71 31 54 47 40	C14 x3_1 17 22 18 4 23	C15 x4_1 6 44 22 26 34	C16	Time 1200 1200 1200 1200 1200	Veloc 0.0 0.0 0.0 0.0 0.0 0.0340	нер 17.0	38.0	: ID column t	225	4.70	0.0000	0.9444	ransistor Gain) 1269 903 1555 1260 1146	C27	RPM 265 259 221 218 224	Type of Cutting	302 302 302 302 302 416	

And then validation we can pair wise validation as usual.

(Refer Slide Time: 06:21)

And also storage we can save the residual standard as residual over here, and I click ok.

(Refer Slide Time: 06:29)

File		d																Ø
	Edit Data	Calc St	at Graph	View H	elp Assista	nt Additio	inal Tools											
1		In A	be F	1 46 46	00	fx 30 -	1.8 2	1 1										
										ې ت ت ت ت	P vy Ya B							
					14 4						1.40	15						
_			_	en.	121.11	CLE	9 D. ×											
Regr	ession Anal	ysis: Yeild	• X															
-		AR REGRESS																
Reg	ression	Analysi	is: Yeild	(Y) ver	rsus Tim	e, Velo	ity, Tempe	erature										
	ethod																	2
0	oss-validati	on 10-foli	d															
St	epwise S	election	of Terms															
a	o enter = 0).15, a to re	emove = 0	.15														
					N													
R	gression	Equation	n		G													
	-	Equation -130.7 + 0.		+ 0.351 Ter	×.													
Y	sid (Y) =	-130.7 + 0.	1340 Time		nperature	C19	610	C70	(21	<i>m</i>	622	624	635	C16	C17	C10	630	
Y	eld (Y) =	-130.7 + 0.	1340 Time C15	+ 0.351 Ter C16	nperature C17	C18 Velocity	C19	C20 5	C21	C22 Drive in time O/1	C23	C24	C25	C26 V (Transister Gain)	C27	C28	C29	
¥1	c13 x2_1	-130.7 + 0. C14 x3_1	1340 Time		C17 Time	Velocity	Temperature	Yeild (Y)	C21	Drive in time (X1)	Dose (X2)	X1_STD		Y (Transistor Gain)	C 27	RPM	Type of Cutting To	iol Sur
¥1	eld (Y) =	-130.7 + 0.	1340 Time C15		nperature C17				C21				x2_STD		Q7		Type of Cutting To 34	
Yı + 7 B	c13 x2_1 71	-130.7 + 0. C14 x3_1 17	1340 Time C15 x4_1 6		C17 Time 1200	Velocity 0.0400	Temperature 5.3	Yeild (Y) 28.0	C21	Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	C27	RPM 265	Type of Cutting To 30 31	iol Sur
Y .	c13 x2_1 71 31	-130.7 + 0. C14 x3_1 17 22	1340 Time C15 x4_1 6 44		C17 Time 1200 1200	Velocity 0.0400 0.0380	Temperature 5.3 7.5	Yeild (Y) 28.0 31.5	C21	Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	Q7	RPM 265 259	Type of Cutting To 30 30 30 30 30	101 Sur 02 02
Yr + 7 8 9 0	c13 x2_1 71 31 54	-130.7 + 0. C14 x3_1 17 22 18	1340 Time C15 x4_1 6 44 22		C17 Time 1200 1200 1200	Velocity 0.0400 0.0380 0.0320	Temperature 5.3 7.5 11.0	Yeild (Y) 28.0 31.5 34.5	C21	Drive in time (X1) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	Q7	RPM 265 259 221	Type of Cutting To 30 30 30 30 30 30 30 30 30 30 30 30 30	101 Sur 02 02 02
Ye * 7 8 9 00 11	c13 x2_1 71 31 54 47	-130.7 + 0. C14 x3_1 17 22 18 4	1340 Time C15 x4_1 6 44 22 26		C17 Time 1200 1200 1200 1200	Velocity 0.0400 0.0380 0.0320 0.0260	Temperature 5.3 7.5 11.0 13.5	Yeild (Y) 28.0 31.5 34.5 35.0	C21	Drive in time (X1) 225 195 255 225	Dose (X2) 4,60 4.30 4.30 4.00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	Q7	RPM 265 259 221 218	Type of Cutting To 3 3 3 3 3 3 4	101 Sur 02 02 02 02
Yr + 7 8 0 0 1 2	c13 x2_1 71 31 54 47 40	-130.7 + 0. C14 x3_1 17 22 18 4 23	1340 Time x4_1 6 44 22 26 34		C17 Time 1200 1200 1200 1200 1200	Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	Temperature 5.3 7.5 11.0 13.5 17.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 225 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	27	RPM 265 259 221 218 224	Type of Cutting To 3 3 3 3 3 3 3 4 4 4	101 Sur 02 02 02 02 16
Yr * 7 8 9 0 11 2 3	c13 x2_1 71 31 54 47 40 66	-130.7 + 0. C14 x3_1 17 22 18 4 23 9	1340 Time C15 x4_1 6 44 22 26 34 12		C17 Time 1200 1200 1200 1200 1200 1200	Velocity 0.0400 0.0380 0.0320 0.0260 0.0260 0.0340 0.0410	Temperature 5.3 7.5 11.0 13.5 17.0 23.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (X1) 225 195 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	27	RPM 265 259 221 218 224 212	Type of Cutting To 3 3 3 3 3 3 4 4 4 4 4 4	101 Sur 02 02 02 02 16 16
Yr * 7 8 9 0 11 2 3 4	<pre>c13 x2_1 71 31 54 47 40 66 68</pre>	-130.7 + 0. C14 x3_1 17 22 18 4 23 9 8	1340 Time C15 x4_1 6 44 22 26 34 12	C16	C17 Time 1200 1200 1200 1200 1200 1200 1200 120	Velocity 0.0400 0.0380 0.0320 0.0260 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 225 225 225 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	C27	RPM 265 259 221 218 224 212 248	Type of Cutting To 3 3 3 3 3 3 4 4 4 4 4 4	02 02 02 02 16 16
Yn * 7 8 9 10 11 12 13 14	rid (Y) = C13 x2_1 71 31 54 47 40 66 68 N +	-130.7 + 0. C14 x3_1 17 22 18 4 23 9 8 Multiple I	1340 Time C15 x4_1 6 44 22 26 34 12 12 Linear Regr	C16	C17 Time 1200 1200 1200 1200 1200 1200 1200 120	Velocity 0.0400 0.0380 0.0320 0.0260 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 225 225 225 225 225 225 225 225 225 2	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225 1321		RPM 265 259 221 218 224 212 248 260	Type of Cutting To 3 3 3 3 3 3 3 4 4 4 4 4 4	101 Sur 02 02 02 02 16 16
	C13 x2_1 71 31 54 47 40 66 68 H * Multiple L	-130.7 + 0. C14 x3_1 17 22 18 4 23 9 8	1340 Time C15 x4_1 6 44 22 26 34 12 12 12 Linear Regr sion.mwx	C16	C17 Time 1200 1200 1200 1200 1200 1200 1200 120	Velocity 0.0400 0.0380 0.0320 0.0260 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3 7.5	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 225 225 225 225 225 225 225 230 ∢	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225		RPM 265 259 221 218 224 212 248	Type of Cutting To 3 3 3 3 3 3 4 4 4 4 4 4 4 4	100 Sur 02 02 02 02 16 16

And let us try to see which are the variables will go in the model and which will go out of the model ok. So, what happened is that, it has identified time and temperature.

(Refer Slide Time: 06:35)

File	itab - Untitle	d																Ø
	Edit Data	Calc Sta	t Graph	View H	elo Assista	nt Additio	inal Tools											
. 6							AB V	1 4										
										۵	III LA IV I							
								a Kalla	P. 1	099 811 1 D. 10 1	1.1.1.1.1	19						
		@ ±	Y 🖄 🛄	BE:	12 9		5 K 🗶											
Regr	ession Analy	sis: Yeild	~ X															
8 M	ULTIPLE LINE	AR REGRESS	ON.MWX															
Req	ression	Analysi	s: Yeild	(Y) ver	sus Tim	e, Velo	ity, Tempe	rature										
_	eiid (Y) =					1												
-																		
C	pefficients	s																
Te	rm	Coef	SE Coef	T-Value	P-Value	VIF												
	onstant	-130.7	14,1	-9.24	0.000													
	me	0.1340	0.0119	11.25	0.000	1.05	2											
		R-sq R-s			10-fold S													
•	C13	C14	C15	C16	C17	C18	C19	C20 😰	C21	C22	C23	C24	C25	C26	C27	C28	C29	
	x2_1	x3_1	x4_1		Time		Temperature			Drive in time (X1)		X1_STD		Y (Transistor Gain)			Type of Cutting Tool	SI
8	71	17	6		1200	0.0400	5.3	28.0		225	4.60	0.0000	0.6667	1269		265	302	
	54	18	22		1200	0.0320	11.0	34.5		255	4.30	1.0000	-0.1667	1555		239	302	
	47	4	26		1200	0.0260	13.5	35.0		225	4.00	0.0000	-1.0000	1260				
																218	302	
0	40	23	34		1200	0.0340	17.0	38.0		225	4.70	0.0000	0.9444	1146		218		
0	40 66	23	34 12			0.0340	17.0 23.0	38.0 38.5		225		0.0000	0.9444				302	
0					1200						4.70			1146		224	302 416	
0 11 2 3	66	9	12		1200 1200	0.0410	23.0	38.5		225	4.70 4.30	0.0000	-0.1667	1146 1276		224	302 416 416	
9 10 11 12 13 14	66	9 8	12	ession.mw	1200 1200 1100 1100	0.0410	23.0 5.3	38.5 15.0		225 225	4.70 4.30 4.72	0.0000	-0.1667 1.0000	1146 1276 1225		224 212 248	302 416 416	
10 11 12 13 14	66 68 н +	9 8	12 12 inear Regr	ession.mw	1200 1200 1100 1100	0.0410	23.0 5.3	38.5 15.0		225 225 230	4.70 4.30 4.72	0.0000	-0.1667 1.0000	1146 1276 1225		224 212 248	302 416 416 416	

So, initially we are thinking that it is not so highly correlated, but this is not so significant 0.05, just above the cross line that is 0.05 that is the cut off over here. So, it is the analysis over here says that, we have to take into consideration time and temperature, that is the best model that is coming out of this.

(Refer Slide Time: 06:55)

		b															-	Ø
	Edit Data	Calc St	at Graph	View H	lelp Assista	nt Additio	onal Tools											
6	8 X	BAL	500	14.44	00	fx 3= -	1. 12 2/	1. 1										
									ak y	40000	D LY IL							
	- u				12 4						1 . 7 (15						
		. WE .II	16	1001.7		CLI	5° <u>D.</u> 🛪											
egn	ssion Anal	ysis: Yeild .	. * X															
M	ILTIPLE LINE	AR REGRESS	NWM.NOR															
ea	ression	Analys	is: Yeild	(Y) ve	rsus Tim	e. Velo	city, Tempe	erature										
	nstant	-130.7		-9.24	0.000													
Th		0.1340		11.25	0.000	1.05												
Te	mperature	0.351		2.07	0.059													
	.62397 9		90.72%	85.21%	4.39510	85.4	15%											
Ar		Variance					1516											
Ar	alysis of	Variance DF C14			la la	Value C18	C19	C20 5	C21	C22	C23	C24	C25	C26	C27	C28	C29	
Ar	alysis of urce	Variance DF	Adj SS /	Adj MS F	-Value P-V C17 Time	C18 Velocity	C19 Temperature	Yeild (Y)	C21	Drive in time (X1)		C24 X1_STD	x2_STD	C26 Y (Transistor Gain)	C 27	RPM	C29 Type of Cutting Tor	ol !
Ar	c13 x2_1 71	Variance DF C14 x3_1 17	Adj SS / C15 x4_1 6	Adj MS F	-Value P-V C17 Time 1200	C18 Velocity 0.0400	C19 Temperature 5.3	Yeild (Y) 28.0	C21	Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	C27	RPM 265	Type of Cutting Too 30	02
Ar	c13 x2_1 71 31	Variance DF C14 x3_1 17 22	Adj SS / C15 x4_1 6 44	Adj MS F	Value P-V C17 Time 1200 1200	C18 Velocity 0.0400 0.0380	C19 Temperature 5.3 7.5	Yeild (Y) 28.0 31.5	C21	Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	Q7	RPM 265 259	Type of Cutting Too 30 30	02 02
Ar	c13 x2_1 71 31 54	Variance DF C14 x3_1 17 22 18	Adj SS // C15 x4_1 6 44 22	Adj MS F	-Value P-V C17 Time 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320	C19 Temperature 5.3 7.5 11.0	Yeild (Y) 28.0 31.5 34.5	C21	Drive in time (X1) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	Q7	RPM 265 259 221	Type of Cutting Too 30 30 30 30	02 02 02
	c13 x2_1 71 31 54 47	Variance DF C14 x3_1 17 22 18 4	Adj SS // C15 x4_1 6 44 22 26	Adj MS F	Value P-V C17 Time 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260	C19 Temperature 5.3 7.5 11.0 13.5	Yeild (Y) 28.0 31.5 34.5 35.0	C21	Drive in time (X1) 225 195 255 225	Dose (X2) 4.60 4.30 4.30 4.00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	C27	RPM 265 259 221 218	Type of Cutting Too 30 30 30 30 30	02 02 02 02
	C13 x2_1 71 31 54 47 40	Variance DF C14 x3_1 17 22 18 4 23	Adj SS // C15 x4_1 6 44 22 26 34	Adj MS F	Value P-V C17 Time 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	27	RPM 265 259 221 218 224	Type of Cutting Tor 30 30 30 30 41	02 02 02 02 16
	C13 x2_1 71 31 54 47 40 66	Variance DF C14 x3_1 17 22 18 4 23 9	Adj SS / C15 x4_1 6 44 22 26 34 12	Adj MS F	Value P-V C17 Time 1200 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (X1) 225 195 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	Q7	RPM 265 259 221 218 224 212	Type of Cutting Too 30 30 30 30 41 41 41	02 02 02 02 16
	C13 x2_1 71 31 54 47 40	Variance DF C14 x3_1 17 22 18 4 23	Adj SS // C15 x4_1 6 44 22 26 34	Adj MS F	Value P-V C17 Time 1200 1200 1200 1200 1200 1200 1200 1100	talue C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410 0.0840	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 225 225 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	C27	RPM 265 259 221 218 224 212 248	Type of Cutting Too 30 30 30 30 41 41 41 41	02 02 02 02 16
	C13 x2_1 71 31 54 47 40 66 68	Variance DF C14 x3_1 17 22 18 4 23 9 8	Adj SS / C15 x4_1 6 44 22 26 34 12 12	Adj MS F C16	Value P-V C17 Time 1200 1200 1200 1200 1200 1200 1200 1100	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (Xt) 225 195 225 225 225 225 225 225 225 225 225 2	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	C27	RPM 265 259 221 218 224 212	Type of Cutting Too 30 30 30 30 41 41 41 41	02 02 02 02 16
	C13 x2_1 71 31 54 47 40 66	Variance DF C14 x3_1 17 22 18 4 23 9 8	Adj SS / C15 x4_1 6 44 22 26 34 12	Adj MS F C16	Value P-V C17 Time 1200 1200 1200 1200 1200 1200 1200 1100	talue C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410 0.0840	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 225 225 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	C27	RPM 265 259 221 218 224 212 248	Type of Cutting Too 30 30 30 30 41 41 41 41	02 02 02 02 16
Ar	alysis of urce x2_1 71 31 54 47 40 66 68 н +	Variance DF C14 x3_1 17 22 18 4 23 9 8	Adj SS // C15 x4_1 6 44 22 26 34 12 12 12 12 Uincar Regi	Adj MS F C16	Value P-V C17 Time 1200 1200 1200 1200 1200 1200 1200 1100	talue C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410 0.0840	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 225 225 225 225 225 225 225 225 225 2	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225		RPM 265 259 221 218 224 212 248	Type of Cutting Too 30 30 30 30 41 41 41 41	02 02 02 02 16

And, the R square adjusted value is 90 point something like that and 10 fold cross-validation more or less close.

(Refer Slide Time: 07:03)

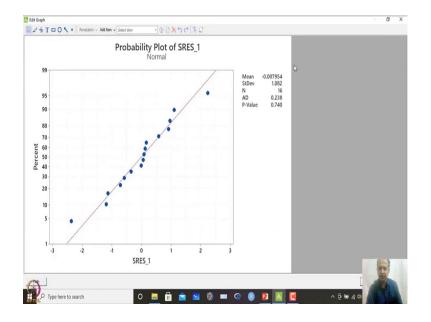
File Edit Data Calc Stat Graph View	4 00 fx }=-: 8 k * \$ 10 * ₹	(古田)シズ (瀬東哉) 19		★ 本 図 a ^a c ^a c	中心的							
INTERNE NETAFIER	8×+401+4	→ 振 参 我 「Y		k \star 🎋 🕅 🛛 🗗 🖏 🕻	中心に							
INTERNE NETAFIER	8×+401+4	→ 振 参 我 「Y		د 🖈 🐴 🔛 🗠 🖒 د	P LY KA							
IN FARMER			C- 100 CF	CT H H H H H								
Regression Analysis: Yelld Y X		· Later ···										
MULTIPLE LINEAR REGRESSION MWX												
Regression Analysis: Yeild (Y) v	versus Time, Veloc	ity, Tempera	ature									
S R-sq R-sq(adj) R-sq(prec	ed) 10-fold S 10-fold R-	sq										
3.62397 91.96% 90.72% 85.21	1% 4.39510 85.45	5%										
Analysis of Variance												
Source DF Adj SS Adj MS												
	E-Malue D-Malue											
	F-Value P-Value											
Regression 2 1952.98 976.49	74.35 0.000	N										
Regression 2 1952.98 976.49	74.35 0.000 126.56 0.000											
Regression 2 1952.98 976.49 Time 1 1662.19 1662.19 Temperature 1 56.30 56.30 Error 13 170.73 13.13	74.35 0.000 126.56 0.000 4.29 0.059	Q										
Regression 2 1952.98 976.49 Time 1 1662.19 1662.19 Temperature 1 56.30 56.30	74.35 0.000 126.56 0.000 4.29 0.059	R										
Regression 2 1952.98 976.49 Time 1 1662.19 1662.19 Temperature 1 56.30 56.30 Error 13 170.73 13.13	74.35 0.000 126.56 0.000 4.29 0.059		C20 72	C21 C22	C23	C24	C25	C26	Q7	C28	C29	
Regression 2 1952.98 976.49 Time 1 1662.19 1662.19 Temperature 1 56.30 56.30 Error 13 170.73 13.13 Total 15 2123.71	74.35 0.000 126.56 0.000 4.29 0.059			C21 C22 Drive in time (X1)		C24 X1_STD		C26 Y (Transistor Gain)	Q7		C29 Type of Cutting Toc	il Si
Regression 2 1952.98 976.49 Time 1 1662.19 1662.19 Temperature 1 56.30 56.30 Error 13 170.73 13.13 Total 15 2123.71 15 • C13 C14 C15 C16 x2.1 x3.1 x4.1 1	74.35 0.000 126.56 0.000 4.29 0.059	C19							(27			
Regression 2 1952/86 976.49 Time 1 1662.19 1662.19 1662.10 Temperature 1 58.30 56.30 Error 13 170.73 13.13 Total 15 2123.71 1 • C13 C14 C15 C16 x2.1 x3.31 x4.1 7 7 17 6	74.35 0.000 126.56 0.000 4.29 0.059 i C17 C18 Time Velocity	C19 Temperature Ye	eild (Y)	Drive in time (X1)	Dose (X2)	X1_STD	x2_STD	Y (Transistor Gain)	Q7	RPM 265 259	Type of Cutting Too	2
Regression 2 1952.98 976.49 Time 1 1062.19 1662.19 Temperature 1 554.30 56.30 Error 1.3 170.73 13.13 Teal 1.5 2123.71 14.13 * C1 C14 C15 C16 x2.3 x3.1 x4.3 7 7 8 31 222 44	74.35 0.000 126.56 0.000 4.29 0.059 i C17 C18 Time Velocity 1200 0.0400	C19 Temperature Y4 5.3	eild (Y) 28.0	Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	Q7	RPM 265	Type of Cutting Too 30.	2
Regression 2 1953/80 976-40 Time 1 1662.19 1662.19 Temperature 1 17023 13.13 Toal 15 2123.71 14.13 V C13 C46 C15 C16 x2_31 x3_31 x4_3 1 1 7 7.11 7 6 3 3 2 9 31 2.22 2.44 4 2 2 44	74.35 0.000 126.56 0.000 4.29 0.059 5 C17 C18 Time Velocity 1200 0.0400 1200 0.0380	C19 Temperature Y4 5.3 7.5	eild (Y) 28.0 31.5	Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	Q7	RPM 265 259	Type of Cutting Too 30. 30.	2 2 2 2
Pagesson 2 1952/80 976-40 Time 1 1662.19 1662.19 Toral 15 2123.71 Toral 15 2123.71 + CD CD CD # CD CD CD CE # 31 22 24 4 # 31 22 44 22	74.35 0.000 126.56 0.000 4.29 0.059 i C17 C18 Time Velocity 1200 0.0400 1200 0.0380 1200 0.0320	C19 Temperature Ye 5.3 7.5 11.0	reild (Y) 28.0 31.5 34.5	Drive in time (X1) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	27	RPM 265 259 221	Type of Cutting Too 30, 30, 30, 30,	2 2 2 2
Clipperson 2 1952/80 976-40 Time 1 1650.19 1642.01 1642.01 Temperson 1 54.30 56.30 15.31 Total 15 212.217 1 1 • C13 C14 C55 C16 2 7.21 7.1 7 6 9 54.31 222 44 20 0 6.47 4 28 1	74.35 0.000 126.56 0.000 4.29 0.059 6 C17 C18 Time Velocity 1200 0.0400 1200 0.0300 1200 0.0320 1200 0.0320 1200 0.0320	C19 Temperature Ye 5.3 7.5 11.0 13.5	reild (Y) 28.0 31.5 34.5 35.0	Drive in time (X1) 225 195 255 225	Dose (X2) 4.60 4.30 4.30 4.00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	C27	RPM 265 259 221 218	Type of Cutting Too 30, 30, 30, 30, 30, 30,	2 2 2 2 6
Regression 2 1952/80 976.40 Imme 1 1650.19 1662.19 1662.19 Temperature 1 56.30 56.30 56.30 Emore 13 170.73 13.13 7 Total 15 2128.71 C16 C16 R 7 71 17 6 6 9 54 101 22 44 9 9 54 101 22 6 102.10	74.35 0.000 126.56 0.000 4.29 0.059 5 C17 C18 Time Velocity 1200 0.0400 1200 0.0380 1200 0.0380 1200 0.0260 1200 0.0260	C19 Temperature Ye 5.3 7.5 11.0 13.5 17.0	eild (Y) 28.0 31.5 34.5 35.0 38.0	Drive in time (X1) 225 195 255 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cutting Too 30, 30, 30, 30, 41, 41,	2 2 2 2 6 6
Pagessan 2 195269 076.40 Imme 1 1650.19 1662.19 1662.19 Tempesture 1 54.30 56.30 157.37 Total 15 2123.71 764 157 767.31 13.13 Total 17 71 177 6 167 17 6 167 <td< td=""><td>74.35 0.000 126.56 0.000 4.29 0.059 Velocity 120 0.059 Velocity 1200 0.0400 1200 0.0380 1200 0.0320 1200 0.0320 1200 0.0340 1200 0.0400</td><td>C19 Ye Temperature Ye 5.3 11.0 11.0 13.5 17.0 23.0</td><td>eild (Y) 28.0 31.5 34.5 35.0 38.0 38.5</td><td>Drive in time (X1) 225 195 255 225 225 225 225</td><td>Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30</td><td>X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000</td><td>x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667</td><td>Y (Transistor Gain) 1269 903 1555 1260 1146 1276</td><td>27</td><td>RPM 265 259 221 218 224 212</td><td>Type of Cutting Too 30, 30, 30, 30, 30, 41, 41, 41, 41,</td><td>2 2 2 2 6 6</td></td<>	74.35 0.000 126.56 0.000 4.29 0.059 Velocity 120 0.059 Velocity 1200 0.0400 1200 0.0380 1200 0.0320 1200 0.0320 1200 0.0340 1200 0.0400	C19 Ye Temperature Ye 5.3 11.0 11.0 13.5 17.0 23.0	eild (Y) 28.0 31.5 34.5 35.0 38.0 38.5	Drive in time (X1) 225 195 255 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	27	RPM 265 259 221 218 224 212	Type of Cutting Too 30, 30, 30, 30, 30, 41, 41, 41, 41,	2 2 2 2 6 6

So this model seems to be adequate, if I consider that alpha level of significance is 0.1, in that case we can also consider temperature as significant variable we may retain this one.

(Refer Slide Time: 07:13)

2	Edit Data		itat Graph Basic Sta Regressio ANOVA	tistics	,	😨 Display De	scriptive Statistic riptive Statistics.		K,	4 🖸 🖬 🐻	P - Y 10 [8						
1 N	ression Anal ULTIPLE LINE gression	AR REGR				1-Sample: 1-Sample: 1-Sample: 2-Sample: Paired t	L											
	s 3.62397 9 nalysis of		Multivari Time Ser Tables Nonpara	ate ies		1-Sample												^
S	ource egression Time Temperature	DF 2 1	1937.99	id Sample ! 970.49	Size +	 1 Variance 2 Variance 11 Correlation 	5 Nu											
E	rror otal	13	56.30 170.73 2123.71	56.30 13.13		0 ² Covarianc	Test.,											
E	rror	13	170.73		C17	Normality Outlier Tes	Test t		C21	C22	C23	C24	C25	C26	C27	C28	C29	,
T	rror otal	13 15	170.73 2123.71	13.13	C17	Normality Outlier les	Test.,		C21	C22 Drive in time (X1)		C24 X1_STD		C26 Y (Transistor Gain)	C 27	C28 RPM	C29 Type of Cutting	Tool Su
е т	c13	13 15 C14	170.73 2123.71 C15	13.13	C17	Δ Normality Outlier Tes	Test t of-Fit Test for Po		C21						C27		Type of Cutting	Tool Su
е т •	C13 x2_1	13 15 C14 x3_1	170.73 2123.71 C15 x4_1	13.13	C17 Time	A Normality Outlier les λ Goodness 0.0400	Test t of - Fit Test for Po		C21	Drive in time (X1)	Dose (X2)	X1_STD	x2_STD	Y (Transistor Gain)	C27	RPM	Type of Cutting	
Е Т 7 В	C13 x2_1 71	13 15 C14 x3_1 17	170.73 2123.71 C15 x4_1 6	13.13	C17 Time 1200	A Normality Outlier fes λ Goodness 0.0400 0.0380	Test t of - Fit Test for Po 5.3	28.0	C21	Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	Q7	RPM 265	Type of Cutting	302
E T * 7 8 9	rror otal x2_1 71 31	13 15 C14 x3_1 17 22	170.73 2123.71 C15 x4_1 6 44	13.13	C17 Time 1200 1200	Normality Outlier Tes λ Goodness 0 0.0400 0 0.0380 0	Test of-Fit Test for Po 5.3 7.5	28.0 31.5	C21	Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903 1555	Q7	RPM 265 259	Type of Cutting	302 302
E T 7 8 9 10	C13 x2_1 71 31 54	13 15 C14 x3_1 17 22 18	170.73 2123.71 C15 x4_1 6 44 22	13.13	C17 Time 1200 1200	▲ Normality Outlier fes → Goodness → 0.0400 → 0.0380 → 0.0320 → 0.0260	Test t of-Fit Test for Po 5.3 7.5 11.0	28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 255 225 225 225	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cutting	302 302 302
₹ 7 8 9 10 11	rror otal x2_1 71 31 54 47 40 66	13 15 C14 x3_1 17 22 18 4	170.73 2123.71 x4_1 6 44 22 26 34 12	13.13	C17 Time 1200 1200 1200	▲ Normatity Outlief Person 0.0400 0.0380 0.0320 0.0260 0.0340 0.0340	Test t of-Fit Test for Po 5.3 7.5 11.0 13.5	28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (X1) 225 195 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	Q7	RPM 265 259 221 218 224 212	Type of Cutting	302 302 302 302 302
₹ 7 8 9 10 11 12	rror otal x2_1 71 31 54 47 40	13 15 C14 x3_1 17 22 18 4 23	170.73 2123.71 C15 x4_1 6 44 22 26 34	13.13	C17 Time 1200 1200 1200 1200 1200 1200 1200	▲ Normatity Outlief Person 0.0400 0.0380 0.0320 0.0260 0.0340 0.0340 0.0410	Test of-Fit Test for Po 5.3 7.5 11.0 13.5 17.0 23.0 5.3	28.0 31.5 34.5 35.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 255 225 225 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	27	RPM 265 259 221 218 224 212 248	Type of Cutting	302 302 302 302 416
E	rror otal x2_1 71 31 54 47 40 66	13 15 C14 x3_1 17 22 18 4 23 9 8	170.73 2123.71 x4_1 6 44 22 26 34 12	13.13 C16	C17 Time 1200 1200 1200 1200 1200 1200 1200 120	▲ Normatity Outlief Person 0.0400 0.0380 0.0320 0.0260 0.0340 0.0340 0.0410 0.0840	Test eof-Fit Test for Poo 5.3 7.5 11.0 13.5 17.0 23.0	28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (X1) 225 195 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	C27	RPM 265 259 221 218 224 212	Type of Cutting	302 302 302 302 416 416

(Refer Slide Time: 07:16)

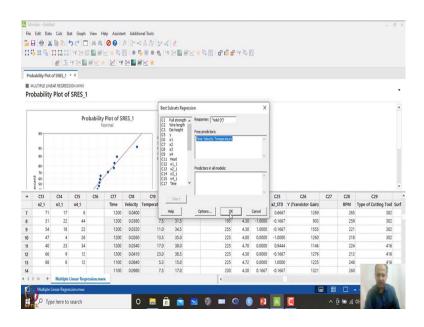

File	∃ ⊛ × ;∎ %		50 Y 区 Y 区		00 K		古野 121 A 雅泰哉 19		8 K 🕴	% 🗄 d' 🖏 c	P ~ 15	17						- 8	
	ression Anal																		
_	ULTIPLE LINE				-		-												٠
	s 3.62397 9 unalysis of	R-sq R 11.96%	-sq(adj) 90.72%		10-fold S	10-fold R-sc 85.459			Variable: Percentile (* None	SRES_Y		;	<						•
-	iource Regression Time Temperatur Irror Total	DF 2 1 1 2 1 3	Adj SS	Adj MS 8 976.49 1662.19 56.30 13.13	126.56	value 0.000 0.000 0.059			C Ryan	a values: Vormality son-Darling	Shapiro-Wik)								٠
٠	C13	C14	C15	C16	C17	C18		ielect.	Tide:				C25	C26	C27	C28	C29		
	x2_1	x3_1	x4_1		Time	Velocity T	-	1				-	STD	Y (Transistor Gain)		RPM	Type of Cutting 1		IL
7	71	17	6		1200	0.0400	7.5	31.5		195	OK 4.30	Cancel -1.0000	0.6667	1269 903		265		302 302	
9	54	18	22		1200	0.0320	11.0	34.5		255	4.30	1.0000	-0.1667	1555		221		302	
10	47	4	26		1200	0.0260	13.5	35.0		225	4.00	0.0000	-1.0000	1260		218		302	
11	40	23	34		1200	0.0340	17.0	38.0		225	4.70	0.0000	0.9444	1146		224		416	
12	66	9	12		1200	0.0410	23.0	38.5		225	4.30	0.0000	-0.1667	1276		212		416	
13	68	8	12		1100	0.0840	5.3	15.0		225	4.72	0.0000	1.0000	1225		248		416	
14	рн +	Multiple	Linear Reg	ression.mv	1100	0.0980	7.5	17.0		230	4.30	0.1667	-0.1667	1321		260	and the second second	2	
	1	Linear Regr	ession.mwx search			0			2	()	ର 🛛			6	■ ■ ^ (0 •• A	40		

So, let us try to see what about the normality distributions of this residual over here.

(Refer Slide Time: 07:20)

File	1 👲 🔏	Calc St		A A 		fx 2= -1	1日日 12 		8⊬*	ې 🕅 🖥 د	9 4 8 [2						8
Prot	ability Plot o	of SRES_1	×															
E M	ULTIPLE UNE	AR REGRESS	ION MWX															
Pro	bability	Plot of	SRES_1															
	99 95 90 80 70			No	rmal	/.	Mean StDev N AD P-Vah											
	50			1														
_	50 50	C14	C15	C16	C17	C18	C19	C20 -	C21	C22	(23	C24	(25	C26	C27	C28	C29	
_	C13 x2_1	C14 x3_1	C15 x4_1	C16	C17 Time	C18 Velocity	C19 Temperature	C20 g	C21	C22 Drive in time (X1)	C23 Dose (X2)	C24 X1_STD	C25 x2_STD	C26 Y (Transistor Gain)	C 27	C28 RPM	C29 Type of Cutting Too	1 5
•	C13			C16				C20 g							C 27		Type of Cutting Too	
+ 7	C13 x2_1	x3_1	x4_1	C16	Time	Velocity	Temperature	C20 g Yeild (Y)		Drive in time (X1)	Dose (X2)	X1_STD	x2_STD	Y (Transistor Gain)	C 27	RPM	Type of Cutting Too 30.	2
+ 7 8	C13 x2_1 71	x3_1 17	x4_1 6	C16	Time 1200	Velocity 0.0400	Temperature 5.3	C20 g Yeild (Y) 28.0		Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	C27	RPM 265	Type of Cutting Too 30. 30.	2
+ 7 8 9	C13 x2_1 71 31	x3_1 17 22	x4_1 6 44	C16	Time 1200 1200	Velocity 0.0400 0.0380	Temperature 5.3 7.5	C20 g Yeild (Y) 28.0 31.5		Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	C27	RPM 265 259	Type of Cutting Too 30. 30. 30. 30.	2
+ 7 8 9 10	C13 x2_1 71 31 54	x3_1 17 22 18	x4_1 6 44 22	C16	Time 1200 1200 1200	Velocity 0.0400 0.0380 0.0320	Temperature 5.3 7.5 11.0	C20 g Yeild (Y) 28.0 31.5 34.5		Drive in time (X1) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	27	RPM 265 259 221	Type of Cutting Too 30. 30. 30. 30. 30. 30.	2
+ 7 8 9 10 11	C13 x2_1 71 31 54 47	x3_1 17 22 18 4	x4_1 6 44 22 26	C16	Time 1200 1200 1200 1200	Velocity 0.0400 0.0380 0.0320 0.0260	Temperature 5.3 7.5 11.0 13.5	C20 28.0 Yeild (Y) 28.0 31.5 34.5 35.0		Drive in time (X1) 225 195 255 225	Dose (X2) 4,60 4,30 4,30 4,30 4,00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	C27	RPM 265 259 221 218	Type of Cutting Too 30. 30. 30. 30. 30. 41.	2 2 2 2 5 5
+ 7 8 9 10 11 12	C13 x2_1 71 31 54 47 40	x3_1 17 22 18 4 23	x4_1 6 44 22 26 34	C16	Time 1200 1200 1200 1200 1200	Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	Temperature 5.3 7.5 11.0 13.5 17.0	C20 5 Yeild (Y) 28.0 31.5 34.5 35.0 38.0		Drive in time (X1) 225 195 225 225 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	C27	RPM 265 259 221 218 224	Type of Cutting Too 30, 30, 30, 30, 41, 41, 41, 41,	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 → 7 8 9 10 11 12 13 14 	C13 x2_1 71 31 54 47 40 66	x3_1 17 22 18 4 23 9 8	x4_1 6 44 22 26 34 12		Time 1200 1200 1200 1200 1200 1200 1200 1100	Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410	Temperature 5.3 7.5 11.0 13.5 17.0 23.0	C20 28.0 Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.5		Drive in time (X1) 225 195 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	C27	RPM 265 259 221 218 224 212	Type of Cutting Too 30, 30, 30, 30, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

(Refer Slide Time: 07:23)



So, last residual will be normality we can check, and in this case 0.74, so there is not much problem with the normality assumptions over here. And, we do not have any problem over here.

(Refer Slide Time: 07:31)

			Basic Sta Regressio		, [7 Fitted Lin			au	· · · · · · · · · · · · · · · ·	1 4Y 15 E							
		1.001:	ANOVA		` .	Regressi				it Regression Model								
_			DOE		• 2	Nonline	ar Regression		Ri E	lest Subs Q								
	ability Plot		Control Quality T			Stability	Study			redict Best Subsets								
-	bability		Reliability	/Survival	. 2	Crthogo	nal Regression		_	Compare all pos predictors, and contour P contain one pre		pest titting m	odels that					
				e Analytics	1	Partial Le	east Squares		8 :	Auface Plot								
	99		Multivari Time Ser Tables Nonpara	es	, L	Binary Lo	itted Line Plot ogistic Regressio Logistic Regressi I Logistic Regress	on	Lake .	Overlaid Contour Plot Lesponse Optimizer								
	95		Equivaler Power ar	ice Tests d Sample S	,		Regression	0.250										
	95 90 00 00 00 00 00 00 00 00 00 00 00 00				,		Regression P-Val	, U.258 We 0.740										
	cent 65 8 67 66	C14	Power ar		c17	Poisson C18	Regression P-Val C19	, 0.740 0.740			C23	C24	C25	C26	(27	C28	C29	
	ercent 1 05 05 05 1 05 1 05 1 05 1 05 1 05 1 0	C14 x3_1	Power ar	d Sample S	ize ;	Poisson C18 Velocity	Regression P-Val	, 0.740 0.740		Drive in time (X1)	Dose (X2)	X1_STD	x2_STD	C26 Y (Transistor Gain)	Q7	RPM	C29 Type of Cutting Too	ol S
•	90 10 10 10 10 10 10 10 10 10 1	x3_1 17	Power ar C15 x4_1 6	d Sample S	ctr Time 1200	Poisson C18 Velocity 0.0400	Ct9 Temperature 5.3	• 0.740 C20 5 Yeild (Y) 28.0		Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	Q7	RPM 265	Type of Cutting Too 30.	2
+ r 3	90 00 100 00 00 00 00 00 00 00	x3_1 17 22	Power ar C15 x4_1 6 44	d Sample S	c17 Time 1200	Poisson C18 Velocity 0.0400 0.0380	Ct9 Temperature 5.3 7.5	ver 0.740 Veild (Y) 28.0 31.5		Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	Q7	RPM 265 259	Type of Cutting Too 30. 30.	2
•	90 00 10 00 00 00 00 00 00 00 0	x3_1 17 22 18	Power ar C15 x4_1 6 44 22	d Sample S	ct7 Time 1200 1200	Poisson C18 Velocity 0.0400 0.0380 0.0320	Ct9 Temperature 5.3 7.5 11.0	• 0.740 0.740 C20 p Yeild (Y) 28.0 31.5 34.5		Drive in time (X1) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	Q7	RPM 265 259 221	Type of Cutting Too 30. 30. 30. 30.	2
+ 7 8 0	90 00 10 00 00 00 00 00 00 00 0	x3_1 17 22 18 4	Power ar C15 x4_1 6 44 22 26	d Sample S	C17 Time 1200 1200 1200	Poisson C18 Velocity 0.0400 0.0380 0.0320 0.0260	Regression P-Val Ctip Temperature 5.3 7.5 11.0 13.5	C20 5 Yeild (Y) 28.0 31.5 34.5 35.0		Drive in time (X1) 225 195 255 225	Dose (X2) 4,60 4.30 4.30 4.00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	Q7	RPM 265 259 221 218	Type of Cutting Too 30. 30. 30. 30. 30. 30.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
+ 7 8 0 1	90 00 10 00 00 00 00 00 00 00 0	x3_1 17 22 18 4 23	Power ar C15 x4_1 6 44 22 26 34	d Sample S	C17 Time 1200 1200 1200 1200	Poisson C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	Regression AU P-val C19 Temperature 5.3 7.5 11.0 13.5 17.0	C20 5 Yeild (Y) 28.0 31.5 34.5 35.0 38.0		Drive in time (X1) 225 195 255 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cutting Too 30. 30. 30. 30. 41.	2 2 2 2 6
+ 7 8 9 0 11 2	90- 10- 10- 10- 10- 10- 10- 10- 1	x3_1 17 22 18 4 23 9	Power ar C15 x4_1 6 44 22 26 34 12	d Sample S	C17 Time 1200 1200 1200 1200 1200 1200	Poisson C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410	Regression AU P-val C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0	(220 g veild (V) 28.0 31.5 34.5 35.0 38.0 38.0 38.5		Drive in time (X1) 225 195 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	Q7	RPM 265 259 221 218 224 212	Type of Cutting Too 30, 30, 30, 30, 41, 41, 41, 41, 41,	12 12 12 12 12 6 6
+ 7 8 9 0 11 2 3 4	90 00 10 00 00 00 00 00 00 00 0	x3_1 17 22 18 4 23	Power ar C15 x4_1 6 44 22 26 34	d Sample S	C17 Time 1200 1200 1200 1200	Poisson C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	Regression AU P-val C19 Temperature 5.3 7.5 11.0 13.5 17.0	C20 5 Yeild (Y) 28.0 31.5 34.5 35.0 38.0		Drive in time (X1) 225 195 255 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	27	RPM 265 259 221 218 224	Type of Cutting Too 30, 30, 30, 30, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41	12 12 12 12 12 6 6

(Refer Slide Time: 07:36)

So, in this case normality is not a constraint. So, in this case we can also see, when I use best subset regression which is the best model it is giving, so I have taken yield over here and we have taken all the three variables.

(Refer Slide Time: 07:44)

File E Bes	it Subsets Reg	Calc Si Calc S		o e e	Help Assista	fx 3* -1 20 # 4 20 # 4	(古語)) (御来考 (武士)	ti •Y ⊵	B eki	k 🌣 📰 🗗 🞜	d ⁿ ¥ ¥\$ [1					. 8
	Response is Vars R-Sn				Asilows Co	T i m Se	T e m V p e e I r o a c t i u t r	Ser Ser Co Co Co	py as Picture py Column cimal Places	8 PowerPoint							
	C13	C14	C15	C16	C17	C18	C19	X De	ete		C23	C24	C25	C26	Q7 Q	8 C29	-
	x2_1	x3_1	x4_1	cio	Time		Temperatu	ure Yeild	m	Drive in time (XI)		X1_STD		Y (Transistor Gain)	RPI		ool Si
	71	17	6		1200	0.0400			28.0	225	4.60	0.0000	0.6667	1269			102
	31	22	44		1200	0.0380		7.5	31.5	195	4.30	-1.0000	-0.1667	903		259 3	102
	54	18	22		1200	0.0320	1	1.0	34.5	255	4.30	1.0000	-0.1667	1555		221 3	102
)	47	4	26		1200	0.0260	1	3.5	35.0	225	4.00	0.0000	-1.0000	1260		218 3	102
	40	23	34		1200	0.0340	1	7.0	38.0	225	4.70	0.0000	0.9444	1146		224 4	16
	66	9	12		1200	0.0410	2	3.0	38.5	225	4.30	0.0000	-0.1667	1276		212 4	16
	68	8	12		1100	0.0840		5.3	15.0	225	4.72	0.0000	1.0000	1225		248 4	16
					1100	0.0980		7.5	17.0	230	4.30	0.1667	-0.1667	1321		260	
	1	Multiple inear Regre e here to	ssion.mwx	gression.m	wx	0		R	* *	()	Q (→ @ ₩		•

And if I click ok, then what happens let us try to see. And we can just paste it copy as a picture over here so then we can paste it in excel and try to see what happens ok. So, we can adopt, we will try to see what happens if we select, so excel we are opening one excel sheet ok. So, let us do that one and we can paste it over here.

(Refer Slide Time: 08:14)

File H	Iome Ins	ert Pac		Formulas	Data	t Activation Fi		ACROBAT	Picture Tools Format											Sign in	0 0
		en rag	e cayour							Y	reli me what	you want t	0 00		n I m	m	H-H 5	1.1.1			P4 snac
1 × Cu						= %			General			間	1	4			Σ	AutoSum Fill •	ZY	ρ	
	mat Painter	8 I .	u · B ·	2 · A	+ 323	1 N N S		lerge & Center	- 197 - %		*8 48 Ce	nditional	Format a	is Cel	l Inser	t Delete F	ormat	Clear *	Sort &		
Clipboa			Font						s No		For	maning .	Table - Styles	Style		Cells			Filter = \$	elect *	
						A	ognineni		11 140	notr			super			Cens			inerg		
Picture 1		XV	f _x																		
A	8	С	D	E	F	G	н	1	J	K	L	М	N	1	0	Р	Q	R	S	T	l
E.												Vp	_								
												e e	-								
1												l r									
1													-								
												o a	-								
			9)								ct	9								
											i	i u									
7											n	ntr									
				Vare	R-Sa	R-Sa (ar	IN R.C	a (pred)	Mallows	n											
1						_				-		-									
1				1	89.3	88	.5	85.3	-	1.0	4.0270 X		_								
5				1	83.5	82	.4	78.3	12	2.6	4.9976	Х									
				2	92.0	90	7	85.2		0.0	3.6240 X	X									
				-										Q							
1					89.4	87		84.5		5.9	4.1620 X	Х									
				3	92.0	90	.0	84.2	4	1.0	3.7671 X	ΧХ	_								
1								0													
2 3 3 5 5 5 7 7 7 8 3 3 0 0 1 2			C	,				0					0								
)																					
																				0	N
2	-	-																		-	
()	Sheet1	۲										1									
1. Au																	田	0 8	- 1	1000	

So, when we are pasting it over here. What, observations we have that we want to see. So, over here this is time variable over here, this is temperature and this is the velocity over here. With one variable what we are seeing mallow Cp is about 4, R square adjusted is 88.5.

When I take consider only time as the variables like that ok, but mallow Cp is higher than the number of variables plus 1. So this is not recommended. Second one is also not recommended with one variable, third one what we are seeing, time and temperature it is mallow Cp is less than the number of variables plus 1, so 3 is 2 is less than 3. So, this seems to be adequate, this one of the suggested model over here.

And we are getting R square value of 92 which is higher than the earlier one. And, what we are getting is that R square adjusted is also high over here. And, prediction is also more or less same what we are getting over here, only thing is that when we adopt this one tenfold cross-validation also we can check ok. 5.9 is quite high, so this goes away and last one is considering all models, we want to deduce this one.

So last one does not, we do not see the last one. So, mallow Cp suggest that this is the one when time and temperature can be considered like that. So, so that is also suggested by stepwise regression what we have seen like that.

(Refer Slide Time: 09:33)

AllOw Regression b C Ref Regression both Bert Schoten Regression Central Charts Stability Study Fit Regression Model. Fit Regression Model Wunzer Lucrate rege Cantrol Charts Stability Study Y Fit Regression Model Bert Schoten Regression Cantrol Charts Stability Study Y Fit Regression Model Bert Schoten Regression Cantrol Charts Stability Study Y Fit Regression Model Bert Schoten Regression Control Charts Stability Study Y Fit Regression Model Bert Schoten Regression EX Chartspeel Regression Y Fit Regression Model					10	U LV IV. 5	6. 59 L			ne Plot	Fitted Lin	•	tistics on	Regressio			
DU Predct. Regression Model Regressind Model Regression Model Regression Model Regression					6	1 1 1 1	ession Model	A Fit Regr)	on	Regressie			ANOVA		0 m -0	
Best Subsets Regression Convort Hinds Subility Study Yr Predict Subility Study Yr P							ela.	Best Su		ar Regression	Nonlinea	. 12		DOE	· 🗶 .		
🖩 MultiPiEL Melan Rege Recitability/Survival b 🖉 Orthogonal Regression						lodel		Y Predict.	,	Study	Stability	,	Charts	Control (gression	t Subsets Re	Bes
Retability/Survival + Ez. Content interaction and polynomial terms, or transform the				al or Easily include	en categorica e response. E	nship betwee	Model the relatio	K Factoria				•			AR REGR	ULTIPLE LINE	B 1
						olynomial ter		Contou							ts Reg	st Subse	Be
Predictive Analytics Maria Least Squares Presidine in neoled.						tu.		Surface		east Squares	Partial Le	8.12					
Response is Yeild Time Series Biology Logistic Representation / Representa								de la	•	ogistic Regression	Binary Lo	, ^L	ies		s Yeild	Response i	R
Nonparametics () Given Logistics Regression Equivalence Rets / Personal Logistic Regression Powar and Koundo C. Personal Regression										Logistic Regressi	Nominal						
o a T c t																	
ο a T < t i i u m t r Wark R-Sa ReSartadii R-Sartaredi MalloaveCas S μ ν μ										i u t r v e	i m S e						
0 â T c t i i u m t r Varc R-Sa R-Sa fadii R-Sa fandi Mallows Ca: Sa V a + C13 C14 C15 C16 C17 C18 C19 C28 <u>C</u> 21 C22 C23 C24 C25 C26 C27 C28										i u t r v e C19	C18	C17		C15	C14	C13	•
o a T c t i u m t r Var. R-5a R-5a fadil R-5a meth Mallows Cn. S a v a + C13 C44 C45 C16 C17 C48 C49 (20 C2) C22 C23 C24 C25 C26 C27 C28 x2,3 x3,3 x4,3 Time Velocity Temperature Velid (Y) Drive In time (X1) Dose (X2) X1,310 x4,310 Y (Vitanistar Gain) R5M	Type of Cutting Tool	RPM	(Transistor Gain)	x2_STD	X1_STD	Dose (X2)	Drive in time (X1)		Yeild (Y)	i u t r v e Ct9 Temperature	i m S P C18 Velocity	C17 Time		C15 x4_1	C14 x3_1	C13 x2_1	
0 3 7 6 1 9 7 10 9 10 9 11 9 11 9 11 9 12	Type of Cutting Tool 65 302	RPM 265	(Transistor Gain) 1269	x2_STD 0.6667	X1_STD 0.0000	Dose (X2) 4.60	Drive in time (X1) 225		Yeild (Y) 28.0	i u t r v e C19 Temperature 5.3	C18 Velocity 0.0400	C17 Time 1200		C15 x4_1 6	C14 x3_1 17	C13 x2_1 71	
0 3 T C H U H U H U H U H U H U H U H U H U H U H U H U H U H U H U H U H U H C3 C4 C5 C6 C77 C18 C21 C22 C24 C24 C25 C26 C27 C28 V23 X33 x43 Tme Weldy H H Drive In time (MI) Dose (V1) XISTD V2/STD V1/Asider Gain B26 1 T1 T6 T1200 GA400 T53 2101 V1/Asider Gain B26 3 2 444 T1200 C300 T53 1519 430 -L000 4167 933 219	Type of Cutting Tool 65 302 59 302	RPM 265 259	/ (Transistor Gain) 1269 903	x2_STD 0.6667 -0.1667	X1_STD 0.0000 -1.0000	Dose (X2) 4.60 4.30	Drive in time (X1) 225 195		Yeild (Y) 28.0 31.5	i u t r v e C19 Temperature 5.3 7.5	C18 Velocity 0.0400 0.0380	C17 Time 1200 1200		C15 x4_1 6 44	C14 x3_1 17 22	C13 x2_1 71 31	7
o a T c 1 T c 1 T c 1 T c 1 T c 1 T c 1 T c 1 C 13 C41 C 10 C 21 C 22 C 24 C 25 C 27 C 28 C 13 C 15 C 10 C 20 C 24 C 25 C 26 C 27 C 23 C 24 C 26	Type of Cutting Tool 65 302 59 302 21 302	RPM 265 259 221	f (Transistor Gain) 1269 903 1555	x2_STD 0.6667 -0.1667 -0.1667	X1_STD 0.0000 -1.0000 1.0000	Dose (X2) 4.60 4.30 4.30	Drive in time (X1) 225 195 255		Yeild (Y) 28.0 31.5 34.5	i u t r v e Ct9 Temperature 5.3 7.5 11.0	C18 Velocity 0.0400 0.0380 0.0320	C17 Time 1200 1200 1200		C15 x4_1 6 44 22	C14 x3_1 17 22 18	C13 x2_1 71 31 54	7
0 0 3 Yur R-6n faith R-5n faith	Type of Cutting Tool 65 302 59 302 21 302 18 302	RPM 265 259 221 218	/ (Transistor Gain) 1269 903 1555 1260	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	X1_STD 0.0000 -1.0000 1.0000 0.0000	Dose (X2) 4,60 4,30 4,30 4,00	Drive in time (X1) 225 195 255 225		Yelld (Y) 28.0 31.5 34.5 35.0	i u t r v e Ct9 Temperature 5.3 7.5 11.0 13.5	r C18 Velocity 0.0400 0.0380 0.0320 0.0260	C17 Time 1200 1200 1200 1200		C15 x4_1 6 44 22 26	C14 x3_1 17 22 18 4	C13 x2_1 71 31 54 47	;
o a t i u u i i u u i u u u u u u u u u u u	Type of Cutting Tool 65 302 59 302 21 302 18 302 24 416	RPM 265 259 221 218 224	/ (Transistor Gain) 1269 903 1555 1260 1146	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	Dose (X2) 4.60 4.30 4.30 4.00 4.70	Drive in time (X1) 225 195 255 225 225		Yelld (Y) 28.0 31.5 34.5 35.0 38.0	i u t r v e C19 Temperature 5.3 7.5 11.0 13.5 17.0	r S e C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	C17 Time 1200 1200 1200 1200 1200		C15 x4_1 6 44 22 26 34	C14 x3_1 17 22 18 4 23	C13 x2_1 71 31 54 47 40	r 8 0 1
0 a T c 10 b T c 10 b T c 10 b T c 10 b	Type of Cutting Tool 65 302 59 302 21 302 22 400 24 416 12 416	RPM 265 259 221 218 224 224 212	f (Transistor Gain) 1269 903 1555 1260 1146 1276	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	Dose (X2) 4,60 4,30 4,30 4,00 4,70 4,30	Drive in time (X1) 225 195 255 225 225 225 225		Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.5	i u t r v e C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0	r C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410	C17 Time 1200 1200 1200 1200 1200 1200		C15 x4_1 6 44 22 26 34 34	C14 x3_1 17 22 18 4 23 9	C13 x2_1 71 31 54 47 40 66	r 8 0 1 2
o a to be to	Type of Cutting Tool 65 302 59 302 21 302 18 302 24 416 12 416 48 416	RPM 265 259 221 218 224	f (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	Dose (X2) 4,60 4,30 4,30 4,00 4,70 4,30 4,72	Drive in time (X1) 225 195 225 225 225 225 225 225 225		Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	i u t r v e C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	rm S # C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410 0.0840	C17 Time 1200 1200 1200 1200 1200 1200 1100		C15 x4_1 6 44 22 26 34 34	C14 x3_1 17 22 18 4 23 9	C13 x2_1 71 31 54 47 40 66	7 8 0 1 2 3

So in this case, again I am doing this. So, if we select this one fit regression model over here.

(Refer Slide Time: 09:39)

File		Calc St	50 E	1 A A	00	众 計 图 1	-2 • 1 0	計 ビス 東先 19		⊻★ 尊聞	o" (<mark>"</mark> o"	-Y 84 8	1							
Best	Subsets Re	gression: Y.	. • X																	
III M	ULTIPLE LINE	AR REGRESS	ION MWX				Regressi	on						>	<					
_	t Subse			Veild (V	versus	Tim	C1 PL C2 W	il strength 🔥	Response	2										٠
000	(bubbe	to negh		rena (i	,		C3 D	ire length e height	Yeld (Y)					^	·					
D	esponse i	e Vaild (V	0				C5 y C6 x1							4	()					٠
N	sponser	s tellu (1)				C7 X		Continuou	s predictors:					-					
							C9 X*		Time Ten	perature				0	5					
							C12 x	1.1		1										
							C14 x	3_1							-					
							C17 T	4_1 me	Calenneir	l predictors:										
	Jars R-So	R-So (ad	li) R-Sa (ored) M	allows Co	\$	C19 T C20 Y C22 D C23 D C24 X C25 x	elocity emperature eld (Y) rive in time (ose (X2) 1_STD 2_STD						~	× _					٧
+	C13	C14	C15	C16	C17	C18	C26 Y C28 R	(Transistor (PM v		Model	Options	0	ing	Stepwise	C26	C27	C28	C29		
	x2_1	x3_1	x4_1		Time	Veloc	-		- -						ransistor Gain)		RPM	Type of Cuttin	ng Tool S	urf
7	71	17	6		1200	0.0		Select		Yalidation	Graphs	Be	ults	Storage	1269		265		302	
8	31	22	44		1200	0.0									903		259		302	
9	54	18	22		1200	0.0	1.009	>				_	QK	Cancel	1555		221		302	
10	47	4	26		1200	0.0		10.0	00.0		223	4700	0.0000	1.0000	1260		218		302	
11	40	23	34		1200	0.0		17.0	38.0		225	4.70	0.0000	0.9444	1146		224		416	
12	66	9	12		1200	0.0		23.0	38.5		225	4.30	0.0000	-0.1667	1276		212		416	
13	68	8	12		1100	0.0		5.3	15.0		225	4.72	0.0000	1.0000	1225		248	1	416	
14					1100	0.0	980	7.5	17.0		230	4.30	0.1667	-0.1667	1321		260	-		
41	н +	-	Linear Regr	ession.mw.	×	_					4								-	
4	Multiple L	inear Regre	sion.mwx																1	
							0	🖬 🔒		M 🚳	- 0			the second se	I					8 B

And in this case, time and temperature. So, I am removing this one and these are the two variables.

(Refer Slide Time: 09:44)

100	itab - Untitle						Regression: Stepwise						~ <i>θ</i>
				View He			Method: None						
				新福			,						
Ц				1 . 8 f									
		€ E	-γ 🖂 🛄	8K*	12 Y	2	Time Temperature						
Bes	Subsets Re	gression: Y.	* X										
II N	ULTIPLE LINE	AR REGRESS	ION MWX										
Be	t Subse	ts Regn	ession:	Yeild (Y)	versus	Tim							•
R	esponse i	s Yeild (Y)										
			<i>'</i>										
							ξ = Include term in every model [] = Include term in the	initial model					
							Alpha to egter: 0.15						
							Alpha to remove: 0.15						
							Alpha to remove: 0.15						
							Apha to remove: 0.15						
	Vars R-So	R-Sn (ar	fi) R-Sa (nred) Ma	llows Co		Agina to remove: 0.13						
+	Vars R-Sn C13	R-Sn (ac	ti) R-Sn (nred) Ma	llows Cn C17	CIE	Agha to remove: 0.13		C26	C27	C28	C29	¥
-						Cite			C26 'ransistor Gain)	Q27	C28 RPM	C29 Type of Cutting	Tool Surf
-	C13	C14	C15		C17				ransistor Gain) 1269	C27	RPM 265	Type of Cutting	302
+ 7 8	C13 x2_1 71 31	C14 x3_1 17 22	C15 x4_1 6 44		C17 Time 1200 1200	Veloc 0.0 0.0			ransistor Gain) 1269 903	C27	RPM 265 259	Type of Cutting	302 302
* 7	C13 x2_1 71 31 54	C14 x3_1 17 22 18	C15 x4_1 6 44 22		C17 Time 1200 1200 1200	Veloc 0.0 0.0 0.0			ransistor Gain) 1269 903 1555		RPM 265 259 221	Type of Cutting	302 302 302
+ 7 8	C13 x2_1 71 31 54 47	C14 x3_1 17 22 18 4	C15 x4_1 6 44 22 26		C17 Time 1200 1200 1200 1200	Veloc 0.0 0.0 0.0 0.0	Beach-		ransistor Gain) 1269 903 1555 1260		RPM 265 259 221 218	Type of Cutting	302 302 302 302 302
* 7 8 9	C13 x2_1 71 31 54	C14 x3_1 17 22 18	C15 x4_1 6 44 22		C17 Time 1200 1200 1200	Veloc 0.0 0.0 0.0	Beach-		ransistor Gain) 1269 903 1555		RPM 265 259 221	Type of Cutting	302 302 302
 7 8 9 10 	C13 x2_1 71 31 54 47	C14 x3_1 17 22 18 4	C15 x4_1 6 44 22 26		C17 Time 1200 1200 1200 1200	Veloc 0.0 0.0 0.0 0.0 0.0	Beach-		ransistor Gain) 1269 903 1555 1260		RPM 265 259 221 218	Type of Cutting	302 302 302 302 302
+ 7 8 9 10 11 12	C13 x2_1 71 31 54 47 40	C14 x3_1 17 22 18 4 23	C15 x4_1 6 44 22 26 34		C17 Time 1200 1200 1200 1200 1200	Veloc 0.0 0.0 0.0 0.0 0.0	iterandur ₽ "gebeur fen talde of model selectors docale		ransistor Gain) 1269 903 1555 1260 1146		RPM 265 259 221 218 224	Type of Cutting	302 302 302 302 416
+ 7 8 9 10 11 12	C13 x2_1 71 31 54 47 40 66 68	C14 x3_1 17 22 18 4 23 9 8	C15 x4_1 6 44 22 26 34 12 12	C16	C17 Time 1200 1200 1200 1200 1200 1200 1200 1100	Veloc 0.0 0.0 0.0 0.0 0.0 0.0	Herardy		ransistor Gain) 1269 903 1555 1260 1146 1276		RPM 265 259 221 218 224 212	Type of Cutting	302 302 302 302 416 416
* 7 8 9 10 11 12 13	C13 x2_1 71 31 54 47 40 66	C14 x3_1 17 22 18 4 23 9 8	C15 x4_1 6 44 22 26 34 12 12		C17 Time 1200 1200 1200 1200 1200 1200 1200 1100	Veloc 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Berardov		ransistor Gain) 1269 903 1555 1260 1146 1276 1225		RPM 265 259 221 218 224 212 248	Type of Cutting	302 302 302 302 416 416
+ 7 8 9 10 11 12 13 14	С13 x2_1 71 31 54 47 40 66 68 68	C14 x3_1 17 22 18 4 23 9 8	C15 x4_1 6 44 22 26 34 12 12 12	C16	C17 Time 1200 1200 1200 1200 1200 1200 1200 1100	Veloc 0.0 0.0 0.0 0.0 0.0 0.0 0.0	jerantin		ransistor Gain) 1269 903 1555 1260 1146 1276 1225 1321		RPM 265 259 221 218 224 212 248	Type of Cutting	302 302 302 302 416 416
+ 7 8 9 10 11 12 13 14	С13 x2_1 71 31 54 47 40 66 68 н + Миtplet	C14 x3_1 17 22 18 4 23 9 8 8 Multiple	C15 x4_1 6 44 22 26 34 12 12 12 12 5000 mwx	C16	C17 Time 1200 1200 1200 1200 1200 1200 1200 1100	Veloc 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Herardy	Circl	ransistor Gain) 1269 903 1555 1260 1146 1276 1225 1321		RPM 265 259 221 218 224 212 248 260	Type of Cutting	302 302 302 302 416 416

And stepwise regression, I will not use now. So, in this case I have already identified the variables.

(Refer Slide Time: 09:51)

File	itab - Unbits Edit Data B 👷 💥		50 E	1 4 4	00	☆ 計 图 兼	-11人日 15 雅 4	114 144 14		8 🗹 ★ 符 题 🗗 🐻 (即以於国	17					,	- 8 ×
Best	Subsets Re	gression: Y.	* X			Ē		Regression	Graphs			-	x .	a				
II M	ULTIPLE LINE	AR REGRESS	NWM.NOI				Regression			Effects Plots				S				
Bes	t Subse	ts Regn	ession:	Yeild (Y	versus	s Tim	C1 Pull C2 Wre			Effects Hots				-				•
	esponse i Wars R-Sr			nrech Ma	llows Co.		CS y CG x1 C7 x2 C3 x3 C9 x4 C12 x1, C13 x2, C14 x3, C15 x4, C15 x4, C17 Tm C18 Vek C19 Ter C20 Tel C22 Drin C23 Dat C23 x2, C34 x2, C34 x2, C34 x2, C34 x2, C34 x2, C34 x2, C34 x3, C35 x4, C35 x			Besiduals for plots: Residuals plots C Individual plots I tylinda plots	t of residuals r			-				*
+	C13	C14	C15	C16	C17	C18	C25 x2 C26 Y (C28 RP						epwise	C26	C27	C28	C29	1
	x2_1	x3_1	x4_1		Time	Veloc	C28 101					-	thuse	ransistor Gain)	RPM	Type of Cutting T	ool Surf
7	71	17	6		1200	0.0	5	Se	ect				prage	126)	265	5	302
8	31	22	44		1200									90		259		302
9	54	18	22		1200		Help	Help	1		25	Cancel	Cancel	155		221		302
10	47	4	26		1200		-	_	_		13	_	.0000	126		218		302
11	40	23	34		1200	0.034	10	17.0	38.0	225	4.70	0.0000	0.9444	114		224		416
12	66	9	12		1200			23.0	38.5	225	4.30	0.0000	-0.1667	1276		212		416
13	68	8	12		1100	0.084	10	5.3	15.0	225	4.72	0.0000	1.0000	122		248	3	416
14					1100	0.098	10	7.5	17.0	230	4.30	0.1667	-0.1667	132		260		1
	1.	Multiple inear Regree	ssion mwx	ession.mws		(0		Â	 Image: Constraint of the second second	ର 🛽	2		x		□ ≜ •• ĝ		

And, I want to see all graphs, whether it is and this residual can be a standardized residual over here, so if I click ok.

(Refer Slide Time: 10:00)

								8⊻*											
Best S	Subsets Re	gression: Y	Y * X	×			Re	gression: Valid.	lation					×					
-	Subse				/eild (() versus	Tim	-		aldation methor	d: K-fold cross	-validation		•					
Re	sponse i	s Yeild ((Y)							-	kas (v.): dom number generator: of each fold by ID column	10	2345						
v	tars R-So	R-Sn (a	(adi) R-S	R-Sn (n	nred) A	tallows Co	s		0	ID Column:	Г								
v +	tars R-Sn C13	R-Sn (a C14	(adi) R-S		C16	tallows Co C17	S C18			ĮD Column:	Г	20			C26	Q27	C28	C29	
-				15			S C18 Veloc			ĮD Column:	um for K-faid cross-validatio	on			C26 Transistor Gain)	Q7	C28 RPM	C29 Type of Cutting To	ol S
•	C13 x2_1 71	C14 x3_1 17	C15 x4_1 7	215 x4_1 6		C17 Time 1200	Veloc 0.0	Select		ĮD Column:	Г	an			'ransistor Gain) 1269	Q7	RPM 265	Type of Cutting To 3	02
+ r 3	C13 x2_1 71 31	C14 x3_1 17 22	C15 x4_1 7 2	15 4_1 6 44		C17 Time 1200 1200	Veloc 0.0 0.0	Select		ĮD Column:	Г	n			'ransistor Gain) 1269 903	Q7	RPM 265 259	Type of Cutting To 3 3	02 02
	C13 x2_1 71 31 54	C14 x3_1 17 22 18	C15 x4_1 7 2 8	215 44_1 6 44 22		C17 Time 1200 1200 1200	Veloc 0.0 0.0 0.0	Select Help		ĮD Column:	Г	20	×	Cancel	'ransistor Gain) 1269 903 1555	Q7	RPM 265 259 221	Type of Cutting To 3 3 3	02 02 02
	C13 x2_1 71 31 54 47	C14 x3_1 17 22 18 4	C15 x4_1 7 2 4 8 3 4	215 4_1 6 44 22 26		C17 Time 1200 1200 1200 1200	Veloc 0.0 0.0 0.0 0.0	Help	,	ID Column:	unn for K-fold cross-validate				ransistor Gain) 1269 903 1555 1260	Q7	RPM 265 259 221 218	Type of Cutting To 3 3 3 3 3 3	02 02 02 02
	C13 x2_1 71 31 54 47 40	C14 x3_1 17 22 18 4 23	C15 x4_1 7 2 4 3	215 44_1 6 44 22 26 34		C17 Time 1200 1200 1200 1200 1200	Veloc 0.0 0.0 0.0 0.0 0.0	Help 17.0	0 38	[D Column:	um for K-fold cross-validate	4.70	0.0000	0.9444	ransistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cutting To 3 3 3 3 4	02 02 02 02 16
	C13 x2_1 71 31 54 47 40 66	C14 x3_1 17 22 18 4 23 9	C15 x4_1 7 2 4 3 3	215 4_1 6 44 22 26 34 12		C17 Time 1200 1200 1200 1200 1200 1200	Veloc 0.0 0.0 0.0 0.0 0.0 0.0340 0.0410	Help 17.4 23.4	0 36 0 38	[D Column: Store ID colu 3.0 3.5	um for K-föd cross-valdate 225 225	4.70	0.0000	0.9444	ransistor Gain) 1269 903 1555 1260 1146 1276	21	RPM 265 259 221 218 224 212	Type of Cutting To 3 3 3 3 3 3 4 4 4	02 02 02 02 16 16
	C13 x2_1 71 31 54 47 40	C14 x3_1 17 22 18 4 23	C15 x4_1 7 2 4 3 3	215 44_1 6 44 22 26 34		C17 Time 1200 1200 1200 1200 1200	Veloc 0.0 0.0 0.0 0.0 0.0	Help 17.0	0 36 0 36 3 15	[D Column:	um for K-fold cross-validate	4.70	0.0000	0.9444	ransistor Gain) 1269 903 1555 1260 1146	27	RPM 265 259 221 218 224	Type of Cutting To 3 3 3 3 3 4 4 4 4 4	02 02 02 02 16

And, validation we have already careful cross-validation we have given.

(Refer Slide Time: 10:05)

	*		t Graph															
1 10 11 0	BITT						「青龍」シュ											
		01 10	4Y 26	1 8k	(★明日	1 # P	雅专先	•Y 🖂 🚺 🖗	BK 1	4 🖾 🗗 🐻 🕻	PY 90	8						
		EL	Y 🖂 🚺	8K*	12 4	200	8K*											
Regression	Analysis: Y	Yeild	* X															
MULTIPLE	UNFAR RE	FGRESSI	ON MWX															
				(Y) vers	us Tim	e. Temr	erature											
				(.,,		-)h												
Method	d																	^
Contract	lidation	10.fold																
0.035-101	100000	10-1010																
Regress	sion Equ	uation																
				0.351 Tem	Decature													
				0.351 Temp	perature													
Yelid (Y)	· -130			0.351 Temp	perature		D											
	· -130			0.351 Temp	perature		R											
Yelid (Y)	-130	0.7 + 0.1	340 Time +			VIF												
Yeld (Y) Coeffici	• -130.	0.7 + 0.1	340 Time +			VIF												
Yeld (Y) Coeffici Term Constant C13	ients	0.7 + 0.1 Coef -130 7	340 Time + SE Coef 14 1 C15	T-Value I	P-Value 0.000 C17	C18	C19	C20 g	(21	C22	C23	C24	C25	C26	C27	C28	C29	
Yelid (Y) Coeffici Term Constant Canstant Canstant Canstant Canstant Canstant Canstant Canstant Canstant	= -130. ients C1 1 x3,	Coef -120 7 3_1	340 Time + SE Coef 14 1	T-Value 1	P-Value 0.000 C17 Time	C18 Velocity	C19 Temperature	Yeild (Y)	(21	Drive in time (X1)	Dose (X2)	X1_STD	x2_STD	Y (Transistor Gain)	C27	RPM	Type of Cutting Too	
Yeld (Y) Coeffici Term Constant C13 X2_1	 -130. ients C1 X3, 71 	0.7 + 0.1 <u>Coef</u> -120 7 Coef -120 7 Co	340 Time + SE Coef 14 1 C15 x4_1 6	T-Value 1	C17 Time 1200	C18 Velocity 0.0400	C19 Temperature 5.3	Yeild (Y) 28.0	(21	Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	C 27	RPM 265	Type of Cutting Too 30	2
Yeid (Y) Coeffici Term Constant C13 x2_1	 -130. ients C1 X3, 71 31 	Coef -130 7 :14 3_1 17 22	340 Time + SE Coef 14 1 C15 x4_1 6 44	T-Value 1	P-Value 0.000 C17 Time 1200 1200	C18 Velocity 0.0400 0.0380	C19 Temperature 5.3 7.5	Yeild (Y) 28.0 31.5	C21	Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	Q7	RPM 265 259	Type of Cutting Too 30 30	2
Yeid (Y) Coeffici Term Constant C13 x2_1	 -130. ients C1 X3, 71 31 54 	0.7 + 0.1 <u>Coef</u> -120 7 Coef -120 7 Co	340 Time + SE Coef 14 1 C15 x4_1 6 44 22	T-Value 1	P-Value 0.000 C17 Time 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320	C19 Temperature 5.3 7.5 11.0	Yeild (Y) 28.0 31.5 34.5	C21	Drive in time (X1) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	Q7	RPM 265 259 221	Type of Cutting Too 30 30 30	2
Yeid (Y) Coeffici Term Constant C13 x2_1	 -130. ients C1 X3, 71 31 	0.7 + 0.1 Coef .130 7 14 3_1 17 22 18 4	340 Time + SE Coef 14 1 C15 x4_1 6 44 22 26	T-Value 1	P-Value 0.000 C17 Time 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260	C19 Temperature 5.3 7.5	Yeild (Y) 28.0 31.5	C21	Drive in time (X1) 225 195 255 225	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903	Q27	RPM 265 259 221 218	Type of Cutting Too 30 30 30 30 30	2
Yeld (Y) Coeffici Term Constant C13 X2_1	 -130. ients C1 X3, 71 31 54 47 40 	Coef -130 7 14 3_1 17 22 18	340 Time + SE Coef 14 1 C15 x4_1 6 44 22 26 34	T-Value 1	P-Value 0.000 C17 Time 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 255 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cutting Too 30 30 30 30 41	2 2 2 2 6
Yeld (Y) Coeffici Term Constant C13 X2_1	 -130. ients C1 x3, 71 31 54 47 40 66 	0.7 + 0.1 Coef .130 7 14 3_1 17 22 18 4	340 Time + SE Coef 14 1 C15 x4_1 6 44 22 26	T-Value 1	P-Value 0.000 C17 Time 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260	C19 Temperature 5.3 7.5 11.0 13.5	Yeild (Y) 28.0 31.5 34.5 35.0	C21	Drive in time (X1) 225 195 255 225	Dose (X2) 4,60 4,30 4,30 4,30	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	Q7	RPM 265 259 221 218	Type of Cutting Too 30 30 30 30 41	2 2 2 2 6
Yeld (Y) Coeffici Term Constant C13 X2_1	 -130. ients C1 X3, 71 31 54 47 40 	Coef -130 7 -130 7 -14 3_1 17 22 18 4 23	340 Time + SE Coef 14 1 C15 x4_1 6 44 22 26 34	T-Value 1	P-Value 0.000 C17 Time 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 255 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cutting Tor 30 30 30 30 30 41 41 41	2 2 2 2 6 6
Yeld (Y) Coeffici Term Constant C13 X2_1	 -130. ients C1 x3, 71 31 54 47 40 66 	Coef -130 7 -130 7 -14 3_1 17 22 18 4 23	340 Time + SE Coef 14 1 C15 x4_1 6 44 22 26 34 12	T-Value 1	P-Value 0.000 C17 Time 1200 1200 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (X1) 225 195 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	Q7	RPM 265 259 221 218 224 212	Type of Cutting Tor 30 30 30 30 41 41 41 41	2 2 2 2 6 6
Yeld (Y) Coeffici Term Constant C13 X2_1 X2_1	e -130. ients Ct 1 x3, 71 31 54 47 40 66 68	0.7 + 0.1 Coef 1.130 7 14 3_1 17 22 18 4 23 9 8 8	340 Time + SE Coef 14 1 C15 x4_1 6 44 22 26 34 12	T-Value 1 .0 74 C16	P-Value 0.000 C17 Time 1200 1200 1200 1200 1200 1200 1200 120	C18 Velocity 0.0400 0.0320 0.0260 0.0340 0.0410 0.0840	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (X1) 225 195 225 225 225 225 225 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70 4,30 4,72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	Q7	RPM 265 259 221 218 224 212 212 248	Type of Cutting Tor 30 30 30 30 41 41 41 41	2 2 2 2 6 6
Yeld (Y) Coeffici Term Constant C13 X2_1	 -130. ients C1 X3, 71 	0.7 + 0.1 <u>Coef</u> -120 7 Coef -120 7 Co	340 Time + SE Coef 14 1 C15 x4_1 6	T-Value 1	C17 Time 1200	C18 Velocity 0.0400	C19 Temperature 5.3	Yeild (Y) 28.0	C21	Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	(27	RPM 265	Type of Cutting	30
Yeid (Y) Coeffici Term Costrant C13 x2_1	 -130. ients C1 X3, 71 31 	Coef -130 7 :14 3_1 17 22	340 Time + SE Coef 14 1 C15 x4_1 6 44	T-Value 1	P-Value 0.000 C17 Time 1200 1200 1200	C18 Velocity 0.0400 0.0380	C19 Temperature 5.3 7.5	Yeild (Y) 28.0 31.5	C21	Drive in time (X1) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	Q7	RPM 265 259 221	Type of Cutting Too 30 30 30	2
Yeid (Y) Coeffici Term Constant C13 x2_1	 -130. ients C1 X3, 71 31 54 	Coef -130 7 14 3_1 17 22 18	340 Time + SE Coef 14 1 C15 x4_1 6 44 22	T-Value 1	P-Value 0.000 C17 Time 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320	C19 Temperature 5.3 7.5 11.0	Yeild (Y) 28.0 31.5 34.5	C21	Drive in time (X1) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	Q7	RPM 265 259 221	Type of Cutting Too 30 30 30	2
Yeid (Y) Coeffici Term Constant C13 x2_1	 -130. ients C1 X3, 71 31 54 	Coef -130 7 14 3_1 17 22 18	340 Time + SE Coef 14 1 C15 x4_1 6 44 22	T-Value 1	P-Value 0.000 C17 Time 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320	C19 Temperature 5.3 7.5 11.0	Yeild (Y) 28.0 31.5 34.5	C21	Drive in time (X1) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	Q7	RPM 265 259 221	Type of Cutting Too 30 30 30	2
Yeld (Y) Coeffici Term Contract C13 x2_1	 -130. ients C1 X3, 71 31 54 	0.7 + 0.1 Coef .130 7 14 3_1 17 22 18 4	340 Time + SE Coef 14 1 C15 x4_1 6 44 22 26	T-Value 1	P-Value 0.000 C17 Time 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260	C19 Temperature 5.3 7.5 11.0	Yeild (Y) 28.0 31.5 34.5	C21	Drive in time (X1) 225 195 255 225	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555	Q27	RPM 265 259 221 218	Type of Cutting Too 30 30 30 30 30	2
Yeld (Y) Coeffici Term Constant C13 x2_1	 -130. ients C1 X3, 71 31 54 47 	0.7 + 0.1 Coef .130 7 14 3_1 17 22 18 4	340 Time + SE Coef 14 1 C15 x4_1 6 44 22 26	T-Value 1	P-Value 0.000 C17 Time 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260	C19 Temperature 5.3 7.5 11.0 13.5	Yeild (Y) 28.0 31.5 34.5 35.0	C21	Drive in time (X1) 225 195 255 225	Dose (X2) 4,60 4,30 4,30 4,00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	Q7	RPM 265 259 221 218	Type of Cutting Too 30 30 30 30 30	2
Yeld (Y) Coeffici Term Constant C13 X2_1	 -130. ients C1 X3, 71 31 54 47 40 	Coef -130 7 -130 7 -14 3_1 17 22 18 4 23	340 Time + SE Coef 14 1 C15 x4_1 6 44 22 26 34	T-Value 1	P-Value 0.000 C17 Time 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 255 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cutting Too 30 30 30 30 41	2 2 2 2 6
Yeld (Y) Coeffici Term Constant C13 X2_1	 -130. ients C1 X3, 71 31 54 47 40 	Coef -130 7 -130 7 -14 3_1 17 22 18 4 23	340 Time + SE Coef 14 1 C15 x4_1 6 44 22 26 34	T-Value 1	P-Value 0.000 C17 Time 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 255 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cutting Too 30 30 30 30 41	2 2 2 2 6
Yeld (Y) Coeffici Term Constant C13 X2_1	 -130. ients C1 X3, 71 31 54 47 40 	Coef -130 7 -130 7 -14 3_1 17 22 18 4 23	340 Time + SE Coef 14 1 C15 x4_1 6 44 22 26 34	T-Value 1	P-Value 0.000 C17 Time 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 255 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cutting Too 30 30 30 30 41	2 2 2 2 6
Yeld (Y) Coeffici Term Constant C13 X2_1	 -130. ients C1 x3, 71 31 54 47 40 66 	Coef -130 7 -130 7 -14 3_1 17 22 18 4 23	340 Time + SE Coef 14 1 C15 x4_1 6 44 22 26 34	T-Value 1	P-Value 0.000 C17 Time 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 255 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cutting Too 30 30 30 30 41	2 2 2 2 6
Yeld (Y) Coeffici Term Constant C13 X2_1	 -130. ients C1 x3, 71 31 54 47 40 66 	Coef -130 7 -130 7 -14 3_1 17 22 18 4 23	340 Time + SE Coef 14 1 C15 x4_1 6 44 22 26 34 12	T-Value 1	P-Value 0.000 C17 Time 1200 1200 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (X1) 225 195 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	Q27	RPM 265 259 221 218 224 212	Type of Cutting Tor 30 30 30 30 30 41 41 41	2 2 2 6 6
Yeld (Y) Coeffici Constant Constant Constant C13 x2_1	 -130. ients C1 x3, 71 31 54 47 40 66 	Coef -130 7 -130 7 -14 3_1 17 22 18 4 23	340 Time + SE Coef 14 1 C15 x4_1 6 44 22 26 34 12	T-Value 1	P-Value 0.000 C17 Time 1200 1200 1200 1200 1200 1200 1200 120	C18 Velocity 0.0400 0.0320 0.0260 0.0340 0.0410 0.0840	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (X1) 225 195 225 225 225 225 225 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70 4,30 4,72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	27	RPM 265 259 221 218 224 212 212 248	Type of Cutting Tor 30 30 30 30 41 41 41 41	2 2 2 2 6 6

(Refer Slide Time: 10:05)

File .	Edit Data	d Calc Sta	at Graph	View H	lelp Assista	nt Additio	onal Tools										-	Ð
E							1 8 2	10										
										40000	m LV 1/4 1							
- 1								1 C	20.7	24 81 1 D. ro I	1.1.945	8						
	-	R +	YE	BEI	1 Z 4		9 K 🛪											
Reg	ression Analy	sis: Yeild	* X															
B M	ULTIPLE LINE	AR REGRESS	ION.MWX															
Rec	ression	Analysi	is: Yeild	(Y) ver	rsus Tim	e, Temp	perature											
ĸ	egression	Equation	1			1												
	elid (Y)			+ 0.351 Ter	moerature													
	ana (1)	9			in per oron e													
C	oefficients																	
					P-Value	VIF												
	onstant	-130.7	SE CORT	-9.24	0.000	VIP												
T	ime	0.1340	0.0119	11.25	0.000	1.05												
	ime emperature	0.1340	0.0119	11.25 2.07	0.000													
T		0.351																
T	emperature	0.351					C19	C20 g	C21	C22	C23	C24	C25	C26	Q7	C28	C29	
M	emperature Iodel Sum	0.351 mary	0.170	2.07	0.059	1.05 C18	C19 Temperature		(21	C22 Drive in time (X1)		C24 X1_STD		C26 Y (Transistor Gain)	Q7	C28 RPM	C29 Type of Cutting Tool	1 5
M	emperature Iodel Sum C13	0.351 mary C14	0.170 C15	2.07	0.059 C17	1.05 C18	Temperature		(21	Drive in time (X1) 225					C27			
Ti M *	C13 x2_1 71 31	0.351 mary C14 x3_1 17 22	0.170 C15 x4_1 6 44	2.07	0.059 C17 Time 1200 1200	1.05 C18 Velocity 0.0400 0.0380	Temperature 5.3 7.5	Yeild (Y) 28.0 31.5	C21	Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	Q27	RPM 265 259	Type of Cutting Tool 302 302	2
Tr M + 7 8 9	C13 x2_1 71 31 54	0.351 mary c14 x3_1 17 22 18	0.170 C15 x4_1 6 44 22	2.07	0.059 C17 Time 1200 1200 1200	1.05 C18 Velocity 0.0400 0.0380 0.0320	Temperature 5.3 7.5 11.0	Yeild (Y) 28.0 31.5 34.5	C21	Drive in time (X1) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	Q7	RPM 265 259 221	Type of Cutting Tool 302 302 302	2
Tr M + 7 8 9 0	C13 X2_1 71 31 54 47	0.351 mary C14 x3_1 17 22 18 4	0.170 C15 x4_1 6 44 22 26	2.07	0.059 C17 Time 1200 1200 1200	1.05 C18 Velocity 0.0400 0.0380 0.0320 0.0260	Temperature 5.3 7.5 11.0 13.5	Yeild (Y) 28.0 31.5 34.5 35.0	C21	Drive in time (X1) 225 195 255 225	Dose (X2) 4,60 4,30 4,30 4,30	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	Q27	RPM 265 259 221 218	Type of Cutting Tool 302 302 302 302 302	2
T M + 7 8 9 0 11	C13 X2_1 71 31 54 47 40 40	0.351 mary c14 x3_1 17 22 18 4 23	0.170 C15 x4_1 6 44 22 26 34	2.07	0.059 C17 Time 1200 1200 1200 1200 1200	1.05 C18 Velocity 0.0400 0.0380 0.0320 0.0250 0.0340	Temperature 5.3 7.5 11.0 13.5 17.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cutting Tool 302 302 302 302 416	2 2 2 2 5
Tr M + 7 8 0 0 1 1 2	C13 X2_1 71 31 54 47 40 66	0.351 mary C14 x3_1 17 22 18 4	0.170 C15 x4_1 6 44 22 26 34 12	2.07	0.059 C17 Time 1200 1200 1200 1200 1200 1200	1.05 C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0340	Temperature 5.3 7.5 11.0 13.5 17.0 23.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (X1) 225 195 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	Q7	RPM 265 259 221 218 224 212	Type of Cutting Tool 302 302 302 302 416 416	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
T/ M * 7 8 9 0 11 2 3	C13 X2_1 71 31 54 47 40 40	0.351 mary c14 x3_1 17 22 18 4 23	0.170 C15 x4_1 6 44 22 26 34	2.07	0.059 C17 Time 1200 1200 1200 1200 1200 1200 1200 1100	1.05 C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (X1) 225 195 225 225 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	Q27	RPM 265 259 221 218 224 212 212 248	Type of Cutting Tool 302 302 302 302 416 416 416 416	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
T/ M + 7 8 9 0 0 11 2 3 4	C13 X2_1 31 54 47 40 66 68	0.351 mary c14 x3_1 17 22 18 4 23 9 8	0.170 C15 x4_1 6 44 22 26 34 12 12	2.07 C16	0.059 C17 Time 1200 1200 1200 1200 1200 1200 1100	1.05 C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0340	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (Xt) 225 255 225 225 225 225 225 225 225 22	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	Q7	RPM 265 259 221 218 224 212	Type of Cutting Tool 302 302 302 302 416 416 416 416	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Tr M + 7 8 9 0	C13 X2_1 31 54 47 40 66 68	0.351 mary c14 x3_1 17 22 18 4 23 9 8	0.170 C15 x4_1 6 44 22 26 34 12 12	2.07	0.059 C17 Time 1200 1200 1200 1200 1200 1200 1100	1.05 C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	(21	Drive in time (X1) 225 195 225 225 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	Q7	RPM 265 259 221 218 224 212 212 248	Type of Cutting Tool 302 302 302 302 416 416 416 416	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
T/ M + 7 8 9 0 0 11 2 3 4	C13 X2_1 71 31 54 47 40 66 68 8 9 9 +	0.351 mary c14 x3_1 17 22 18 4 23 9 8	0.170 C15 x4_1 6 44 22 26 34 12 12 12 Linear Regu	2.07 C16	0.059 C17 Time 1200 1200 1200 1200 1200 1200 1100	1.05 C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 255 225 225 225 225 225 225 225 22	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225		RPM 265 259 221 218 224 212 212 248	Type of Cutting Tool 302 302 302 302 302 416 416 416	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

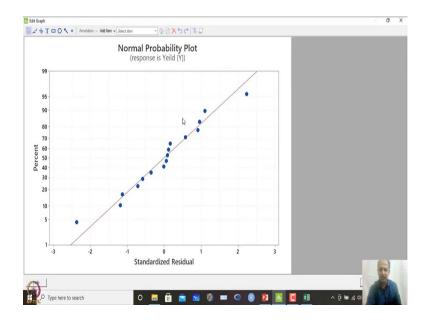
And if you click ok, what happens is that, this is the final equation minus 130.7 and plus time it is positively correlated and second one temperature is also positively correlated like that.

(Refer Slide Time: 10:14)

7 71 117 6 1120 0.0400 5.3 28.0 225 4.60 0.000 0.6647 1269 226 8 31 22 44 1200 0.0300 75 31.5 115 4.30 1.000 0.6647 1939 226 9 54 18 22 1200 0.0300 75 31.5 115 4.30 1.000 0.1647 1555 221 10 447 4 26 1700 38.0 225 4.00 0.0000 0.1647 1555 221 11 40 23 34 1700 38.0 225 4.00 0.0000 0.4644 1146 224 12 160 0.0340 17.0 38.0 225 4.30 0.0000 0.4047 1126 212 12 66 9 12 1000 0.0340 5.3 15.0 225 4.30 0.0000 0.4067	- 8
13 13 13 13 14 <td< th=""><th></th></td<>	
Image: 1 1<	
Image: Provide and experimentation Image: Provide and experimentation Transmitted and experimentation Transmitted and experimentation Team of 1980 Transmitted and experimentation Team of 1980 Transmitted and experimentation Server of 1980 Transmitted and experimentation Team of 1980 Transmitted and experimentation Server of 1980 Transmitted and experimentation Server of 1980 Braggeweight 199-fold 5 S	
Signal Subscription Multiple Treduced Records DAMARK Regression Analysis: Yelid (V) versus Time, Temperature Single Regression Time, Temperature Noded Summary Single Regression Time Single Regression Time Noded Summary Single Regression Time Node Social Regression Time Single Regression Time Node Social Regression Time Single Regression Time	
Quarter Line Regession Analysis: Yelid (V) versus Time, Temperature to 31340 0019 Second 1 Value P Value VV Time Cool 5 SE Cool T Value P Value VV Time 0 Value 0 0019 Time 0 Value 0 0019 S K-eq R-regized) R-regpreed to 6405 to 5406 S K-eq R-regized) R-regpreed to 6406 to 75 S K-eq R-regized) R-regpreed to 6406 To 75 S K-eq R-regized) R-regpreed to 6406 To 75 S K-eq R-regized) R-regpreed to 6400 To 6400 To 75 S K-eq R-regized) R-regpreed to 6400 To 6400 To 75 S K-eq R-regized) R-regpreed to 6400 To 6400 To 75 S K-eq R-regized R-reg Roll To 6400 To 75 S K-eq R-regized R-reg Roll To 78	
Second Problem Volume V	
Tem Cell St. Keg Registal Regis	
Container -130.0 Hat A24 O000 A3 OUT A3 C4 C45 C46 C77 C48 C40 OD00 OUT C40 C50 C40	
Time 0.133 0.019 11.23 0.009 1.63 Model Summary \$\$ \$\$ 8: 98 Regized) \$\$ 9: 00405 \$\$ 00406	
Temperature 0.331 0.170 2.07 0.999 1.65 Model Summary Districution Distrinteresting Distrinteresting	
S R:sq R-sq(sd) R-sq(s	
S K-sq. R-sqLad)	
S R-aq R-agingi R-aginedi R-aginedic	
3.0237 91.068 60.726 85.214 4.39510 65.456 Analysis of Variance Activities Citi	
Analysis of Variance • C1 C4 C5 C6 C7 C18 C9 C9 C9 C9 C22 C3 C4 C5 C6 C7 C18 C9 D10e in time (01) Does (02) X5.510 VEX30 VEX30 VEX30 VEX30 VEX30 VEX30 VEX30 C4 C13 C44 C13 C68 C27 R BM Type of Cu 7 71 71 6 1200 0.0300 7.5 31.5 1105 4.30 1.000 0.4667 1250 226 4.40 0.000 -0.4667 1350 228 4.40 1.000 0.4667 1350 228 4.40 1.000 -0.4667 1352 228 4.40 1.000 -0.4667 1350 225 4.00 0.000 -1.0667 1.016 228 4.40 1.000 -1.066 1.026 226 4.00 0.000 -1.0667 1.026 228 4.00 0.000 -1.0667 1.026	
C13 C44 C15 C16 C17 C18 C19 C20 g C1 C22 C23 C24 C25 C46 C27 C28 C27 C28 C20 C37 C31 x4,1 Time Velocity Temperature Velocity Velocity Temperature Velocity	
C3 C4 C5 C16 C77 C8 C9 C9 C9 C1 C22 C3 C4 C5 C46 C27 C8 C9 C9 C9 C1 C22 C3 C4 C5 C46 C27 C8 C4 C3 C4 C5 C46 C27 C8 C4 C3 C4 C5 C46 C27 C8 C4 C3 C4 C4 C4 C4 C3 C4 C3 C4 C3 C4 C4 C4 C4 C4 C4 C4 C4 C4 <thc4< th=""> <thc4< th=""> <thc4< th=""></thc4<></thc4<></thc4<>	
k3,1 k3,3 Time Velodity Temperature Velotity Velodi	
71 17 6 1200 0.0400 5.3 28.0 225 4.40 0.000 0.6667 1269 265 31 22 44 1200 0.0300 7.5 13.1 195 4.30 1.000 -0.1667 1039 229 54 16 2.2 1.000 0.0200 13.5 195 4.30 1.000 -0.1667 1039 229 4 2.6 1.000 0.0200 13.5 33.5 225 4.00 0.0000 1.360 218 40 2.3 3.4 1200 0.0300 13.5 225 4.00 0.000 1.667 1126 214 66 6 1.2 1100 0.0400 5.3 15.5 225 4.00 0.0000 1.667 1127 112 110 110 10.000 7.5 17.0 220 4.30 0.0000 0.6667 1127 112 110 110 0.0000 7.5 </th <th>89</th>	89
31 22 44 1200 0.0300 7.5 31.5 195 4.30 -1.000 -0.1667 903 259 54 16 22 1200 0.0200 11.0 94.5 225 4.30 1.000 -0.1667 1935 221 47 4 2.6 1200 0.0200 11.5 35.0 225 4.00 0.0000 -1.0000 1216 224 40 23 34 1200 0.040 22.0 38.5 225 4.00 0.0000 -1.6000 1216 224 66 9 12 1200 0.0401 22.0 38.5 225 4.30 0.0000 -1.6000 1225 224 66 8 12 1100 0.840 5.3 15.0 225 4.72 0.0000 10200 1225 249 14 140 0.0840 7.5 17.0 220 4.30 0.1667 0.1647 1212	itting Tool Su
54 18 22 1200 0.0320 11.0 34.3 255 4.30 10000 -0.1667 1555 221 47 4 2.6 1200 0.0320 11.5 15.5 225 4.30 10000 -1.667 1155 221 40 23 34 1200 0.0400 12.0 0.0400 12.0 210 214 214 214 224 240 0.0000 -1.0000 11.00 214 214 244 215 214 214 214 214 214 214 214 214 214 214 214 214 214	302
47 4 26 1200 0.0300 13.5 35.0 225 4.00 0.0000 -1.0000 1146 216 40 23 3.4 1200 0.0340 117.0 88.0 225 4.00 0.0000 -1.0000 1146 224 66 9 12 100 0.0400 5.3 15.0 225 4.00 0.0000 1266 212 1 9 110 0.0640 5.3 15.0 225 4.72 0.000 1205 246 1 1 100 0.0640 5.3 15.0 225 4.72 0.000 1.000 1225 2.46 1 100 0.0640 5.3 15.0 2.25 4.72 0.000 1.000 1225 2.46 100 0.0640 7.5 17.0 2.30 3.0 0.1647 12.167 12.00 11 N Mathyle Lincer Represion.mere 4 4 4	302
40 23 34 1200 0.0340 17.0 38.0 225 4.30 0.0000 0.9444 1146 224 66 9 12 1200 0.0410 23.0 38.5 225 4.30 0.0000 -0.4667 11276 212 66 8 12 1100 0.0400 5.3 15.0 225 4.72 0.0000 1.0267 1125 246 Modulpet Licene Regression.mmer 4	302
1 66 9 12 1200 0.410 23.0 38.5 225 4.30 0.0000 -0.1667 1276 212 4 66 12 1100 0.0440 5.3 15.0 225 4.32 0.0000 1.0000 1225 248 1 1 100 0.0900 7.5 17.0 220 4.30 0.1667 0.1667 1321 3.00 1 1 H + -	302
66 6 12 1100 0.840 5.3 15.0 225 4.72 0.000 1.000 1225 240 1 1100 0.0900 7.5 17.0 220 4.30 0.1667 -0.1667 1321 260 1 1 Multiple Linear Regression.mwx 4 4 4 4	416
1 > H + Multiple Linear Regression.max	416
1 > H + Multiple Linear Regression.mwx	416
	line
	1000
🚺 Multiple Linear Regression.mwx 🔲 🗐 🗖	190
🖌 🖉 Type here to search 🛛 🗧 🛱 💼 🐋 🧐 💻 🖓 🚯 🖉 🖓 🚺 🚺 📢 👬 🔥	1

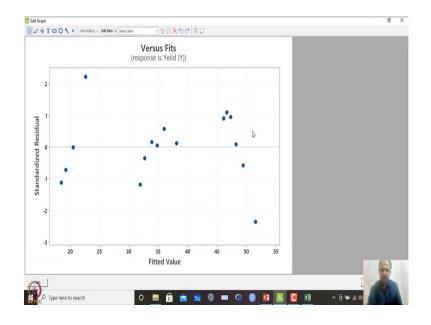
So now, temperature is retained over here, although the P-Value is not so significant over here. We can also just eliminate and see whether that model performs in any way, because we have a variable to enter and exit we have given a alpha value of 0.15, so that is why this model, it has come in the model when we have done stepwise regression. But we can retain this one, because this is very close to 0.05.

(Refer Slide Time: 10:40)

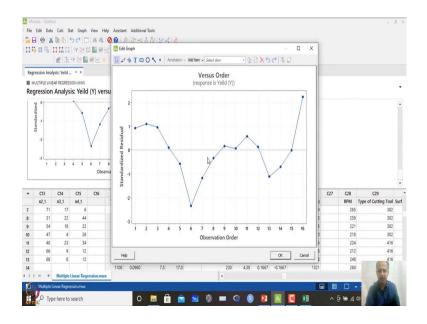

	nitab - Untitle	0															-	8
le	Edit Data	Calc	Stat Graph	Niew	Help Assista	nt Additio	anal Tools											
1	X @ E	DA	501	140	00	fx 30 -	4 8 2	1. 1										
									av	3 E 0 C	D LY M. B							
					+ 12 4			1.00		17 DB 1 D 401	1.40	5						
	1	R 1	1161	10 15.	× 155	CII	9 <u>15.</u> ×											
Reg	ression Analy	sis: Yeild	v X															
B M	ULTIPLE LINE	AR REGRE	SION MWX															
Rec	aression	Analy	sis: Yeile	d (Y) v	ersus Tim	e. Temr	perature											
	nalysis of																	
	ource legression	DF	Adj SS 1952.98	Adj MS 976.49		Value 0.000												
	Time			1662.19		0.000												
	Temperature		56.30	56.30		0.059												
E	rror	13	170.73	13.13														
Fi		agnosti	2123.71 cs for Un	usual O	bservation													
Fi	its and Dia Obs Weild	agnosti	cs for Un	Std Resi	d	C												
Fi	its and Dia Obs Veild 4 AA C13	(Y) I C14	cs for Un it Resid 702 C15	Std Resi	d 4 0 C17	C18	C19	C20 5	C21	C22	C23	C24	C25	C26	C27	C28	C29	
Fi	obs Veild C13 x2_1	(Y) 8 (C) 81 (14 x3_1	cs for Un it Resid c15 x4_1	Std Resi	d C17 Time	C18 Velocity	C19 Temperature	Yeild (Y)	(21	Drive in time (X1)	Dose (X2)	X1_STD	x2_STD	Y (Transistor Gain)	C27	RPM	Type of Cutting Toe	
Fi	obs Veild C13 x2_1 71	c14 x3_1 17	cs for Un it Resid c15 c15 x4_1 6	Std Resi	d C17 C17 Time 1200	C18 Velocity 0.0400	C19 Temperature 5.3	Yeild (Y) 28.0	C21	Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	Q7	RPM 265	Type of Cutting Too 30	02
Fi	its and Dia Obs Veild 6 44 C13 X2_1 71 31	(Y) F C14 X3_1 17 22	cs for Un it Resid C15 x4_1 6 44	Std Resi	d C17 Time 1200 1200	C18 Velocity 0.0400 0.0380	C19 Temperature 5.3 7.5	Yeild (Y) 28.0 31.5	C21	Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	C27	RPM 265 259	Type of Cutting Too 30 30	02 02
Fi	its and Dia Obs Veild 6 44 C13 X2_1 71 31 54	C14 x3_1 17 22 18	cs for Un it Resid to TO2 C15 x4_1 6 444 22	Std Resi	d 54 0 C17 Time 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320	C19 Temperature 5.3 7.5 11.0	Yeild (Y) 28.0 31.5 34.5	C21	Drive in time (X1) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	Q7	RPM 265 259 221	Type of Cutting Too 30 30 30 30	02 02 02
Fi	its and Dia Obs Veild 6 4 4 C13 X2_1 71 31 54 47	c14 x3_1 17 22 18	cs for Un it Resid 27 702 C15 x4_1 6 44 22 26	Std Resi	d C17 Time 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260	C19 Temperature 5.3 7.5 11.0 13.5	Yeild (Y) 28.0 31.5 34.5 35.0	C21	Drive in time (X1) 225 195 255 225	Dose (X2) 4.60 4.30 4.30 4.00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	C27	RPM 265 259 221 218	Type of Cutting Too 30 30 30 30 30	02 02 02 02
Fi → 7 8 9 0 11	its and Dia Obs Veild 4 44 C13 x2_1 71 31 54 47 40	C14 x3_1 17 22 18 4 23	cs for Un it Resid 2 702 C15 x4_1 6 44 22 26 34	Std Resi	d C17 Time 1200 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cutting Too 30 30 30 30 41	02 02 02 02 16
Fi	its and Dia Obs Veild 6 4 71 71 31 54 47 40 66	c14 x3_1 17 22 18	cs for Un it Resid 2 702 C15 x4_1 6 44 222 26 34	Std Resi	d C17 Time 1200 1200 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (X1) 225 195 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	27	RPM 265 259 221 218 224 212	Type of Cutting Tor 30 30 30 30 30 41 41 41	02 02 02 02 16
Fi 	its and Dia Obs Veild 4 44 C13 x2_1 71 31 54 47 40	C14 x3_1 17 22 18 4 23	cs for Un it Resid 2 702 C15 x4_1 6 44 22 26 34	Std Resi	d (C17) Time 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410 0.0840	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 225 225 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	21	RPM 265 259 221 218 224	Type of Cutting Tor 30 30 30 30 30 41 41 41 41 41	02 02 02 02 16
Fi	ts and Did Obs Velid 4 4 4 C13 X2_1 71 31 54 47 40 66 68	C14 x3_1 17 22 18 4 23 9 8	cs for Un it Resid 2 702 C15 X4_1 6 44 22 26 34 12 12	Std Resi	d 44 0 C17 Time 1200 1000 100	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (Xt) 225 195 225 225 225 225 225 225 225 225 225 2	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	C27	RPM 265 259 221 218 224 212 212 248	Type of Cutting Tor 30 30 30 30 30 41 41 41 41 41	02 02 02 02 16
Fi	its and Dia Obs Yelld 4 46 x2_1 71 31 54 47 40 66 68 > H	agnosti (V) I C14 X3_1 17 222 18 4 4 23 9 8 8 Multiph	cs for Un it Resid 7 702 C15 x4_1 6 44 222 266 344 122 12 12 12 12	Std Resi	d 44 0 C17 Time 1200 1000 100	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410 0.0840	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 225 225 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225 1321		RPM 265 259 221 218 224 212 248 260	Type of Cutting Tor 30 30 30 30 30 41 41 41 41 41	02 02 02 02 16
Fi	its and Dia Obs Yelld 4 46 x2_1 71 31 54 47 40 66 68 > H	agnosti (V) I C14 X3_1 17 222 18 4 4 23 9 8 8 Multiph	cs for Un it Resid 2 702 C15 X4_1 6 44 22 26 34 12 12	Std Resi	d 44 0 C17 Time 1200 1000 100	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410 0.0840	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 225 225 225 225 225 225 225 225 225 2	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225		RPM 265 259 221 218 224 212 212 248	Type of Cutting Tor 30 30 30 30 30 41 41 41 41 41	02 02 02 02 16

(Refer Slide Time: 10:42)

		: <u>as</u> -1-	•Y 💌 🖿	8K#	P. A	CDB	P LL A												
Regre	ssion Analy	ysis: Yeild .	- * X																
-		AR REGRESS		(Y) ver	sus Tim	e, Temp	erature												
	95						1.												
	90 80 70					i				Residual									
Percent				In	1			-		10 0		•			••				
	40			0	1					rdize						•	•		
٩	30 20		,		/					Standardized	•			•					
٩	30	•	/.		/					Standardize	:			•			•		
4	30 20	• C14	CIS	C16	C17	C18	C19	C20 12	C21			C23	C24	•	C26	27	• C28	C29	
4	30 20 10 5 C13 x2_1	C14 x3_1	x4_1	C16	Time	Velocity	Temperature	Yeild (Y)		-2-		Dose (X2)	X1_STD	x2_STD	Y (Transistor Gain)		RPM	Type of Cuttin	
•	30 20 10 5 C13 x2_1 71	C14 x3_1 17	x4_1 6	CI6	Time 1200	Velocity 0.0400	Temperature 5.3	Yeild (Y) 28.0		-2 - C22	225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269		RPM 265	Type of Cuttin	302
•	30 20- 10 5 C13 x2_1 71 31	C14 x3_1 17 22	x4_1 6 44	C16	Time 1200 1200	Velocity 0.0400 0.0380	Temperature 5.3 7.5	Yeild (Y) 28.0 31.5		-2 - C22	225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903		RPM 265 259	Type of Cuttin	302 302
	30 20- 10 5 C13 x2_1 71 31 54	C14 x3_1 17 22 18	x4_1 6 44 22	C16	Time 1200 1200 1200	Velocity 0.0400 0.0380 0.0320	Temperature 5.3 7.5 11.0	Yeild (Y) 28.0 31.5 34.5		-2 - C22	225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555		RPM 265 259 221	Type of Cuttin	302 302 302
	30 20- 10 5 C13 x2_1 71 31	C14 x3_1 17 22 18 4	x4_1 6 44	CI6	Time 1200 1200	Velocity 0.0400 0.0380	Temperature 5.3 7.5	Yeild (Y) 28.0 31.5		-2 - C22	225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903 1555 1260		RPM 265 259	Type of Cuttin	302 302
	30 20- 10 5 C13 x2_1 71 31 54 47	C14 x3_1 17 22 18	x4_1 6 44 22 26	CI6	Time 1200 1200 1200 1200	Velocity 0.0400 0.0380 0.0320 0.0260	Temperature 5.3 7.5 11.0 13.5	Yeild (Y) 28.0 31.5 34.5 35.0		-2 - C22	225 195 255 225	Dose (X2) 4.60 4.30 4.30 4.00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146		RPM 265 259 221 218	Type of Cuttin	302 302 302 302 302
	30 20 10 5 C13 x2_1 71 31 54 47 40	C14 x3_1 17 22 18 4 23	x4_1 6 44 22 26 34	C16	Time 1200 1200 1200 1200 1200	Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	Temperature 5.3 7.5 11.0 13.5 17.0	Yelld (Y) 28.0 31.5 34.5 35.0 38.0		-2 - C22	225 195 255 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146 1276		RPM 265 259 221 218 224	Type of Cuttin 9 1 4 2	302 302 302 302 302 416


And, we can see that normal distribution assumptions over here that seems to be satisfactory as all the points.

(Refer Slide Time: 10:48)


So this graphically when we see seems to be satisfactory points on the line. So, but we can cross check that one.

(Refer Slide Time: 10:55)

Even the residual versus fit plot also does not show any abnormality or patterns like that, so maybe Breusch Pagan test will also confirm this one.

(Refer Slide Time: 11:01)

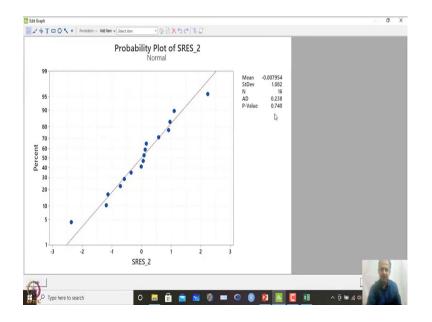
And also there is no as such abnormalities in auto correlation, what we observe some trend or something is not observed it is on both side of the 000 point like that.

(Refer Slide Time: 11:14)

File	Edit Data	ed Calc S	at Graph	View Hel	p Assistan	t Additional	Tools										-	Ø
			Basic Stat Regressic ANOVA		• 500 • 500 • 600	Store Descrip	riptive Statistic ative Statistics mmary		K	🖏 🔛 🛛 🗗 🐻 (P - Y 25 B	8						
	pression Anal JULTIPLE LINE gression	AR REGR	DOE Control C Quality Te Reliability	ools //Survival	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-Sample Z. 1-Sample t 2-Sample t Paired t												
	Standardized		Multivari Time Seri Tables Nonparat	es	,强 ,战 ,战	2 Proportion 1-Sample Po	s isson Rate											
	-2-		Equivaler Power an	ice Tests d Sample Siz	• • 1	1 Variance 2 Variances Correlation												
	1	2 3	4 5			Covariance. Normality Te Outlier Test.	it											
+	C13	C14	C15	C16	C17		f-Fit Test for Po	iccon	C21	C22	C23	C24	C25	C26	C27	C28	C29	
	x2_1	x3_1	x4_1		Time					Drive in time (X1)	Dose (X2)	X1_STD		Y (Transistor Gain)		RPM	Type of Cutting Tool	
	71	17	6		1200	0.0400	5.3	28.0		225	4.60	0.0000	0.6667	1269		265	302	
	31	22	44		1200	0.0380	7.5	31.5		195	4.30	-1.0000	-0.1667	903		259	302	
3		18	22		1200	0.0320	11.0	34.5		255	4.30	1.0000	-0.1667	1555		221	302	
3	54					0.0260	13.5	35.0		225	4.00	0.0000	-1.0000	1260		218	302	1
B 9 0	47	4	26		1200							0.0000	0.9444	1146				
B 9 0	47 40	23	34		1200	0.0340	17.0	38.0		225	4.70					224	416	
8 9 10 11 12	47 40 66	23	34 12		1200 1200	0.0410	23.0	38.5		225	4.30	0.0000	-0.1667	1276		212	416	5
8 9 10 11 12 13	47 40	23	34		1200 1200 1100	0.0410 0.0840	23.0 5.3	38.5 15.0		225 225	4.30 4.72	0.0000	-0.1667 1.0000	1276 1225		212 248		5
7 8 9 10 11 12 13 14 4	47 40 66	23 9 8	34 12 12	ession.mwx	1200 1200	0.0410	23.0	38.5		225	4.30	0.0000	-0.1667	1276		212	416	5

So in this case, what is expected is that it should confirm the normality and other assumptions over here.

(Refer Slide Time: 11:17)

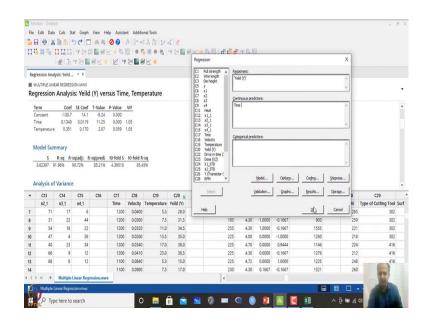

_		e F	•Y ≥ β		Ø 0 ≤ ★ % 	图 # F	6 HE 4	F 考 4		8K *	与图 I c	P c <mark>0</mark> c	P 4 8 E	1							
	ULTIPLE LINE																				
Re	pression	Analys	is: Yeild	(Y) ver	sus Tim	e, Tem	peratu	ire													•
	Standardized	2 3	á s	é 7 Obse	6 9 rvation Or	10 11 der	12 11	Normality	r lest	Tests for (* Ande (* Ryan	e Lines values:		Shapiro-Wik)	>	-						*
+	C13	C14	C15	C16	C17	C18	c	Se	u+ 1	Tide:					C25	C26	C27	C28	C29		
	x2_1	x3_1	x4_1		Time	Velocity	Tempe									Y (Transistor Gain)		RPM	Type of Cutting	Tool S	ırt
7	71	17	6		1200	0.0400		Help					OK	Cancel	0.6667	1269		265		302	
8	31	22	44		1200	0.0380	1	7.5	31.5	-		195	\$ 4.30	-1.0000	-0.1667	903		259		302	
9	54	18	22		1200	0.0320		11.0	34.5			255	4.30	1.0000	-0.1667	1555		221		302	
10	47	4	26		1200	0.0260		13.5	35.0			225	4.00	0.0000	-1.0000	1260		218		302	
11	40	23	34		1200	0.0340		17.0	38.0			225	4.70	0.0000	0.9444	1146		224		416	
12	66	9	12		1200	0.0410		23.0	38.5			225	4.30	0.0000	-0.1667	1276		212		416	
13	68	8	12		1100	0.0840		5.3	15.0			225	4.72	0.0000	1.0000	1225		248	-	416	
14					1100	0.0980		7.5	17.0			230	4.30	0.1667	-0.1667	1321		260			
		Multiple inear Regre	Linear Regr tsion.mwx	ession.mw	×							(6					

So we can just check this one and the last row will be the last column will be the variables residuals that we have to check.

(Refer Slide Time: 11:24)

Probability	ty Plot of			81.*					۶K I	24 🕅 🗗 🐻 (1 Y 10	2					-	D
-		SRES_2	×															
	LE LINEAR	R REGRESS	ON MWX															
Probab	oility P	Plot of	SRES_2															
			Pro		Plot of Si ormal	RES_2												
ercent : 55 24 35 66 56	1			×	, i'	/.	Mean StDev N AD P-Vah	-0.007954 1082 95 0.238 er 0.760										
+ C1		C14	C15	C16	C17	C18	C19	C20 m	C21	C22	C23	C24	C25	C26	C27	C28	C29	Γ
×2,	U	x3_1	x4_1		Time	Velocity	Temperature	Yeild (Y)		Drive in time (X1)	Dose (X2)	X1_STD	x2_STD	Y (Transistor Gain)		RPM	Type of Cutting Tool	SL
					1200	0.0400	5.3	28.0		225	4.60	0.0000	0.6667	1269		265	302	
	71	17	6				7.5	31.5		195	4.30	-1.0000	-0.1667	903		259	302	
	31	17	44		1200	0.0380								1555				
3			44		1200 1200	0.0380	11.0	34.5		255	4.30	1.0000	-0.1667	1000		221	302	
3	31	22	44					34.5 35.0		225	4.00	0.0000	-0.1667	1260		218	302 302	
0	31 54	22 18	44		1200 1200 1200	0.0320	11.0			225 225		0.0000	-1.0000 0.9444	1260 1146		218 224		
8 0 1	31 54 47	22 18 4	44 22 26		1200 1200	0.0320	11.0 13.5	35.0		225	4.00	0.0000	-1.0000	1260		218	302	
7 8 9 0 11 2 3	31 54 47 40	22 18 4 23	44 22 26 34		1200 1200 1200	0.0320 0.0260 0.0340	11.0 13.5 17.0	35.0 38.0		225 225	4.00 4.70	0.0000	-1.0000 0.9444	1260 1146		218 224	302 416	
8 9 0 11 2	31 54 47 40 66	22 18 4 23 9	44 22 26 34 12		1200 1200 1200 1200	0.0320 0.0260 0.0340 0.0410	11.0 13.5 17.0 23.0	35.0 38.0 38.5		225 225 225	4.00 4.70 4.30	0.0000 0.0000 0.0000	-1.0000 0.9444 -0.1667	1260 1146 1276		218 224 212	302 416 416	

(Refer Slide Time: 11:25)


So, in this case it is coming out to be 0.7 seems to be satisfactory ok. So, in this case you have to practically also think that whether to retain the last variables or to remove, but R square adjusted as has improved what was observed.

So, R square adjusted has improved. If I consider only one variable, maybe R square adjusted will be low. So in case, I consider one variable as time as the only variable, so in this case we can do that.

(Refer Slide Time: 11:47)

			Basic Stat Regressio ANOVA DOE			Fitted Lin Regressio				an	Y Υ ^C	8						
I ML	ession Analy ULTIPLE LINE Iression	AR REGR	Control C Quality To Reliability	ols	•••	Stability	0.0		⊷Y Pred i Factor									
Te Co Tir	erm onstant me imperature	-13(0.13 0.3	Predictive Multivaria Time Seria Tables Nonparar	te IS	ی بر بر	Binary Fi Binary Lo	east Squares Itted Line Plot ogistic Regression Logistic Regressic I Logistic Regress	on	Ver Over	ce Plot Iaid Contour Plot onse Optimizer								
			Equivalen			Poisson	Regression	,										
-	odel Sum s 3.62397 9 nalysis of	R-sq R- 1.96%	sq(adj) R 90.72%			10-fold R 85.4												
Ar	S 3.62397 9	R-sq R- 1.96%	sq(adj) R 90.72%	sq(pred)	10-fold S	10-fold R		C20 12	C21	C22	C23	C24	C25	C26	Q7	C28	C29	
Ar	s 3.62397 9 nalysis of	R-sq R- 1.96% Varianc	sq(adj) R 90.72%	sq(pred) 1 85.21%	10-fold S 4.39510	10-fold R 85.4 C18	15%		C21	C22 Drive in time (X1)		C24 X1_STD	x2_STD	C26 Y (Transistor Gain)	Q27	C28 RPM	C29 Type of Cutting Too	ol Si
Ar	s 3.62397 9 nalysis of C13	R-sq R- 1.96% Varianc C14	sq(adj) R 90.72% C15	sq(pred) 1 85.21%	10-fold S 4.39510 C17	10-fold R 85.4 C18 Velocity 0.0400	C19 Temperature 5.3	Yeild (Y) 28.0	C21	Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	C27	RPM 265	Type of Cutting Too 302	2
Ar	S 3.62397 9 nalysis of C13 x2_1 71 31	R-sq R- 1.96% Varianc C14 x3_1 17 22	sq(adj) R 90.72% C15 x4_1 6 44	sq(pred) 1 85.21%	0-fold S 4.39510 C17 Time 1200 1200	10-fold R 85.4 C18 Velocity 0.0400 0.0380	C19 Temperature 5.3 7.5	Yeild (Y) 28.0 31.5	C21	Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	C27	RPM 265 259	Type of Cutting Too 303 303	2
Ar +	s 3.62397 9 malysis of c13 x2_1 71 31 54	R-sq R- 1.96% Varianc C14 x3_1 17	sq(adj) R 90.72% C15 x4_1 6 44 22	sq(pred) 1 85.21%	10-fold S 4.39510 C17 Time 1200	10-fold R 85.4 C18 Velocity 0.0400 0.0380 0.0320	C19 Temperature 5.3 7.5 11.0	Yeild (Y) 28.0 31.5 34.5	C21	Drive in time (X1) 225 195 255	Dose (X2) 4.60	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	C27	RPM 265 259 221	Type of Cutting Too 303 303 303	2 2 2
Ar + 7 3 0	s 3.62397 9 malysis of c13 x2_1 71 31 54 47	R·sq R· 1.96% Varianc C14 x3_1 17 22 18 4	sq(adj) R 90.72% C15 X4_1 6 44 22 26	sq(pred) 1 85.21%	10-fold S 4.39510 C17 Time 1200 1200 1200 1200	10-fold R 85.4 Velocity 0.0400 0.0380 0.0320 0.0260	C19 Temperature 5.3 7.5 11.0 13.5	Yeild (Y) 28.0 31.5 34.5 35.0	C21	Drive in time (X1) 225 195 255 225	Dose (X2) 4,60 4,30 4,30 4,00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	C27	RPM 265 259 221 218	Type of Cutting Too 300 300 300 300 300	2 2 2 2
Ar + 7 8 9 0	S abc2397 9 alysis of c13 x2_1 71 31 54 47 40	R-sq R- 1.96% Varianc C14 x3_1 17 22 18 4 23	sq(adj) R 90.72% C15 x4_1 6 44 22 26 34	sq(pred) 1 85.21%	C17 Time 1200 1200 1200 1200 1200	10-fold R 85.4 C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 255 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	C27	RPM 265 259 221 218 224	Type of Cutting Too 300 300 300 300 416	2 2 2 2 2 6
Ar + 7 3 0 0	S alysis of c13 x2_1 71 31 54 47 40 66	R·sq R· 1.96% Varianc C14 x3_1 17 22 18 4	sq(adj) R 90.72% C15 x4_1 6 44 22 26 34 12	sq(pred) 1 85.21%	C17 Time 1200 1200 1200 1200 1200 1200 1200	10-fold R 85.4 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (X1) 225 195 255 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	C27	RPM 265 259 221 218 224 212	Type of Cutting Too 300 300 300 300 300	2 2 2 2 2 6
-	S abc2397 9 alysis of c13 x2_1 71 31 54 47 40	R-sq R- 1.96% Varianc C14 x3_1 17 22 18 4 23	sq(adj) R 90.72% C15 x4_1 6 44 22 26 34	sq(pred) 1 85.21%	C17 Time 1200 1200 1200 1200 1200	10-fold R 85.4 C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 255 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	C27	RPM 265 259 221 218 224	Type of Cutting Too 300 300 300 300 416 416 416 416	2 2 2 2 6 6

(Refer Slide Time: 11:52)

So, we can just consider time as the only variable, so fit regression model instead of temperature I will remove this one. So, I just keep a note of this R square adjusted is around 90, this is around 85 R square predicted and tenfold cross-validation earlier was around 85.

(Refer Slide Time: 12:07)

		ed Color of	. Cash	Mary Ma	In Anistan		Test.										-	Ø
				View He														
E							「日間」と											
1								•Y 🖂 🔲 (SK	多图 00	on a state	8						
		1 E	-γ 🖂 🔳	BK*	12 Y		₿⊻★											
legr	ession Anal	lysis: Yeild .	_ * X															
8 M	ULTIPLE UN	EAR REGRES	SION MWX															
Rea	ression	Analys	is: Yeild	(Y) ver	sus Tim	e												
- 0																		
	ethod																	
Cr	ossivalidat	ion 10-fo	ld															
Re	gression	Equatio	n															
						2												
Ye	sid (1)	-135.0+0	1395 Time															
Ye	sid (1) =	-133.0 + 0	.1395 Time															
			.1395 Time															
C	pefficient	ts																
Co	pefficient rm	ts Coef S	E Coef T-	Value P-V														
Co Te	pefficient rm	ts		Value P-V	alue VIF	C18	C19	C20 m	C21	C22	C23	(24	(25	C26	627	C28	C29	
	pefficient rm	Coef S	E Coef T-	Value P-V	000	C18		C20 Z Yeild (Y)	C21	C22 Drive in time (X1)		C24 X1 STD		C26 Y (Transistor Gain)	C27	C28 RPM	C29 Type of Cutting Too	1
Co Te C	c13	Coef S .123.0 C14	E Coef T- 15.7 C15	Value P-V	C17	C18	C19 Temperature 5.3		C21		Dose (X2)				C 27			
Co Te C	c13 x2_1	Coef S .123.0 C14 x3_1	E Coef T- 15.7 C15 x4_1	Value P-V	C17 Time	C18 Velocity	Temperature	Yeild (Y)	C21	Drive in time (X1)	Dose (X2) 4.60	X1_STD	x2_STD	Y (Transistor Gain)	C27	RPM	Type of Cutting Too	2
Co Te C	c13 x2_1 71	Coef S -123 0 C14 x3_1 17	E Coef T- 15.7 C15 x4_1 6	Value P-V	C17 Time 1200	C18 Velocity 0.0400	Temperature 5.3 7.5	Yeild (Y) 28.0	C21	Drive in time (X1) 225	Dose (X2) 4.60 4.30	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	C27	RPM 265	Type of Cutting Too 302	2
Co Te C	ct3 x2_1 71 31	ts <u>Coef</u> S .123 0 C14 x3_1 17 22	E Coef T- 15.7 C15 x4_1 6 44	Value P-V	C17 Time 1200 1200	C18 Velocity 0.0400 0.0380	Temperature 5.3 7.5	Yeild (Y) 28.0 31.5	C21	Drive in time (X1) 225 195	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	C27	RPM 265 259	Type of Cutting Too 302 302	2 2 2
	C13 X2_1 71 31 54	Coef S -123 0 C14 x3_1 17 22 18	E Coef T- 15.7 C15 x4_1 6 44 22	Value P-V	C17 Time 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320	Temperature 5.3 7.5 11.0 13.5	Yeild (Y) 28.0 31.5 34.5	C21	Drive in time (Xt) 225 195 255	Dose (X2) 4.60 4.30 4.30 4.00	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	C27	RPM 265 259 221	Type of Cutting Too 303 303 303	2 2 2 2 2
	C13 x2_1 71 31 54 47	Coef S -123 0 C14 x3_1 17 22 18 4	E Coef T- 15 7 C15 x4_1 6 44 22 26	Value P-V	C17 Time 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260	Temperature 5.3 7.5 11.0 13.5 17.0	Yeild (Y) 28.0 31.5 34.5 35.0	C21	Drive in time (X1) 225 195 255 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	C27	RPM 265 259 221 218	Type of Cutting Too 300 300 300 300 300 300 300	2 2 2 2 6
	C13 x2_1 31 54 47 40	ts Coef S -123 0 C14 x3_1 17 22 18 4 23	E Coef T- 15 7 C15 x4_1 6 44 22 26 34	Value P-V	C17 Time 1200 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	Temperature 5.3 7.5 11.0 13.5 17.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 255 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cutting Too 300 300 300 300 410	2 2 2 2 6 6
	rm C13 x2_1 71 31 54 47 40 66	ts Coef S -123 0 C14 x3_1 17 22 18 4 4 23 9	E Coef T- 15 7 C15 x4_1 6 44 22 26 34 12	Value P-V	C17 Time 1200 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0340	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (X1) 225 195 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	227	RPM 265 259 221 218 224 212	Type of Cutting Too 300 300 300 300 416 416 416 416	2 2 2 2 6 6
	C13 x2_1 71 31 54 47 40 66 68	ts Coef S -133.0 C14 x3_1 17 22 18 4 23 9 8	E Coef T- 15 7 C15 x4_1 6 44 22 26 34 12 12	Value P-V .9.40 // C16	C17 Time 1200 1200 1200 1200 1200 1200 1200 1100	C18 Velocity 0.0400 0.0320 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (XI) 225 255 225 225 225 225 225 225 225 22	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	C27	RPM 265 259 221 218 224 212 212 248	Type of Cutting Too 300 300 300 300 416 416 416 416	2 2 2 2 6 6
	C13 x2_1 71 31 54 47 40 66 8 8	ts Coef S .123 0 C14 x3_1 17 222 18 4 23 9 8 Multiple	E Coef T- 15 7 C15 x4_1 6 44 22 26 34 12 12 Linear Reg	Value P-V	C17 Time 1200 1200 1200 1200 1200 1200 1200 1100	C18 Velocity 0.0400 0.0320 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 255 225 225 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225 1321		RPM 265 259 221 218 224 212 248 260	Type of Cutting Too 300 300 300 300 416 416 416 416	2 2 2 6 6
	C13 x2_1 71 31 54 47 40 66 8 8	ts Coef S -133.0 C14 x3_1 17 22 18 4 23 9 8	E Coef T- 15 7 C15 x4_1 6 44 22 26 34 12 12 Linear Reg	Value P-V .9.40 // C16	C17 Time 1200 1200 1200 1200 1200 1200 1200 1100	C18 Velocity 0.0400 0.0320 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (XI) 225 255 225 225 225 225 225 225 225 22	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225		RPM 265 259 221 218 224 212 212 248	Type of Cutting Too 300 300 300 300 300 410 410 410 410	2 2 2 2 6 6

So, 90 and 85 approximately that is the range what we are getting.

(Refer Slide Time: 12:09)

Min	nitab - Untitl	led															-	8
ile	Edit Data	a Calc	Stat Gray	h View H	lelp Assista	nt Additi	onal Tools											
E	S O E	6 Da 🙃	50	0 4 4	00	fx 3	1.8 2	1. 1										
11	in m		JYN	0.00	K + 12	18 H	# # 先	Y >	ak I	4 E d C .	D LY KL							
					12 4													
_			-				9 EL											
Reg	ression Ana	lysis: Yeil	1 * X															
-	IULTIPLE LIN																	
Reg	gression	Anal	/sis: Yei	ld (Y) ve	rsus Tim	e												
_	S				10-fold S													
	4.02698 8	39.31%	88.55%	85.28%	4.52394	84.5	1890											
						×												
A	nalysis of	f Variar	ce															
	ource	DF	Adj SS /	dj MS F-V	alue P-Val	ue												
S		1 1	896.68 1	896.68 11	6.96 0.0	00	D											
R	ource legression Time	1	896.68 1 896.68 1	896.68 11 896.68 11		00	2											
R	ource legression Time rror	1 1	896.68 1 896.68 1 227.03	896.68 11 896.68 11 16.22	6.96 0.0 6.96 0.0	00	ß											
	ource legression Time	1 1 14 1	896.68 1 896.68 1	896.68 11 896.68 11 16.22	6.96 0.0	00	ß											
Si Ri Ri Ei	ource legression Time rror Lack-of-Fit Pure Error	1 1 14 13	896.68 1 896.68 1 227.03 0.12 226.91	896.68 11 896.68 11 16.22 0.12 17.45	6.96 0.0 6.96 0.0 0.01 0.9	00 00 34		C10	(21	(1)	622	(24	(35	636	617	(18	C30	
SI R T E T	ource legression Time rror Lack-of-Fit Pure Error C13	1 1 14 13 	896.68 1 896.68 1 227.03 0.12 226.91 C15	896.68 11 896.68 11 16.22 0.12	6.96 0.0 6.96 0.0 0.01 0.9 C17	00 00 34 C18	C19	C20 g	C21	C22 Drive in time (X1)	C23 Date (X2)	C24 X1 STD	C25	C26 Y (Transistor Gain)	C27	C28	C29 Type of Cutting To	ad Su
	ource begression Time rror Lack-of-Fit Pure Error C13 x2_1	1 1 14 13 C14 x3_1	896.68 1 896.68 1 227.03 0.12 226.91 C15 x4_1	896.68 11 896.68 11 16.22 0.12 17.45	6.96 0.0 6.96 0.0 0.01 0.9 C17 Time	00 00 34 C18 Velocity	C19 Temperature	Yeild (Y)	C21	Drive in time (X1)	Dose (X2)	X1_STD	x2_STD	Y (Transistor Gain)	C27	RPM	Type of Cutting To	
Si R E I I I I I I I I I I I I I I I I I I	ource legression Time rror Lack-of-Fit Pure Error C13	1 1 14 13 	896.68 1 896.68 1 227.03 0.12 226.91 C15 x4_1 7	896.68 11 896.68 11 16.22 0.12 17.45 C16 6	6.96 0.0 6.96 0.0 0.01 0.9 C17	00 00 34 C18	C19 Temperature 5.3		C21						C27		Type of Cutting To 34	00 Su 02
	egression Time rror Lack-of-Fit Pure Error C13 x2_1 71	1 1 14 1 13 C14 x3_1 1	896.68 1 896.68 1 227.03 0.12 226.91 C15 x4_1 7 2 2	896.68 11 896.68 11 16.22 0.12 17.45 C16 6	6.96 0.0 6.96 0.0 0.01 0.9 C17 Time 1200	00 00 34 C18 Velocity 0.0400	C19 Temperature 5.3 7.5	Yeild (Y) 28.0	C21	Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	Q7	RPM 265	Type of Cutting To 34	02
Si R E E E E E F	ource legression Time rror Lack-of-Fit Pure Error C13 x2_1 71 31	1 1 1 1 14 1 13 C14 x3_1 1 2 1	896.68 1 896.68 1 227.03 0.12 226.91 C15 x4_1 7 2 4 8 2	896.68 11 896.68 11 16.22 0.12 17.45 C16 6 4	6.96 0.0 6.96 0.0 0.01 0.9 C17 Time 1200 1200	00 00 34 C18 Velocity 0.0400 0.0380	C19 Temperature 5.3 7.5 11.0	Yeild (Y) 28.0 31.5	C21	Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	C27	RPM 265 259	Type of Cutting To 3 3 3 3	02 02
Si R T E T T S S O	Vegression Time rror Lack-of-Fit Pure Error C13 x2_1 71 31 54	1 1 1 1 14 1 13 C14 x3_1 1 2 1	896.68 1 896.68 1 227.03 0.12 226.91 C15 x4_1 7 7 2 4 8 2 2 4 2	896.68 11 896.68 11 16.22 0.12 17.45 C16 6 4 2	6.95 0.0 6.95 0.0 0.01 0.9 C17 Time 1200 1200	00 00 34 C18 Velocity 0.0400 0.0380 0.0320	C19 Temperature 5.3 7.5 11.0 13.5	Yeild (Y) 28.0 31.5 34.5	C21	Drive in time (X1) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	27	RPM 265 259 221	Type of Cutting To 30 30 30 30 30 30 30 30 30 30 30 30 30	02 02 02
Sa R E E E E E E E E E E E E E E E E E E	egression Time rror Lack-of-Fit Pure Error C13 x2_1 71 31 31 54 47	1 1 1 1 14 1 13 C14 x3_1 1 2 1 2	896.68 1 896.68 1 227.03 0.12 226.91 C15 x4_1 7 2 2 4 8 2 2 4 3	896.68 11 896.68 11 16.22 0.12 17.45 C16 6 4 2 6	6.96 0.0 6.96 0.0 0.01 0.9 C17 Time 1200 1200 1200	00 34 C18 Velocity 0.0400 0.0380 0.0320 0.0260	C19 Temperature 5.3 7.5 11.0 13.5 17.0	Yeild (Y) 28.0 31.5 34.5 35.0	C21	Drive in time (X1) 225 195 255 225	Dose (X2) 4.60 4.30 4.30 4.00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	Q7	RPM 265 259 221 218	Type of Cutting To 3 3 3 3 3 3 3 4	02 02 02 02 02
Si Ro T Et I I I I I I I I I I I I I I I I I I	ource legression Time Lack-of-Fit Pure Error C13 x2_1 71 31 54 40	1 1 1 1 14 1 13 C14 x3_1 1 2 1 2	896.68 1 896.68 1 227.03 0.12 226.91 C15 x4_1 7 2 2 4 8 2 4 2 2 4 9 1	896.68 11 896.68 11 16.22 0.12 17.45 C16 6 4 2 6 4	6.96 0.0 6.96 0.0 0.01 0.9 C17 Time 1200 1200 1200 1200 1200	00 34 C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	Ct9 Temperature 5.3 7.5 11.0 13.5 17.0 23.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	C27	RPM 265 259 221 218 224	Type of Cutting To 3 3 3 3 3 3 3 4 4 4	02 02 02 02 116
Si R T E T T T T T T T	ource legression Time Lack-of-Fit Pure Error C13 x2_1 71 31 54 40 66	1 1 1 1 14 1 13 C14 x3_1 1 2 1 2	896.68 1 896.68 1 227.03 0.12 226.91 C15 x4_1 7 2 2 4 8 2 4 2 2 4 9 1	896.68 11 896.68 11 16.22 0.12 17.45 C16 6 4 2 6 4 2 2	6.96 0.0 6.96 0.0 0.01 0.9 C17 Time 1200 1200 1200 1200 1200	00 00 34 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (X1) 225 195 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	Q7	RPM 265 259 221 218 224 212	Type of Cutting To 3 3 3 3 3 3 4 4 4 4 4	02 02 02 02 116

And, when we do this here you see R square adjusted is also low lower than the earlier one. So, it depends on the practical sense of your, whether to adopt the variable or whether to remove the variable which is not significant like that that depends on the process engineers or somebody who is knowledgeable about that whether to retain that one or to eliminate that one. And, there is no lack of fit as such that is observed over here.

(Refer Slide Time: 12:31)

	Edit Data	Cale	Que 1	Granh V	iew Help	Assistan		nal Tools										-	8
									al a										
F								は間が											
Ę			13 LY	201	BE	時國	日日本	雅贵光	-Y 🖂 🚺 i	BK /	為圖 00	四小的目	8						
		1	I Y	× 🖬 🖗	K * I	1. LY	NER	K*											
_			-	-															
10	ession Analy	ysis: Ye	sid *	×															
М	ULTIPLE LINE	AR REG	RESSION	WWX															
eg	ression	Ana	lysis: \	feild (() versus	Time	9												
							1												
	gression	DF 1	Adj 55 1896.68		F-Value 116.96	P-Valu 0.00													
	ime		1896.68			0.00													
	ror	14	227.03	16.23															
L	ack-of-Fit	1	0.12	0.13	0.01	0.93	4												
ş	ure Error	13	226.91	17.4	5	Ľ	7												
Te	tal	15	2123.71																
Fi					al Observ	ations													
Fi	Dbs Veild	(Y)	Fit R	isid Std	D ESI D				-		-	-							
Fi	Obs Weild	(Y) C14	Fit R	nsid Std	C16	C17	C18	C19	C20 12	C21	C22	C23	C24	C25	C26	Q7	C28	C29	
Fi	C13 x2_1	(Y) C14 X3_1	Fit R	isid Std	C16	C17 ime	C18 Velocity	Temperature	Yeild (Y)	C21	Drive in time (X1)	Dose (X2)	X1_STD	x2_STD	Y (Transistor Gain)	C27	RPM	Type of Cutting Too	
Fi	Dbs Veild 16 20 C13 x2_1 71	(Y) C14 X3_1	Fit R	IS 6	C16	C17 ime 1200	C18 Velocity 0.0400	Temperature 5.3	Yeild (Y) 28.0	(21	Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	Q7	RPM 265	Type of Cutting Too 30	22
Fi	Dbs Veild 16 20 C13 x2_1 71 31	(Y) C14 X3_1	Fit R/ C x/ 17 22	esid Std 0.00 15 15 6 44	C16	C17 ime 1200 1200	C18 Velocity 0.0400 0.0380	Temperature 5.3 7.5	Yeild (Y) 28.0 31.5	C21	Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	Q27	RPM 265 259	Type of Cutting Too 30. 30.)2)2
Fi	C13 x2_1 71 31 54	(Y) C14 X3_1	Fit R/ C x/ 17 22 18	esid Std 2.00 15 6 44 22	C16	C17 ime 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320	Temperature 5.3 7.5 11.0	Yeild (Y) 28.0 31.5 34.5	C21	Drive in time (Xt) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	Q7	RPM 265 259 221	Type of Cutting Too 30, 30, 30, 30,	02 02 02
Fi	Obs Veild 14 20 C13 21 71 31 54 47	(Y) C14 x3_1	Fit R/ C X4 17 22 18 4	sid Std 5.00 5.00 5.00 6 44 22 26	C16	C17 ime 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260	Temperature 5.3 7.5 11.0 13.5	Yelld (Y) 28.0 31.5 34.5 35.0	C21	Drive in time (Xt) 225 195 255 225	Dose (X2) 4.60 4.30 4.30 4.00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	Q7	RPM 265 259 221 218	Type of Cutting Too 30. 30. 30. 30. 30. 30.	02 02 02 02
Fi	Dbs Veild 14 20 C13 31 54 47 40 40	(Y) C14 x3_1	Fit Ro C x4 17 22 18 4 23	sid Std 15 6 44 22 26 34	C16	C17 ime 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	Temperature 5.3 7.5 11.0 13.5 17.0	Yelld (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 255 225 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cutting Too 30. 30. 30. 30. 41.	02 02 02 02
Fi	Dbs Weild 14 30 C13 71 31 54 47 40 66 66	(Y) C14 x3_1	Fit R/ C X4 17 22 18 4	sid Std 15 (44) 22 (34) 12	C16	C17 ime 1200 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0340	Temperature 5.3 7.5 11.0 13.5 17.0 23.0	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (Xt) 225 195 225 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	C27	RPM 265 259 221 218 224 212	Type of Cutting Too 30, 30, 30, 30, 30, 41, 41, 41, 41,	02 02 02 02 16
Fi	Dbs Veild 14 20 C13 31 54 47 40 40	(Y) C14 x3_1	Fit R0 C X4 17 22 18 4 23 9	sid Std 15 6 44 22 26 34	C16	C17 ime 1200 1200 1200 1200 1200 1200 1200 120	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 255 225 225 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	C27	RPM 265 259 221 218 224 212 212 248	Type of Cutting Too 30. 30. 30. 30. 41.	02 02 02 02 16
Fi	Dbs Weild 14 30 C13 31 31 54 47 40 66 68	(Y) C14 X3_1	Fit R/ C X4 17 22 18 4 23 9 8	sid Std 15 6 44 22 26 34 12 12 12	Resid	C17 ime 1200 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0340	Temperature 5.3 7.5 11.0 13.5 17.0 23.0	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (XI) 225 255 225 225 225 225 225 225 225 22	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	Q7	RPM 265 259 221 218 224 212	Type of Cutting Too 30, 30, 30, 30, 30, 41, 41, 41, 41,	02 02 02 02 16
Fi	Dbs Veild 14 200 C13 21 711 311 54 477 400 666 68 8 H +	(Y) C14 x3_1	Fit R/ C x/ 17 22 18 4 23 9 8 9 8 9	stid Std 15 6 44 22 26 34 12 12 12 12	Resid	C17 ime 1200 1200 1200 1200 1200 1200 1200 120	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 255 225 225 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225 1321		RPM 265 259 221 218 224 212 248 260	Type of Cutting Too 30, 30, 30, 30, 30, 41, 41, 41, 41,	02 02 02 02 16
Fi	Dbs Weild 14 30 C13 31 31 54 47 40 66 68	(Y) C14 x3_1	Fit R/ C x/ 17 22 18 4 23 9 8 9 8 9	stid Std 15 6 44 22 26 34 12 12 12 12	Resid	C17 ime 1200 1200 1200 1200 1200 1200 1200 120	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340 0.0410 0.0840	Temperature 5.3 7.5 11.0 13.5 17.0 23.0 5.3	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (XI) 225 255 225 225 225 225 225 225 225 22	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225		RPM 265 259 221 218 224 212 212 248	Type of Cutting Toc 30 30 30 30 30 41 41 41 41 41	02 02 02 02 16

So this is lack of fit. So, linear model seems to be adequate so we can adopt this one. So, you have to think from practical aspects like that. So, multicollinearity problem when we are considering, both the variables over here, so if I consider both the variables, and in that case we are not getting any multicollinearity issue over here.

			Basic Stat Regressic ANOVA DOE			Fitted Lin Regressio		,	Fit R	971, 573 470 470 4 egression Nodel Subsets	# 4Y XD [8						
I MU	ession Anal JUTIPLE LINE ression	AR REGR	Control C Quality T Reliability	ools	. 2	Stability S		,	⊷Y Pred i Facto Conf									
Cre	ethod oss-validati		Multivari Time Seri Tables Nonparat Equivaler	es metrics	ليا الأ الأ	Binary Lo Ordinal L Nominal	tted Line Plot gistic Regression ogistic Regressio Logistic Regress	n •		laid Contour Plot onse Optimizer								
Yei	efficient	-133.0		d Sample Si		Poisson F	Regression	,										
Yei Co Ter	efficient	-133.0 -	Coef T-1	d Sample Si Value P-V .8 49 0	alue VIF			,										
Yei Co Ter	rm C13	-133.0 - s Coef SE -133.0 C14	Coef T- 15.7 C15	d Sample Si Value P-V	alue VIF	C18	C19	C20 12	C21	C22 Drive in time (VI)	C23	C24	C25	C26 V (Transistor Gain)	C27	C28	C29 Tune of Cutting Top	
Yei Co Ter	rm C13 x2_1	-133.0 - S Coef SE -133.0 C14 x3_1	Coef T-1	d Sample Si Value P-V .8 49 0	alue VIF 000 C17 Time	C18 Velocity	C19 Temperature	Yeild (Y)	(21	Drive in time (X1)	Dose (X2)	X1_STD	x2_STD	Y (Transistor Gain)	Q7	RPM	Type of Cutting Too	
Yei Co Ter	rm C13	-133.0 - s Coef SE -133.0 C14	Coef T-1 15.7 C15 x4_1	d Sample Si Value P-V .8 49 0	alue VIF	C18	C19		C21						Q7			2
Yei Co Ter	rm c13 x2_1 71	-133.0 + S Coef SE -123.0 C14 x3_1 17	Coef T-1 15 7 C15 x4_1 6	d Sample Si Value P-V .8 49 0	C17 Time 1200	C18 Velocity 0.0400	C19 Temperature 5.3	Yeild (Y) 28.0	C21	Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	Q7	RPM 265	Type of Cutting Too 302	2
Yei	rm c13 x2_1 71 31	-133.0 + IS Coef SE -133.0 C14 X3_1 17 22	Coef T- 15.7 C15 x4_1 6 44	d Sample Si Value P-V .8 49 0	alue VIF 000 C17 Time 1200 1200	C18 Velocity 0.0400 0.0380	C19 Temperature 5.3 7.5	Yeild (Y) 28.0 31.5	C21	Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	Q7	RPM 265 259	Type of Cutting Too 303 303	2
Yei	rm c13 x2_1 71 31 54	-133.0 + IS Coef SE -133.0 C14 x3_1 17 22 18	Coef T-1 15.7 C15 x4_1 6 44 22	d Sample Si Value P-V .8 49 0	alue VIF 000 C17 Time 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320	C19 Temperature 5.3 7.5 11.0	Yeild (Y) 28.0 31.5 34.5	C21	Drive in time (Xt) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	Q7	RPM 265 259 221	Type of Cutting Too 303 303 303	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Yei	rm c13 x2_1 71 31 54 47	-133.0 + IS Coef SE -123.0 C14 X3_1 17 22 18 4	Coef T-1 15.7 C15 x4_1 6 44 22 26	d Sample Si Value P-V .8 49 0	alue VIF 000 C17 Time 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260	C19 Temperature 5.3 7.5 11.0 13.5	Yeild (Y) 28.0 31.5 34.5 35.0	C21	Drive in time (X1) 225 195 255 225	Dose (X2) 4,60 4,30 4,30 4,00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	Q7	RPM 265 259 221 218	Type of Cutting Too 300 300 300 300 300 300 300	2 2 2 2 6
Yei	id (Y) = befficient rm C13 x2_1 71 31 54 47 40	-133.0 + -133.0	Coef T-1 15 7 C15 x4_1 6 44 22 26 34	d Sample Si Value P-V .8 49 0	alue VIF 000 C17 Time 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0320 0.0260 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0	Yelld (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 255 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	27	RPM 265 259 221 218 224	Type of Cutting Too 300 300 300 300 416	2 2 2 6 6
Yei Co Ter	id (Y) = cefficient m cta x2_1 71 31 54 47 40 66	-133.0 + -133.0	Coef T-1 15 7 C15 x4_1 6 44 22 26 34 12	d Sample Si Value P-V .8 49 0	alue VIF 000 C17 Time 1200 1200 1200 1200 1200 1200	C18 Velocity 0.0400 0.0380 0.0260 0.0340 0.0340	C19 Temperature 5.3 7.5 11.0 13.5 17.0 23.0	Yelld (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (X1) 225 195 255 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	27	RPM 265 259 221 218 224 212	Type of Cutting Too 300 300 300 300 416 416 416 416	2 2 2 6 6

(Refer Slide Time: 12:43)

So, this time and temperature if we consider both of them.

(Refer Slide Time: 12:46)

Regre	ession Anal	lysis: Yeild	i	* X				Regression		_				_	×						
-	ULTIPLE LINE							-													
Reg	ression	Analy	/sis:	: Yeild	(Y) ve	ersus Tim	e	C11 Heat C12 x1_1		Responses: Yeld (Y)					~	1					
								C13 x2_1 C14 x3_1 C15 x4_1													
Me	ethod							C17 Time		Continuous	madetace				_						
Cro	oss-validati	ion 10-fr	fold					C18 Velocity C19 Temper	rature	Time Temp		_			0	1					
								C20 Yeld (Y C22 Drive in	() n time (
Re	gression	Equation Equation	ion					C23 Dose () C24 X1_STD	(2)						~						
																1					
Yei	id (Y) =	-133.0+1	0.139	195 Time				C25 x2_STD													
Yei	iid (Y) =	-133.0 + 1	0.139	195 Time				C25 x2_STD C26 Y (Tran C28 RPM) relistor (Categorical	predictors:					1					
	efficient		0.139	195 Time				C25 x2_STD C26 Y (Tran C28 RPM C29 Type of C30 Surface	o rsistor (é Cuttir e Finish	Categorical	predictors:				^	1					
	efficient				Value F	-Value VIF		C25 x2_STU C26 Y (Tran C28 RPM C29 Type of C30 Surface C31 Johnso C32 Sgrt(Y)) rsistor (é Cuttir e Finish in Trare	Categorical	predictors:				Â	1					
Co	efficient	ts	SE Co	oef T-V	Value F	-Value VIF		C25 x2_STU C26 Y (Tran C28 RPM C29 Type of C30 Surface C31 Johnso C32 Sert(Y) C33 SRES C34 SRES 1	o nsistor (é Cuttir e Finish in Trare	Categorical	predctors:				0]					*
Co	efficient rm C13	Coef : -123.0 C14	SE Co	Coef T-1		0.000 C17	CIE	C25 x2_STC C26 Y (Tran C28 RPM C29 Type of C30 Surface C31 Joinso C32 Sqrt(Y) C33 SRES_ C35 SRES_ C35 SRES_ C35 SRES_	o rsistor (é Cuttir e Finish in Trare 1 2	Categorical		Options	co	dra	Stepwise	C26	C27	C28	C29		*
Co	cta x2_1	Coef : .123.0 C14 x3_1	SE Co	Coef T-1	-R 40	0.000 C17 Time	Cit	C25 x2_STC C26 Y (Tran C28 RPM C29 Type of C30 Surface C31 Johnso C32 Sqrt(Y) C33 SRES C34 SRES_1 C35 SRES_1	o nsistor (é Cuttir e Finish in Trare	Categorical	Model				-	ransistor Gain)	C27	RPM	C29 Type of Cutt	ing Tool	v
Co <u>Ter</u> (~~	ctaor ctaor x2_1 71	ts <u>Coef</u> : 133.0 C14 x3_1 17	SE Co	Coef T-1 15 7 C15 x4_1 6	-R 40	C17 Time 1200	C18 Veloc	C25 x2_STC C26 Y (Tran C28 RPM C29 Type of C30 Surface C31 Johnso C32 Sqrt(7) C33 SRES C34 SRES_ C36 SRES_ C36 SRES_ Selec	o nsistor (é Cuttir e Finish in Trare	Categorical		Optiogs Graphs		ding	Stepwise	ransistor Gain) 1269	C27	RPM 265	Type of Cut	ting Tool 302	surf
Co <u>Ter</u> 7 8	cta rm cta x2_1 71 31	Coef : .133.0 C14 x3_1 17 22	SE Co 1' 7 2	Coef T-1 15 7 C15 x4_1 6 44	-R 40	C17 Time 1200 1200	C18 Veloc 0.0 0.0	C25 x2_STC C26 Y (Tran C28 RPM C29 Type of C30 Surface C31 Jointoo C32 Sert(Y) C33 SRES_ C34 SRES_ C36 SRES_ C36 SRES_ SRES_	o nsistor (é Cuttir e Finish in Trare	Categorical	Model		Be	suits	-	ransistor Gain) 1269 903	Q7	RPM 265 259	Type of Cut	ting Tool 302 302	* Surf
Co <u>Ter</u> (~ *	C13 x2_1 71 31 54	ts <u>Coef</u> : 133.0 C14 x3_1 17 22 18	SE Cc 11 2 2 8	Coef T-1 15 7 C15 x4_1 6 44 22	-R 40	0 000 C17 Time 1200 1200 1200	C18 Veloc 0.0 0.0 0.0	C25 x2_STC C36 Y (Tran C38 RPM C29 Type of C30 Surface C31 Johnso C32 Sort(Y) C33 SRES_ C35 SRES_ C36 SRES_ Selec Help	o esistor (f Cuttir e Finish in Trare 2 3 v		Model	Graphs	Be	gits	Storage Cancel	ransistor Gain) 1269 903 1555	C27	RPM 265 259 221	Type of Cutt	ting Tool 302 302 302 302	v
Co <u>Ter</u> (~~ + 7 8 9 0	C13 x2_1 71 31 54 47	ts .133.0 C14 x3_1 17 22 18 4	SE Cc 11 2 8 4	Coef T-1 15.7 C15 x4_1 6 44 22 26	-R 40	0 000 C17 Time 1200 1200 1200 1200	C18 Veloc 0.0 0.0 0.0 0.0	C25 x2 5TC C26 Y (Tran C28 R/M C29 Type of C30 Surface C30 Surface C31 Johnson C32 Sort(Y) C33 Set5 C35 Set5_ C35 Set5_ C35 Set5_ Setec Help	o esistor (f Cuttir e Fnish in Trare 2 3 v t	33.0	Model	Graphs		QK N	Storage Cancel	ransistor Gain) 1269 903 1555 1260	Q7	RPM 265 259 221 218	Type of Cut	ting Tool 302 302 302 302 302	* Surf
Co Ter 7 8 9 0	C13 x2_1 71 31 54 47 40	ts Coef : 133.0 C14 x3_1 17 22 18 4 23	SE CC 11 2 2 8 8 4 3	Coef T-V 15.7 C15 x4_1 6 44 22 26 34	-R 40	C17 C17 Time 1200 1200 1200 1200 1200 1200	C18 Veloc 0.0 0.0 0.0 0.0 0.0	C25 x2 5TC C26 Y (Tran C28 RPH C29 Type of C29 Type of C29 Surface C30 Surface C31 Johnso C32 Sert(Y) C33 Set5_ C35 Set5_S Set	o posistor (d Cuttir e Phish in Trate 1 2 3 v t 1 1 1 1 1 1 1 1 1 1 1 1 1	33.0	Model	graphs 225	Be 4.70	QK 0.0000	Storage Cancel	ransistor Gain) 1269 903 1555 1260 1146	27	RPM 265 259 221 218 224	Type of Cutt	ting Tool 302 302 302 302 302 416	Surf
Co Ter 7 8 8 9 0 0	rm c13 x2_1 71 31 54 47 40 66	ts .133.0 C14 x3_1 17 22 18 4	SE CC 11 2 2 8 8 4 3	Coef T-1 15.7 C15 x4_1 6 44 22 26 34 12	-R 40	C17 Time 1200 1200 1200 1200 1200 1200 1200	C18 Veloc 0.0 0.0 0.0 0.0 0.0 0.0	C25 x2_5TC C26 Y (Tran C28 R/H C29 Type of C29 Type of C29 Surface C35 Surface	d Guttr e Finish in Trate 1 2 3 v t 1 1 7 0 2 3 v 1 2 3 v 1 2 3 v 1 2 3 v 1 2 3 v 1 2 3 v 1 1 1 1 1 1 1 1 1 1 1 1 1	33.0 38.0 38.5	Model	Graphs 225 225 225	4.70 4.30	QK 0.0000 0.0000 0.0000	Storage Cancel 11.0000 0.9444 -0.1667	ransistor Gain) 1269 903 1555 1260 1146 1276	Q7	RPM 265 259 221 218 224 212	Type of Cut	ting Tool 302 302 302 302 416 416	surf
Co Ter 7 8 9 0	C13 x2_1 71 31 54 47 40	ts Coef : 133.0 C14 x3_1 17 22 18 4 23	SE CC 11 2 2 8 8 4 3	Coef T-V 15.7 C15 x4_1 6 44 22 26 34	-R 40	C17 C17 Time 1200 1200 1200 1200 1200 1200	C18 Veloc 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	C25 x2 5TC C26 Y (Tran C28 RPH C29 Type of C29 Type of C29 Surface C30 Surface C31 Johnso C32 Sert(Y) C33 Set5_ C35 Set5_S Set	0 sister (6 Cutter e Fnish in Trare 2 3 v 12 3 v 17.0 23.0 5.3	33.0	Model	graphs 225	Be 4.70	QK 0.0000	Storage Cancel	ransistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cut	ting Tool 302 302 302 302 302 416	sur

And variation inflation factor is around 1.05, so which is quite satisfactory.

(Refer Slide Time: 12:56)

			רי יז ⊠ם	View Help A	☆ 計・ 時間 #	α山郡 ン ◎瀬東哉		8K I	k 🎋 🔝 i d ^a to <mark>s</mark> i	d⊓ vy ¥¢ [8						
Regr	ression Anah	ysis: Yeild	* x														
E M	ULTIPLE UNE	AR REGRESS	ION MWX														
Reg	gression	Analysi	is: Yeild	(Y) versus	ime, Tem	perature											
M	lethod																
	ross-validati																
D.		Equation	1														
R	egression																
			240 Time 4	0.251 Temperat	-												
			1340 Time 4	0.351 Temperat													
Ye	eid (Y) =	-130.7 + 0.1	1340 Time 4	0.351 Temperat		à											
Ye		-130.7 + 0.1	1340 Time 4	0.351 Temperat		à											
Ye	eld (Y) =	-130.7 + 0.1				à											
Ye	eid (Y) =	-130.7 + 0.1		0.351 Temperat T-Value P-Val	e VIF	\$											
Ye	eld (Y) = oefficient erm	-130.7 + 0. s Coef	SE Coef	T-Value P-Val	e VIF	c19	C20 g	C21	C22	C23	C24	C25	C26	(27	C28	C29	
	eid (Y) = coefficient erm C13 x2_1	-130.7 + 0. S Coef -130.7 C14 x3_1	SE Coef	T-Value P-Val .0.24 0.0 C16 C1 Tim	e VIF n C18 e Velocity	C19 Temperature	Yeild (Y)	C21	Drive in time (X1)	Dose (X2)	X1_STD	x2_STD	Y (Transistor Gain)	Q27	RPM	Type of Cutting Too	
	eid (Y) = coefficient erm C13 x2_1 71	-130.7 + 0. s <u>Coef</u> -130 7 C14 x3_1 17	SE Coef 14.1 C15 x4_1 6	T-Value P-Val .0.74 0.0 C16 C1 Tim	e VIF 0 C18 e Velocity 100 0.040	C19 Temperature 5.3	Yeild (Y) 28.0	C21	Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	C27	RPM 265	Type of Cutting Too 30.	2
	eid (Y) = coefficient erm C13 x2_1 71 31	-130.7 + 0. S Coef -130 7 C14 x3_1 17 22	SE Coef 14.1 C15 x4_1 6 44	T-Value P-Val .9.74 0.0 C16 C1 Tim 1 1	e VIF 0 C18 Velocity 100 0.040 00 0.038	C19 Temperature 5.3 0 7.5	Yeild (Y) 28.0 31.5	C21	Drive in time (X1) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	Q7	RPM 265 259	Type of Cutting Too 30. 30.	2
	eid (Y) = coefficient erm C13 x2_1 71 31 54	-130.7 + 0. S Coef -130 7 C14 x3_1 17 22 18	SE Coef 14 1 C15 X4_1 6 44 22	T-Value P-Val 	e VIF C18 Velocity 100 0.040 100 0.038 100 0.038	C19 Temperature 5.3 0 7.5 0 11.0	Yeild (Y) 28.0 31.5 34.5	C21	Drive in time (Xt) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	Q7	RPM 265 259 221	Type of Cutting Too 30. 30. 30. 30.	2 2 2 2
	eild (Y) = coefficient erm C13 x2_1 71 31 54 47	-130.7 + 0. S Coef -130 7 C14 X3_1 17 22 18 4	SE Coef 14.1 C15 x4_1 6 44 22 26	T-Value P-Val .0 74 0.0 C16 C1 Tin 1 1	e VIF C18 Velocity 100 0.0400 100 0.0320 100 0.0260	C19 Temperature 5.3 7.5 11.0 13.5	Yeild (Y) 28.0 31.5 34.5 35.0	C21	Drive in time (X1) 225 195 255 225	Dose (X2) 4.60 4.30 4.30 4.00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	Q7	RPM 265 259 221 218	Type of Cutting Too 30. 30. 30. 30. 30. 30.	2 2 2 2 2 2
	eid (Y) = coefficient erm C13 x2_1 71 31 54	-130.7 + 0. S Coef -130 7 C14 x3_1 17 22 18	SE Coef 14 1 C15 X4_1 6 44 22	T-Value P-Val .0 74 0.0 C16 C1 Tin 1 1	e VIF C18 Velocity 100 0.040 100 0.038 100 0.038	C19 Temperature 5.3 7.5 11.0 13.5	Yeild (Y) 28.0 31.5 34.5 35.0	C21	Drive in time (X1) 225 195 255 225 225 225	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555	Q7	RPM 265 259 221 218 224	Type of Cutting Too 30. 30. 30. 30. 41.	2 2 2 2 2
	eild (Y) = coefficient erm C13 x2_1 71 31 54 47	-130.7 + 0. S Coef -130 7 C14 X3_1 17 22 18 4	SE Coef 14.1 C15 x4_1 6 44 22 26	T-Value P-Val .º 74 0.0 C16 C1 Tin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e VIF C18 Velocity 100 0.0400 100 0.0320 100 0.0260	C19 Temperature 5.3 7.5 11.0 13.5 0 11.0 13.5 0 17.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0	C21	Drive in time (X1) 225 195 255 225	Dose (X2) 4.60 4.30 4.30 4.00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	Q7	RPM 265 259 221 218	Type of Cutting Too 30. 30. 30. 30. 41.	2 2 2 2 6
Ye CC <u>Te</u> C' * * * * 0 0 1 1 2	eild (Y) = coefficient erm C13 x2_1 71 31 54 47 40	-130.7 + 0.7 S Coef -130.7 + 0.7 S -130.7 + 0.7 -130.7 + 0.7 -140 -177 -1	SE Coef 14.1 C15 X4_1 6 44 22 26 34	T-Value P-Val -9.24 0.01 C16 C1 Tim 1 1 1 1 1 1 1 1 1 1 1 1 1	e VIF n Velocity Velocity Velocity 0.038 0.032 0.032 0.032 0.034 0 0.034 0 0.034 0 0.034 0 0.034 0 0.034 0 0.034 0 0.034 0 0.034 0 0.034 0 0.034 0 0.034 0 0.034 0 0.034 0 0 0.034 0 0 0.034 0 0 0.034 0 0 0.034 0 0 0.034 0 0 0.034 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C19 Temperature 0 5.3 0 7.5 0 11.0 0 13.5 0 17.0 0 23.0	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.5	C21	Drive in time (X1) 225 195 255 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	Q7	RPM 265 259 221 218 224	Type of Cutting Too 30, 30, 30, 30, 41, 41, 41, 41,	2 2 2 6 6
Ye CC Te 7 8 0 0 1 2 3	eid (Y) = coefficient erm C13 X2_1 71 31 54 47 40 66	-130.7 + 0.7 5 Coef -130.7 + 0.7 5 -130.7 + 0.7 -130.7 + 0.7 -130	SE Coef 14.1 C15 x4_1 6 44 22 26 34 12	T-Value P-Val 0.24 ON C16 C1 In 1 1 1 1 1 1 1 1 1 1 1 1 1	e VIF n Velocity 000 0.0400 0.0320 000 0.0320 000 0.0260 00 0.0340 00 0.0341 00 0.0410	C19 Temperature 5.3 3.7.5 3.11.0 0.13.5 0.17.0 0.23.0 0.23.0 0.23.0 0.5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 255 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	27	RPM 265 259 221 218 224 212	Type of Cutting Too 300 300 300 300 411 411 411 411 411	2 2 2 2 6 6
Ye CC <u>Te</u> () + +) 0 0 1 2 3 4	eid (Y) = coefficient erm C13 X2_1 71 31 54 47 40 66	-130.7 + 0.7 S Coef -130.7 C14 x3_1 17 22 18 4 23 9 8	SE Coef 14 1 C15 x4_1 6 44 22 26 34 12 12	T-Value P-Val .0.24 0.0 Tim 1 	e VIF 0 C18 Velocity 00 0.040 0 0.038 00 0.038 00 0.034 0 0.041 0 0.041 0 0 0.044 0 0 0.044 0 0 0 0.044 0 0 0 0	C19 Temperature 5.3 3.7.5 3.11.0 0.13.5 0.17.0 0.23.0 0.23.0 0.23.0 0.5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	21	Drive in time (Xt) 225 195 255 225 225 225 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	XI_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	27	RPM 265 259 221 218 224 212 212 248	Type of Cutting Too 300 300 300 300 411 411 411 411 411	2 2 2 2 6 6
	eid (Y) = oefficient erm C13 x2_1 711 311 54 477 400 666 68	-130.7 + 0.7 S Coef -130.7 C14 x3_1 17 22 18 4 23 9 8	SE Coef 14 1 C15 x4_1 6 44 22 26 34 12 12	T-Value P-Val 0.24 ON C16 C1 11 1 1 1 1 1 1 1 1 1 1 1	e VIF 0 C18 Velocity 00 0.040 0 0.038 00 0.038 00 0.034 0 0.041 0 0.041 0 0 0.044 0 0 0.044 0 0 0 0.044 0 0 0 0	C19 Temperature 5.3 3.7.5 3.11.0 0.13.5 0.17.0 0.23.0 0.23.0 0.23.0 0.5.3	Yeild (Y) 28.0 31.5 34.5 35.0 38.0 38.0 38.5 15.0	C21	Drive in time (Xt) 225 195 225 225 225 225 225 225 225 225 225 2	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	XI_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225		RPM 265 259 221 218 224 212 212 248	Type of Cutting Too 300 300 300 300 411 411 411 411 411	2 2 2 6 6

(Refer Slide Time: 12:56)

					8	OF YY NG	4 🖾 🗗 🐻 (BK /	4Y 🖂 🚺 (# # 兆	四日本 7	长★ 戦		420			11
										8 🗶 ★		12 4	ek :	Y 🖂 🛄	1 E		
														~ X	sis: Yeild	ession Anal	eg
																ULTIPLE LINE	
										perature	e, Temp	rsus Tim	(Y) ver	s: Yeild	Analysi	ression	eç
											VIF			SE Coef		rm	
												0.000	-9.24	14.1	-130.7	onstant	
C29	C28	C27	C26	C25	C24	C23	C22	C21	C20 m	C19	C18	C17	C16	C15	C14	C13	1
Type of Cutting T	RPM		H Generalstein Caleb		X1_STD	Dose (X2)	Drive in time (X1)			Temperature	Velocity	Time		x4_1	x3_1	x2_1	
-			Y (Transistor Gain)	x2_STD			225		28.0	5.3	0.0400	1200					
	265		1269	0.6667	0.0000	4.60								6	17	71	
1	259		1269 903	0.6667	-1.0000	4.30	195		31.5	7.5	0.0380	1200		44	17 22	71	
1	259 221		1269 903 1555	0.6667 -0.1667 -0.1667	-1.0000	4.30 4.30	195		34.5	11.0	0.0320	1200		44 22	17 22 18	71 31 54	
	259 221 218		1269 903 1555 1260	0.6667 -0.1667 -0.1667 -1.0000	-1.0000 1.0000 0.0000	4.30 4.30 4.00	195 255 225		34.5 35.0	11.0 13.5	0.0320	1200 1200		44 22 26	17 22 18 4	71 31 54 47	
	259 221 218 224		1269 903 1555 1260 1146	0.6667 -0.1667 -0.1667 -1.0000 0.9444	-1.0000 1.0000 0.0000 0.0000	4.30 4.30 4.00 4.70	195 255 225 225		34.5 35.0 38.0	11.0 13.5 17.0	0.0320 0.0260 0.0340	1200 1200 1200		44 22 26 34	17 22 18 4 23	71 31 54 47 40	
	259 221 218 224 212		1269 903 1555 1260 1146 1276	0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	-1.0000 1.0000 0.0000 0.0000 0.0000	4.30 4.30 4.00 4.70 4.30	195 255 225 225 225 225		34.5 35.0 38.0 38.5	11.0 13.5 17.0 23.0	0.0320 0.0260 0.0340 0.0410	1200 1200 1200 1200		44 22 26 34 12	17 22 18 4 23 9	71 31 54 47 40 66	
	259 221 218 224		1269 903 1555 1260 1146 1276 1225	0.6667 -0.1667 -0.1667 -1.0000 0.9444	-1.0000 1.0000 0.0000 0.0000	4.30 4.30 4.00 4.70	195 255 225 225		34.5 35.0 38.0	11.0 13.5 17.0	0.0320 0.0260 0.0340	1200 1200 1200		44 22 26 34	17 22 18 4 23	71 31 54 47 40	
												0.000 0.059 10-fold s 4.39510	11.25 2.07 sq(pred) 85.21%	0.0119 0.170 q(adj) R: 0.72%	R-sq R-s	me emperature lodel Sun S 3.62397 9	T N

And, so whether to include both the variables or not to include both the variables, that is the judgment that you have to take. But, I will suggest to retain this one because this is improving R square adjusted and also tenfold cross-validation and R square predicted is also improving so we can retain this one ok.

So, but there is no black and white scenario using regression like that. So it depends on the process engineers and then see the predictive behaviors and then we try to adopt whichever model is very close ok. Suggested model over here is, we can include time and temperature both the variables. But if you go by significance, in that case temperature may be dropped and we stick to time only that is the only variable ok.

(Refer Slide Time: 13:46)

File	Edit Data Calc	Stat Gran	h View	Helo Assi	istant Additional Tool										-	8
-					fx 3											
4							◎ビ★科園 6	CO 0 - Y - Y	83							
	. 🖉 .	F A SI	BR	* 12	Y≥∎8⊻≯	K										
Rej	gression Analysis: Yei	ld * X														
	MULTIPLE UNEAR REGR	RESSION MW	<													
Re	gression Anal	vsis: Yei	ld (Y) vi	ersus Ti	me, Temperatu	ure										
		oef SE Co														
	Constant -13															
	Time 0.13	340 0.011	9 11.2	5 0.000	1.05											
	Temperature 0.3	351 0.17	2.0	7 0.059	1.05											
	S R+sq 3.62397 91.96%	R-sq(adj) 90.72%	R-sq(pred 85.219		S 10-fold R-sq 10 85.45%											
		90.72%														
,	3.62397 91.96% Analysis of Varia C22	90.72% nce C23	85.214 C24	4.3951 C25	0 85.45% C26	C27 C28	C29	C30 5			C33	C34	C35	C36	C37	
	3.62397 91.96% Analysis of Varian C22 Drive in time (X1)	90.72% nce C23 Dose (X2)	85.219 C24 X1_STD	4.3951 C25 x2_STD	C26 Y (Transistor Gain)	RPM	Type of Cutting Tool	Surface Finish	Johnson Trans (Y)	Sqrt(Y)	C33	C34	C35	C36	C37	
•	3.62397 91.96% Analysis of Varia C22 Drive in time (X1) 225	90.72% nce C23 Dose (X2) 4.60	85.215 C24 X1_STD 0.0000	C25 x2_STD 0.6667	C26 Y (Transistor Gain) 1269	RPM 26	Type of Cutting Tool	Surface Finish 52.26	Johnson Trans (Y) 1.98000	Sqrt(Y) 7.22911	C33	C34	C35	C36	C37	
•	3.62397 91.96% Analysis of Varia C22 Drive in time (X1) 225 195	90.72% nce C23 Dose (X2) 4.60 4.30	85.215 C24 X1_STD 0.0000 -1.0000	C25 K2_STD 0.6667 -0.1667	C26 Y (Transistor Gain) 1269 903	RPM 26	Type of Cutting Tool 302 302 302	Surface Finish 52.26 50.52	Johnson Trans (Y) 1.98000 1.06984	Sqrt(Y) 7.22911 7.10774	C33	C34	C35	C36	C37	
+ 7 8 9	3.62397 91.90% Analysis of Varia C22 Drive in time (X1) 225 195 255	90.72% nce C23 Dose (X2) 4.60 4.30	C24 X1_STD 0.0000 -1.0000 1.0000	C25 x2_STD 0.6667 -0.1667 -0.1667	C26 Y (Transistor Gain) 1269 903 1555	RPM 26 25 22	Type of Cutting Tool 5 302 9 302 1 302	Surface Finish 52.26 50.52 45.58	Johnson Trans (Y) 1.98000 1.06984 0.43932	Sqrt(Y) 7.22911 7.10774 6.75130	C33	C34	C35	C36	C37	
+ 7 8 9	3.62397 91.96% Analysis of Varia C22 Drive in time (X1) 225 195 255 225	90.72% nce C23 Dose (X2) 4.60 4.30 4.30 4.30	C24 X1_STD 0.0000 -1.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -1.0000	C26 Y (Transistor Gain) 1269 903 1555 1260	RPM 26 25 22 21	Type of Cutting Tool 5 302 9 302 1 302 3 302	Surface Finish 52.26 50.52 45.58 44.78	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	C33	C34	C35	C36	C37	
+ 7 8 9 10	3.62397 91.90% Analysis of Varia C22 Drive in time (X1) 225 195 255	90.72% nce C23 Dose (X2) 4.60 4.30	C24 X1_STD 0.0000 -1.0000 1.0000	C25 x2_STD 0.6667 -0.1667 -0.1667	C26 Y (Transistor Gain) 1269 903 1555	RPM 26 25 22 21 21	Type of Cutting Tool 302 302 302 302 302 302 302 416	Surface Finish 52.26 50.52 45.58	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130	C33	C34	C35	C36	C37	
+ 7 8 9 10 11	3.62397 91.96% Analysis of Varia C22 Drive in time (X1) 225 195 255 225 225	90.72% nce C23 Dose (X2) 4.60 4.30 4.30 4.00 4.70	25.211 C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	C26 Y (Transistor Gain) 1269 903 1555 1260 1146	RPM 26 25 22 21	Type of Cutting Tool 302 302 302 302 302 302 302 4 416 2 416	Surface Finish 52.26 50.52 45.58 44.78 33.50	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	C33	C34	C35	C36	C37	
+ 7 8 9 10 11 12 13	3.62397 91.96% Analysis of Varia C22 Drive in time (X1) 225 195 225 225 225 225	90.72% C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30	25.21 C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276	RPM 26 25 22 21 21 22 21	Type of Cutting Tool 5 302 9 302 1 302 3 302 4 416 2 416 3 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	C33	C34	C35	C36	C37	
	3.62397 91.96% Analysis of Varial C22 Drive in time (XI) 225 225 225 225 225 225 225 225 225 22	90.72% C23 Dose (X2) 4.60 4.30 4.30 4.30 4.70 4.30 4.72	C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1667	C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1146 1225	RPM 266 255 222 21 222 21 222 21 24	Type of Cutting Tool 5 302 9 302 1 302 3 302 4 416 2 416 3 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	C33	C34	C35	C36	C37	
→ 7 8 9 10 11 12 13 14	3.62397 91.96% Analysis of Varial C22 Drive in time (XI) 225 225 225 225 225 225 225 225 225 22	90.72% C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30 4.30 4.30 4.30 91e Linear R	C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1667 regression.m	C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1146 1225	RPM 266 255 222 21 222 21 222 21 24	Type of Cutting Tool 3 302 3 302 3 302 3 302 3 302 3 302 3 302 3 302 4 416 4 416 4 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536		C34			C37	

So, this is one scenario. And, we can have in regression some other scenarios like that we can place this is the example, I want to place over here. Maybe, we will delete this one residual over here. So, this is one example that we are taking, so RPN type of cutting tool and surface finish this is the variable surface finish is Y and RPM is the continuous variable and there can be a categorical variable, that means, or type of the cutting tool.

So, here the number is categorical. It can take two values, 302 and 416 like that. So this is the two types of tool. So this is categorical variable basically, so this is no I cannot say 302 is greater than 416 like that. So this cannot be arranged in ascending order, descending order. So this is like color, different types of color. So, this is categorical variable we have to treat, and regression has an option to deal with categorical variable also.

(Refer Slide Time: 14:34)

	a @ x @ 6 ∎ 5 □ 11	Regres			$\begin{array}{c c} f_X & \exists -2 & \downarrow \\ & & \\ & \\ \hline & \\ \hline \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \$	14 4 0		J.Z 🔺 Yr. 199 (🚚)									
	1@1:	ANOV	A	:	Regression Nonlinear Regres	rian		Regression Model.									
	ression Analysis: Yell		Charts		Stability Study		. 4	Predict									
-	ULTIPLE LINEAR REGR	Reliab	lity/Survival		🕅 Orthogonal Regn	ession	2	Factorial Plots									
Te	erm Cc onstant -13(Predic	tive Analytic ariate	3 ,	Partial Least Squa		8	Surface Plot Overlaid Contour Plot									
Te	emperature 0.3		rametrics lence Tests		Crdinal Logistic												
	3.62397 91.96%	Power R-sq(adj) 90.72%	and Sample R-sq(pred 85.219) 10-fold		on	,										
	S R-sq	Power R-sq(adj) 90.72%	and Sample R-sq(pred) 10-fold	S 10-fold R-sq	C27 C	,	629	C30 m	C31 m	C32	C33	C34	C35	C36	C37	
A	S R-sq 1 3.62397 91.96% analysis of Varian	Power R-sq(adj) 90.72% ce C23	and Sample R-sq(pred 85.219	 10-fold 4.3951 C25 	S 10-fold R-sq 0 85.45%			C29 Type of Cutting Tool			C32 Sqrt(Y)	C33	C34	C35	C36	C37	
A	<u>S R-sq 1</u> 3.62397 91.96% nalysis of Varian C22	Power R-sq(adj) 90.72% ce C23	and Sample R-sq(pred 85.219	 10-fold 4.3951 C25 	S 10-fold R-sq 0 85.45% C26	C27 C						C33	C34	C35	C36	C37	
AI	S R-sq 1 3.62397 91.96% malysis of Varian C22 Drive in time (Xt) C	Power R-sq(adj) 90.72% cce c23 Dose (X2)	end Sample R-sq(pred 85.219 C24 X1_STD	0 10-fold 6 4.3951 C25 x2_STD	S 10-fold R-sq 0 85.45% C26 Y (Transistor Gain)	C27 C	M	Type of Cutting Tool	Surface Finish	Johnson Trans (Y)	Sqrt(Y)	C33	C34	C35	C36	C37	
AI	S R-sq 1 3.62397 91.96% analysis of Varian C22 Drive in time (Xt) D 225	Power R-sq(adj) 90.72% cce c23 Dose (X2) 4.60	C24 C24 C24 C24 C24 C24 C24 C24 C24 C24	0 10-fold 6 4.3951 C25 x2_STD 0.6667	S 10-fold R-sq 0 85.45% C26 Y (Transistor Gain) 1269	C27 C	PM 265	Type of Cutting Tool 302	Surface Finish 52.26	Johnson Trans (Y) 1.98000	Sqrt(Y) 7.22911	C33	C34	C35	C36	C37	
A1	S R-sq 1 3.62397 91.96% analysis of Varian C22 Drive in time (X1) D 225 195	Power R-sq(adj) 90.72% cce c23 Dose (X2) 4.60 4.30	and Sample R-sq(pred 85.211 C24 X1_STD 0.0000 -1.0000	0 10-fold 4.3951 C25 x2_STD 0.6667 -0.1667	S 10-fold R-sq 0 85.45% C26 Y (Transistor Gain) 1269 903	C27 C	PM 265 259	Type of Cutting Tool 302 302	Surface Finish 52.26 50.52	Johnson Trans (Y) 1.98000 1.06984	Sqrt(Y) 7.22911 7.10774	C33	C34	C35	C36	C37	
A1	s R-sq 3.62397 91,964 analysis of Varian c22 Drive in time (X1) C 225 195 225 225 225 225	Power R-sq(adj) 90.72% C23 C23 C23 C23 C23 C23 C23 C23	c24 X1_STD 0.0000 1.0000	0 10-fold 6 4.3951 C25 x2_STD 0.6667 -0.1667 -0.1667	S 10-fold R-sq 0 85,45% Y (Transistor Gain) 1269 903 1555	C27 C	M 265 259 221 218 224	Type of Cutting Tool 302 302 302	Surface Finish 52.26 50.52 45.58	Johnson Trans (V) 1.98000 1.06984 0.43932	Sqrt(Y) 7.22911 7.10774 6.75130	C33	C34	C35	C36	C37	
An + 1 7 3 0 0	s R-sq 1 3.62397 91,96% analysis of Varian C22 Drive in time (XI) C 225 195 255 225 225 225 225	Power R-sq(adj) 90.72% CC2 C23 Cose (X2) 4.60 4.30 4.30 4.30 4.00	end Sample R-sq(pred 85.211 C24 X1_STD 0.0000 -1.0000 1.0000 0.0000) 10-fold 6 4.3951 C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000	S 10-fold R-sq 0 85.45% C26 Y (Transistor Gain) 1269 903 1555 1260	C27 C	M 265 259 221 218	Type of Cutting Tool 302 302 302 302	Surface Finish 52.26 50.52 45.58 44.78	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	C33	C34	C35	C36	C37	
An + 1 7 3 0 0 1 1 2	s R-sq 3.62397 91,96% analysis of Varian 225 225 225 225 225 225 225 225 225	Power R-sq(adj) 90.72% CC2 C23 Dose (X2) 4.60 4.30 4.30 4.30 4.70 4.30 4.72	and Sample R-sq(pred 85.21% C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0 10-fold 6 4.3951 82_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	5 10-fold R-sq 0 85.45% 226 Y (Transistor Gain) 1269 903 1555 1260 1466 1276 1225	C27 C	M 265 259 221 218 224	Type of Cutting Tool 302 302 302 302 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	C33	C34	C35	C36	C37	
AI	s R-sq 1 3.62397 91,96% analysis of Varian C22 Drive in time (XI) C 225 195 255 225 225 225 225	Power R-sq(adj) 90.72% CC2 C23 Dose (X2) 4.60 4.30 4.30 4.00 4.30 4.70 4.30	and Sample R-sq(pred 85.211 C24 XL_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	10-fold 6 4.3951 82_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667	S 10-fold R-sq 0 85.45% C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276	C27 C	PM 265 259 221 218 224 212	Type of Cutting Tool 302 302 302 302 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	C33	C34	C35	C36	G7	

So, surface finish is Y over here. So what we can do is that stat go to stat regression, fit regression and fit regression model over here.

(Refer Slide Time: 14:38)

Regre	ssion Analysis: Yei	ld * >					Regressio	on							x						
-	ILTIPLE LINEAR REGR						_														
Regi	ression Anal	ysis: Ye	eild (Y	() ver	sus Tir	ne, Te	C6 x1 C7 x2	^	Responses: Surface Fin				_		_						
Ter	rm C	oef SEC	oef T-	Value	P-Value	VIF	C8 x3 C9 x4 C11 He C12 x1		Surface Pin	8n					^						
	nstant -13			-9.24	0.000		C11 He	eat III					_		~						
Tim	ne 0.13	340 0.0	119	11.25	0.000	1.05	C13 x2	2.1	Continuous p	redictors:					_						
Ter	mperature 0.3	351 0.	170	2.07	0.059	1.05	C14 x2 C15 x4	3_1 4_1	RPM						^						
							C17 Te	me													
Mo	odel Summary						C18 Ve	elocity							~						
								emperature													
	5 P.40		P.col	Inradi	10-fold s	s 10-fa	C20 Ye	eld (Y)							-						
3.	S R-sq	R-sq(adj)			10-fold 5		C20 Ye C22 Dr C23 Dr	eld (Y) rive in time (ose (X2)	Categorical p												
3.				(pred) 15.21%			C20 Ye C22 Dr C23 Dc C24 X1 C25 X2	eld (Y) rive in time (ose (V2) 1_STD 2_STD	Categorical p						^						
	62397 91.96%	R-sq(adj) 90.72%					C20 Ye C22 Dr C23 Dc C24 X1 C25 X2 C26 Y C28 R5	eld (Y) rive in time (ose (X2) L_STD 2_STD (Transistor (PM							^						
		R-sq(adj) 90.72%					C20 Ye C22 Dr C23 Do C24 X1 C25 X2 C26 Y1 C28 RF C29 Ty	eld (Y) rive in time (ose (X2) 1_STD 2_STD (Transistor (PM ype of Cuttir							~ ~						
	62397 91.96%	R-sq(adj) 90.72%		15.21%			C20 Ye C22 Dr C23 Dc C24 X1 C25 X2 C26 Y1 C28 RF C29 Ty C30 Se C31 Jo	eld (Y) rive in time (ose (X2) 1_STD 2_STD (Transistor (PM ype of Cutter urface Finish ohnson Trare		tting Tool	Orline	Codes	1	Chanvairee	< > 2	C33	C34	C35	C36	C37	
An	62397 91.96%	R-sq(adj) 90.72% nce C23	8: C24	4	4.39510	0 C	C20 Ye C22 Dr C23 Dc C24 X1 C25 X2 C26 Y1 C28 RF C29 Ty C30 Se C31 Jo	eld (Y) rive in time (ose (X2) 1_STD 2_STD (Transistor (PM ype of Cuttir urface Finish			Optiogs	Coding		Stepwise.	~ ~ ~ ~	C33	C34	C35	C36	C37	
An	.62397 91.96% alysis of Varia C22	R-sq(adj) 90.72% nce C23	8: C24 X1_ST	4 TD x	4.39510 C25	0 C	C20 Ye C22 Dr C23 Dc C24 X1 C25 X2 C26 Y 1 C28 RF C29 Ty C30 Se C31 Jo C32 Sc	eld (Y) rive in time (ose (X2) 1_STD 2_STD (Transistor (PM ype of Cutter urface Finish ohnson Trare		tting Tool	Optiogs Graphs	Coding		Stepwise.	m	C33	C34	C35	C36	C37	
An + D	62397 91.96% adysis of Varia C22 krive in time (Xt)	R-sq(adj) 90.72% nce C23 Dose (X2)	C24 X1_ST 0.00	4 1000	4.39510 C25 x2_STD	0 C	C20 Ye C22 Dr C23 Dc C24 X1 C25 X2 C26 Y 1 C28 RF C29 Ty C30 Se C31 Jo C32 Sc	eld (Y) rive in time (ose (X2) 1_STD 2_STD (Transistor (PM ype of Cutter urface Pinish othroon Trane grt(Y) v		Model				12	m	C33	C34	C35	C36	C37	
An + D	62397 91.96% alysis of Varia C22 Wrive in time (X1) 225	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60	C24 X1_ST 0.00 -1.00	4 TD x 1000	4.39510 c25 x2_STD 1 0.6667	0 C	C20 Ye C22 Dr C23 Dc C24 X1 C25 X2 C26 Y 1 C28 RF C29 Ty C30 Se C31 Jo C32 Sc	eld (Y) rive in time (ose (x2) L_STD 2_STD 2_STD (Transistor (PM ype of Cutter urface Finish ohnson Trane ort(Y) v Select		Model				12	(Y) 	C33	C34	C35	C36	C37	
An • D	62397 91.96% alysis of Varial C22 trive in time (X1) 225 195	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60 4.30	C24 X1_ST 0.00 -1.00	4 1000 1000	4.39510 c25 x2_STD 0.6667 -0.1667	0 C	C20 Ye C22 Dr C23 Dc C24 X1 C25 X2 C26 Y1 C28 RF C29 Ty C30 Se C31 Jo C32 Sc	eld (Y) rive in time (ose (X2) L_STD 2_STD 2_STD (fransistor (PM sype of Cuttir urface Finish shrison Trare art(Y) v Select		Bodel Yalidation		Results		Storage. Cancel	(Y) 	C33	C34	C35	C36	C37	
An + D	62397 91.96% alysis of Variar C22 Vrive in time (X1) 225 195 255	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60 4.30 4.30	C24 X1_ST 0.00 -1.00 0.00	4 TD × 1000 1000 1000	4.39510 C25 x2_STD 0.6667 -0.1667 -0.1667	0 C	C20 Ye C22 Dr C23 Dc C24 X1 C25 Y 1 C28 RF C29 Ty C31 Jo C31 Jo C32 Sc Help	eld (Y) mixe in time (see (V2) LSTD 2_S	Type of Cu	Hodel Yaldation	Graphs	<u>B</u> esults QK		Storage. Cancel	(Y) 1911 1774 130	C33	C34	C35	C36	C37	
An + D	62397 91.96% alysis of Varia C22 Vrive in time (X1) 225 195 255 225	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60 4.30 4.30 4.30	C24 X1_ST 0.00 -1.00 0.00	4 15.21% 1000 1000 1000 1000	4.39510 c25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000	0 C	C20 Ye C22 Dr C23 Dc C24 Xi C25 Xi C25 Xi C26 Y (C28 K) C29 Ty C20 Sc C31 30 C32 Sc C31 30 C32 Sc Help	eld (r) mixe in time (see (v2) 1,5TD 2,	Type of Cu	Hodel Yaldation	Graphs	<u>B</u> esults <u>Q</u> K		Cancel 0.071100 -0.70575	(Y) 	C33	C34	C35	C36	C37	
An D D 1 2	62397 91.96% alysis of Varia C22 Wrive in time (X1) 225 195 255 225 225 225	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30	C24 X1_ST 0.00 -1.00 0.00 0.00	4 1000 1000 1000 1000 1000	4.39510 c25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	0 C	C20 Ye C22 Dr C23 Dc C24 X1 C25 X2 C26 Y 1 C28 RF C29 Ty C29 Ty C30 Su C31 30 C32 Sc C30 Su C31 20 C32 Sc C30 Su C31 20 C32 Sc C30 Su C31 20 C32 Sc C31 20 C32 Sc C32 Sc C	eld (Y) Trive in time (see (V2) 1,5TD 2,5TD 2,5TD (Transistor (PM (Transistor (PM (Transistor (Select 5 6 6	210 224	Model Yalidation	graphs 5002 416 416		 	Cancel 0.57150 0.70575 1.98000	(Y) 911 1774 1130 5.78792	C33	C34	C35	C36	C37	
An	62397 91.96% alysis of Variat C22 Wrive in time (X1) 225 195 255 225 225 225 225	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30	C24 X1_ST 0.00 -1.00 0.00 0.00 0.00 0.00	4 TD × 10000 10000 10000 10000 10000 10000	4.39510 c25 x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667	0 C	C20 Ye C22 Dr C23 Dc C24 X1 C25 X2 C36 Y 1 C28 RF C30 Se C31 Jo C32 Sc C31 Jo C32 Sc C31 Jo C32 Sc C31 Jo C32 Sc C31 Jo C32 Sc C31 Jo C32 Sc C31 Jo C32 Sc C32 Sc C	edd (f) rinne in time (Sec (0.2) S_TD S_TD C(Transistor (PMM Minore Transitor (Minore Transitor	210 224 212	<u>H</u> odel <u>Yaldation</u>	graphs 5002 416 416			Cancel Cancel 0.70575 -1.98000 -0.20696	(Y) 911 1774 130 5.78792 5.58838	C33	C34	C35	C36	C37	

And, instead of this variables over here I can just use continuous variable and categorical predictor also we can include in the regression model over here. So in this case, what we will do is that, we will we will incorporate the response as surface finish which is the actual variable and then continuous predictor over here is RPN and then categorical predictor over here is will be type of cutting tool over here.

(Refer Slide Time: 15:07)

h M	initab - Untitled					Regression: Stepwise	×						@ X
File	Edit Data Cal	: Stat Gra	ph View	Help Assi	stant Ad	Method: Stepwise							
2	8 👲 🗶 🖻	500	□ # #	00	fx 3	Eleanor Isoebnise							
		11 4Y 2	000	K*	·图 []	Potential terms:							
	1	± 4 ≥	B ek	* 12	чY 🖂	RPM Type of Cutting Tool							
Reg	pression Analysis: Y	eild × ×											
	ULTIPLE UNEAR RE	SRESSION MV	x										
Re	gression Ana	alysis: Ye	ild (Y) v	ersus Ti	me, Te								•
	Term	Coef SE Co	ef T-Valu	P-Value	VIF								
			k.1 -9.2										
		1340 0.01			1.05								
	lemperature (.351 0.1	70 2.0	7 0.059	1.05	E = Include term in every model [= Include term in the initial m	odel						
	Model Summar	u.				Alpha to egter: 0.15	_						
	would summa												
						Abha to remove: 0.15							
1	S R-sq 3.62397 91.96%		R-sq(pred 85.219			Ajoha to remove: 0.15							
1	3.62397 91.96%	90.72%				Apha to remove: 0.15							
,		90.72%				Apha to remove: 0.15							۲
•	3.62397 91.96% Analysis of Vari C22	90.72% ance C23	85.219 C24	6 4.3951 C25	0		2	C33	C34	C35	C36	C37	¥
+	3.62397 91.96% Analysis of Vari C22 Drive in time (X1	90.72% ance C23 Dose (X2)	85.211 C24 X1_STD	6 4.3951 C25 x2_STD	0		2		C34	C35	C36	C37	¥ G
+ 7	3.62397 91.96% Analysis of Vari C22 Drive in time (X1 22:	90.72% ance C23 Dose (X2) 4.60	C24 X1_STD 0.0000	6 4.3951 C25 x2_STD 0.6667	0		91	1	C34	C35	C36	C37	v G
* 7 8	3.62397 91.96% Analysis of Vari C22 Drive in time (X1 223 19	90.72% ance C23 Dose (X2) 4.60 4.30	C24 X1_STD 0.0000 -1.0000	 4.3951 C25 x2_STD 0.6667 -0.1667 	0		91 177	1	C34	C35	C36	C37	¥ 3
* 7 8 9	3.62397 91.964 Analysis of Vari C22 Drive in time (X1 22: 19: 25:	90.72% ance C23 Dose (X2) 4.60 4.30 4.30	C24 X1_STD 0.0000 -1.0000 1.0000	C25 x2_STD 0.6667 -0.1667 -0.1667	0		91 177 113	1 4 0	C34	C35	C36	C37	÷ G
* 7 8	3.62397 91.96% Analysis of Vari C22 Drive in time (X1 223 19	90.72% ance 223 Dose (X2) 4,60 4,30 4,30	C24 X1_STD 0.0000 -1.0000	 4.3951 C25 x2_STD 0.6667 -0.1667 	0		91 177	1 4 0 9	C34	C35	C36	C37	v C3
+ 7 8 9 10	3.62397 91.964 Analysis of Vari C22 Drive in time (X1 221 199 255 221	90.72% ance C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30 4.30 4.30	C24 X1_STD 0.0000 -1.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000	0	Beach	91 77 13 17	1 4 0 9 2	C34	C35	C36	C37	v G
* 7 8 9 10 11	3.62397 91.96% Analysis of Vari C22 Drive in time (X1 225 199 255 225 225 225 225 225 225 225	90.72% ance C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30 4.30 4.30 4.30	C24 X1_STD 0.0000 -1.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -1.0000 0.9444	0	itterardw 19 Degaly the table of model selectors details	91 177 13 177 179	1 4 9 2 8	C34	C35	C36	C37	× 3
* 7 8 9 10 11 12	3.62397 91.964 Analysis of Vari C22 Drive in time (X1 223 199 259 229 229 229 229 229 229 229 229 2	90.72% ance c23 bose (X2) 4.60 4.30 4.30 4.30 4.72	C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	0	Beach	91 777 13 177 79 83	1 4 0 9 2 8 6	C34	C35	C36	(37	сз ·
+ 7 8 9 10 11 12 13	3.62397 91.96% Analysis of Vari C22 Drive in time (X1 225 199 255 222 225 222 222 222 223 223	90.72% ance c23 bose (X2) 4.60 4.30 4.30 4.30 4.72	C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	0	itterardw 19 Degaly the table of model selectors details	91 777 13 177 79 83 53	1 4 0 9 2 8 6	C34	C35	C36	C37	× 3
+ 7 8 9 10 11 12 13	3.62397 91.96% Analysis of Vari C22 Drive in time (X1 225 199 255 222 225 222 222 222 223 223	90.72% ance C23 Dose (X2) 4.60 4.30	C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1667 kegression.m	C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	0	tgewady Ø Dgelay fre table of model selection detale [Details door fre verbod ■ Dgelay fre graph of it soarred in step	91 777 13 177 79 83 53 53 34	1 4 0 9 2 8 6	C34			C37	× G3 ^
+ 7 8 9 10 11 12 13	3.62397 91.904 Analysis of Vari C22 Drive in time (XI 222 199 255 222 222 222 222 222 222 222 222 2	90.72% ance C23 Dose (X2) 4.60 4.30	25.211 C24 X1_STD 0.0000 1.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	0	Herardy 17 Daily the table of model selection detable Detable about the method	91 777 13 177 79 83 53	1 4 0 9 2 8 6				C37	·

So, in this case stepwise regression we can use and we can see which variables will go in and which will go out. So same significance level we have used.

(Refer Slide Time: 15:14)

_			12 D.	12	1.60	10	ssion: Model X							
Reg	ression Analysis: Yelld .	- • ×					togs: Add terms using selected predictors and model terms:	-						
	ULTIPLE LINEAR REGRES	SION MW)	(Reg	of Cutting Tool Interactions through order: 2 • Add	×						
Re	gression Analys	sis: Yei	ld (Y) ve	rsus Ti	me, Te	C6 C7		-						
1	Term Coef	SE CO	f T-Value	P-Value	VIF	3	Terms through order: 2 Add	^						- 6
0	Constant -130.7	14.	1 -9.24	0.000	1	C11	Cross predictors and terms in the model Add	~						
	Time 0.1340				1.05	C13								
1	Cemperature 0.351	0.17	0 2.07	0.059	1.05	CIS								
1		-sq(adj) 90.72%	R-sq(pred 85.219			C22	in the model:	<						
-	<u>S R-sq R-</u> 3.62397 91.96% Analysis of Varianc	90.72% e	85.219	4.3951	0	0000000000000								
-	<u>S</u> <u>R-sq</u> <u>R</u> 3.62397 91.96% Analysis of Varianc C22	90.72% e c23	85.219 C24	4.3951 C25	o c	000000000000000000000000000000000000000		2	C33	C34	C35	C36	C37	c
-	S R-sq R- 3.62397 91.96% Analysis of Varianc C22 Drive in time (Xt) Dc	90.72% e C23 ose (X2)	85.219 C24 X1_STD	4.3951 C25 x2_STD	o c	0000000000000	el Cuturg Tud	m	C33	C34	C35	C36	C37	c
-	<u>S</u> <u>R-sq</u> <u>R</u> 3.62397 91.96% Analysis of Varianc C22	90.72% e c23	85.219 C24	4.3951 C25	o c	0000000000000	el Cuturg Tud	2 (M) 1911 1774	C33	C34	C35	C36	C37	c
-	S R-sq R- 3.62397 91.96%	90.72% e c23 ose (X2) 4.60	85.219 C24 X1_STD 0.0000	4.3951 c25 x2_STD 0.6667	o c	199999999999999	ed Cutre Tool	1911	C33	C34	C35	C36	C37	c
-	S R-sq R 3.62397 91.96% Analysis of Varianc C22 Drive in time (X1) Dc 225 195	90.72% e C23 ose (X2) 4.60 4.30	85.219 C24 X1_STD 0.0000 -1.0000	4.3951 c25 x2_STD 0.6667 -0.1667	o c	199999999999999	de Catarg Teal	1911 1774	C33	C34	C35	C36	C37	c
-	S R-sq R- 3.62397 91.96% 91.96% Analysis of Variance C22 Drive in time (X0) Dc 225 195 255 195	90.72% e c23 ose (X2) 4.60 4.30 4.30	85.219 C24 X1_STD 0.0000 -1.0000 1.0000	4.3951 C25 x2_STD 0.6667 -0.1667 -0.1667	o c	199999999999999	de de gontart tem n ée model	1911 1774 1130	C33	C34	C35	C36	C37	c
	S R-sq R 3.62397 91.96% 91.96% Analysis of Variance 225 Drive in time (X0) Dc 225 195 255 225 225 225 225 225 225 225 225 225	90.72% e c23 sse (X2) 4.60 4.30 4.30 4.00 4.70 4.30	C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	4.3951 c25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	o c		def the gentant term in the nodel	911 1774 130 130 179 5.78792 5.58838	C33	C34	C35	C36	C37	c
	S R-sq R 3.62397 91.96% 91.96% Analysis of Variance C22 Drive in time (M) Do C22 195 255 195 255 225 225 225 225	90.72% e c23 sse (X2) 4.60 4.30 4.30 4.00 4.70	C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	4.3951 c25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	o c	199999999999999	46 Catron Tool Lude the gonstant term in the model 46 2 2 2 2 4 2 4 16 217.52 - 0.20666 00	911 1774 130 0009179 5.78792	C33	C34	C35	C36	C37	c

(Refer Slide Time: 15:18)

		± 4 ≥										_						
Reg	ression Analysis: Ye	id * ×				1	Regression: Validation	1				X						
B M	ULTIPLE LINEAR REG	RESSION MI	x				,	Validation meth	ed: Kifeld and			-						
Reg	gression Ana	lysis: Ye	ild (Y)	/ersus	Tim	e, Te		Taicatori near	ed: <u>Ketadaraa</u>	-validation		-						
Т	ierm (oef SE C	of T-Va	D-1	alua	VIF		· Bandomly a	ssign rows of each fold									
-		30.7 1			0.000			Number of	folds (K):	10		_						
Ti		340 0.01				1.05		Base for ra	ndom number generator:	12345		-						
Te	emperature 0.	351 0.1	70 2	07 0	0.059	1.05												
									A									
								Assign rows	of each fold by ID column									
M	Aodel Summar	1						ID Column:				-						
M		R-sq(adj)	R-sq(pr	rd) 10-	old S	10-fol												
_			R+sq(pt 85.3		fold S 39510	10-fol												
	S R-sq	R-sq(adj)				10-fol												
1	S R-sq	R-sq(adj) 90.72%				10-fol												
A	S R-sq 3.62397 91.96% analysis of Varia	R-sq(adj) 90.72%	85.3	196 4.	39510	10-fol		JD Column:	Γ				C 11	614	01	67	637	
A +	S R-sq 3.62397 91.96% analysis of Varia C22	R-sq(adj) 90.72% Ince C23	85.3 C24	C25	39510	c		JD Column:		on		2	C33	C34	C35	C36	C37	
A +	S R-sq 3.62397 91.96% analysis of Varia C22 Drive in time (Xt)	R-sq(adj) 90.72% Ince C23 Dose (X2)	85.3 C24 X1_STD	C25 x2_S1	39510 FD Y (10-fol C (Transit	Select	JD Column:	Γ	on		2 (Y)	C33	C34	C35	C36	C37	
A +	S R-sq 3.62397 91.96% Analysis of Varia C22 Drive in time (Xt) 225	R-sq(adj) 90.72% mce C23 Dose (X2) 4.60	C24 X1_STD 0.000	C25 x2_S1 0.66	39510 ID Y (667	c	Select	JD Column:	Γ	on		1911	C33	C34	C35	C36	C37	
A	S R-sq 3.62397 91.96% Analysis of Varia C22 Drive in time (Xt) 225 195	R-sq(adj) 90.72% ncce C23 Dose (X2) 4.60 4.30	85.4 C24 X1_STD 0.000 -1.000	C25 x2_51 0.66	39510 FD Y (667 667	c		JD Column:	Γ	on		1911 1774	C33	C34	C35	C36	C37	
A	S R-sq 3.62397 91.96% analysis of Varia C22 Drive in time (Xt) 225 195 255	R-sq(adj) 90.72% nnce C23 Dose (X2) 4.60 4.30 4.30	85.3 C24 X1_STD 0.000 -1.000 1.000	C25 x2_51 0.66 -0.16	39510 FD Y (667 667 667	c	Select	JD Column:	Γ	on 0	Cancel	1911	C33	C34	C35	C36	C37	
A + +	S R-sq 3.62397 91.96% Analysis of Varia C22 Drive in time (Xt) 225 195	R-sq(adj) 90.72% ncce C23 Dose (X2) 4.60 4.30	85.4 C24 X1_STD 0.000 -1.000	C25 x2_ST 0.64 -0.16 -0.16	39510 FD Y (667 667 667	c		JD Column:	Γ	on 	Cancel	911 1774 1130	C33	C34	C35	C36	C37	
A	s R-sq 3.62397 91.96% analysis of Varia C22 Drive in time (X1) 225 195 255 225	R-sq(adj) 90.72% 00000 00000 00000 00000 00000 00000 0000	224 X1_STD 0.000 -1.000 1.000	C25 x2_51 0.66 0.16 0.10 0.10 0.94	39510 FD Y (667 667 667 667 667	c	нер	ID Column:	slumn for K-fold cross-validat			911 1774 1130 1179	C33	C34	C35	C36	C37	
A	s R-sq 3.62397 91.96% analysis of Varia C22 Drive in time (X1) 225 195 255 225 225 225	R-sq(adj) 90.72% 00.72% 00.72% 00.62%	224 X1_STD 0.000 -1.000 0.000 0.000	C25 x2_51 0.66 -0.16 -0.16 -1.00 0.94 -0.16	39510 FD Y (667 667 667 667 667 667 667	c	Help 1146	ID Column:	alumn for K-fold cross-validate	33.50	-0.70575	911 1774 1130 179 5.78792	C33	C34	C35	C36	C37	
A .	s R-sq 3.62397 91.96% analysis of Varia C22 Drive in time (X1) 225 195 235 225 225 225 225 225	R-sq(adj) 90.72% ncce C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.72	85.3 C24 X1_STD 0.000 -1.000 0.000 0.000 0.000	C25 x2_ST 0.66 -0.16 -0.16 -1.00 0.94 -0.16 1.01 0.94 -0.16	39510 i V i 5667 567 5	c	нер 1146 1276	10 Column C Store ID o 224 212	alumn for K-fold cross-validaet 416 416	33.50 31.23	-0.70575 -1.98000	9911 1774 1130 1179 5.78792 5.58838	C33	C34	C35	C36	C37	

And, in models we have included both the variables and included the constant term also, validation also we have taken, cross-validations over here.

(Refer Slide Time: 15:21)

			-																
	ression Analysis: Yell					Re	gression						7						
-	ULTIPLE LINEAR REGR					1	-												
Reg	pression Anal	ysis: Ye	eild (Y)	ersus 1	ime,		×1	A Response	HC			× ·	1						
Te	erm Co	oef SEC	oef T-Va	ue P-Valu	ue VIF	F 03		ression: Results				×							
C	onstant -13			24 0.00		C1	1 Display	ay of results: Simple to	kles 💌										
	ime 0.13				00 1.05	5 C1	I W Me	lation				-	-						
Te	emperature 0.3	351 0.	170 2	07 0.05	59 1.05	C1	5 1					1							
						Ci	7 🖓 An	nalysis of gariance											
M	lodel Summary																		
	, , , , , , , , , , , , , , , , , , , ,					CI	0 17 Mo	lodel gummary				-							
			R-sq(pr	d) 10-fol	d S 10	C1 C2	19 17 Mo		Default coefficients V			F							
-						-fo		sefficients:	Default coefficients				1						
1	S R-sq	R-sq(adj)				-fo		egression equation:	Separate equation for each set	of categorical pre	edictor levels								
	S R-sq	R-sq(adj) 90.72%				-fo		egression equation:		of categorical pre	edictor levels								
	<u>S R-sq</u> 3.62397 91.96% nalysis of Variar	R-sq(adj) 90.72% nce	85.3	1% 4.39		10000000000		egression equation:	Separate equation for each set		dictor levels			622	64	635	04	(27	
A +	<u>S R-sq</u> 3.62397 91.96% nalysis of Variar C22	R-sq(adj) 90.72% nce C23	85.3 C24	C25	510	C0000000000000000000000000000000000000		pefficients: [egression equation:] Its and diagnostics: [Separate equation for each set		dictor levels		2	C33	C34	C35	C36	C37	v Ci
A +	<u>S R-sq</u> 3.62397 91.96% nalysis of Variar C22 Drive in time (X1)	R-sq(adj) 90.72% nce C23 Dose (X2)	C24 X1_STD	C25 x2_STD	510 Y (Tra	C0000000000000000000000000000000000000	9 7 Mo 12 7 Qo 13 7 Qo 14 5 7 8e 15 7 00 15 7 00 10 7 000 10 7 0000 10 7 0000 10 7 0000 10 7 0000 10 7 00000 10 7 00000	pefficients: [egression equation:] Its and diagnostics: [Separate equation for each set		edictor levels]] 2 (Y)	C33	C34	C35	C36	C37	
A +	<u>S R-sq</u> 3.62397 91.96% nalysis of Variar C22	R-sq(adj) 90.72% nce C23	C24 X1_STD 0.000	C25 x2_STD 0.6665	510 ¥ (Tra 7	C0000000000000000000000000000000000000	9 7 Mo 12 7 Qo 13 7 Qo 14 5 7 8e 15 7 00 15 7 00 10 7 000 10 7 0000 10 7 0000 10 7 0000 10 7 0000 10 7 00000 10 7 00000	eefficients: egression equation: Its and dagnostics: urbin- <u>W</u> atson statistic	Separate equation for each set				2 (Y) 1911 1774	C33	C34	C35	C36	C37	
A + 7	S R-sq 3.62397 91.96% nalysis of Variar C22 Drive in time (X1) 225	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60	C24 X1_STD -1.000	C25 x2_STD 0.6661 -0.1661	510 Y (Tra 7 7	C0000000000000000000000000000000000000		eefficients: egression equation: Its and dagnostics: urbin- <u>W</u> atson statistic	Separate equation for each set	×	Cancel	v vse	1911	C33	C34	C35	C36	C37	
A ≁ 7 8	S R-sq 3.62397 91.96% nalysis of Variar C22 Drive in time (X1) 225 195	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60 4.30	C24 X1_STD 0.000 -1.000	C25 K2_STD 0.6667 -0.1667	510 Y (Tra 7 7	C0000000000000000000000000000000000000	9 7 Mo 12 7 Qo 13 7 Qo 14 5 7 8e 15 7 00 15 7 00 10 7 000 10 7 0000 10 7 0000 10 7 0000 10 7 0000 10 7 00000 10 7 00000	eefficients: egression equation: Its and dagnostics: urbin- <u>W</u> atson statistic	Separate equation for each set	×	Cancel	vise Ige	1911 1774	C33	C34	C35	C36	C37	
A * 7 8 9 10	S R-sq 3.62397 91.96% nalysis of Variar C22 Drive in time (X1) 225 195 255	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60 4.30 4.30	C24 X1_STD 0.000 -1.000 0.000	C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000	510 ¥ (Tra 7 7 0	C0000000000000000000000000000000000000	9 7 M0 22 7 0 23 7 0 4 5 7 8 8 8 7 0 1 1 0 1 0	sefficients: [i egression equation: [i its and degrostics: [i urbin-Watson statistic Help	Separate equation for each set		Cancel 2K	vise ige Cancel	911 7774 130	C33	C34	C35	C36	C37	
A * 7 8 9	S R-sq 3.62397 91.96% nalysis of Variar C22 Drive in time (X1) 225 195 255 225	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60 4.30 4.30 4.30	C24 X1_STD 0.000 -1.000 0.000 0.000	C25 K2_STD 0.6667 -0.1667 -1.0000 0.9444	510 Y (Tra 7 7 7 0	C0000000000000000000000000000000000000	0 7 M0 0 7 M0 0 7 M0 1 7 M0	pefficients: [1 egression equation: [1 ets and dagnostics: [1 urbin-Watson statistic Help	Separate equation for each set Only for unusual observations		Cancel 	vise ige Cancel 7130	911 9774 130 179	C33	C34	C35	C36	C37	
A → 7 8 9 10 11	S R-sq 3.62397 91.96% nalysis of Variar C22 Drive in time (X1) 225 255 225 225 225	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30	C24 X1_STD 0.000 -1.000 0.000 0.000 0.000	C25 K2_STD 0.6666 -0.1666 -0.1666 0.9444 -0.1666	510 V (Tra 7 7 7 0 4 7	C0000000000000000000000000000000000000	0 V Mo 02 V Co 02 V Co 03 V Do 04 V Do 05 V Do 01 V Do 01 V Do 01 V Do 111 V Do 1146 V Do	pefficients: [i egression equation:]: Its and degrostics: [i urbin-Watson statistic Help 	Separate equation for each set Only for unusual observations 	2K 2K 44./0 33.50	Cancel 2K -0.7 -1.9	Cancel	911 7774 130 130 179 78792	C33	C34	C35	C36	C37	
A * 7 8 9 10 11 12	S R-sq 3.62397 91.96% allysis of Variat C22 Drive in time (X1) 225 195 255 225 225 225 225	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30	C24 X1_STD 0.000 -1.000 0.000 0.000 0.000 0.000	C25 K2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	510 V (Tra 7 7 0 4 7 0	C0000000000000000000000000000000000000	0 V Mo 01 V Mo 01 V Co 111 V Co 1146 1276 1146	pefficients: sgression equation: Its and dagnostics: urbin-Watson statistic Help Crio 224 212	Separate equation for each set Only for unusual observations automations automations 416 416	QK 44./0 33.50 31.23	Cancel 0.0 -0.7 -1.9 -0.2	Cancel (100 100 100 100 100 100 100 100 100 10	911 1774 130 00179 78792 58838	C33	C34	C35	C36	C37	

And results, what we can do is that we can see all results over here. And here, there is a options of Durbin Watson statistics which has to be compared with tabulated value, then we can use this one. So, I am not using because I can convert into R I can go to R and model that one and see Breusch Pagan test and also the DW test and corresponding P-Values.

(Refer Slide Time: 15:41)

Sevent Analysis: Yeild (Y) versus Time, Te Sevent Second	Regression Analysis Velid	Service Analysis: Veil (1) versus Time, Te Partners Stronge Service Analysis: Veil (1) versus Time, Te Tem Cord Visibe Void (1) versus Time, Te Tem Cord Visibe Void (1) versus Time, Te Cord Visibe Void (1) versus Time, Te Cord Visibe Void (1) versus Time, Te Tem Cord Visibe Void (1) versus Time, Te Cord Void (1) versus Time, Te Tem Cord Void (1) versus Time, Te Cord Void (1) versus Time, Te Cord Void (1) versus Time, Te Term Cord Void (1) versus Time, Te Cord Void (1) versus Time, Te Term Cord Void (1) versus Time, Te Cord Void (1) versus Time, Te Term Cord (1) versus Time, Te Term Cord (1) versus Time, Te Cord (2) versus Time, Te Cord (2) versus Time, Te	Regression Analysis Yeld * x Image: Control Link Add EdgeSpontumic Regression Analysis Yeld (0) versus Time, regression 0.1340 00119 Fegression 1.22 Fegression 0.1340 00119 Fegr	
NUMERABLE RESIDENTIAL Regression Analysis: Yeild (V) versus Time, Term Contact 100<	WULDER REGESSION Analysis: Yell (V) versus Time, Te Contante Tem Contante Simone Tem Contante 130.7 14.1 9.24 0.000 16 Tem Contante 130.7 14.1 9.24 0.000 16 1 1 Person Contante 100.7 14.1 9.24 0.000 16 1 Person Person <th>Notifie Under Stock Mick Biologics Doubles Barrenting Biologics Doubles <th colspan<="" th=""><th>Barther Line Regression Marky Size Strain Strange Temperature 0.551 0.170 2.07 0.059 1.561 0.501 0.572 S R-sq. R</th></th></th>	Notifie Under Stock Mick Biologics Doubles Barrenting Biologics Doubles <th colspan<="" th=""><th>Barther Line Regression Marky Size Strain Strange Temperature 0.551 0.170 2.07 0.059 1.561 0.501 0.572 S R-sq. R</th></th>	<th>Barther Line Regression Marky Size Strain Strange Temperature 0.551 0.170 2.07 0.059 1.561 0.501 0.572 S R-sq. R</th>	Barther Line Regression Marky Size Strain Strange Temperature 0.551 0.170 2.07 0.059 1.561 0.501 0.572 S R-sq. R
S R-rg R-	Regression Analysis: Feld (1) Versus Time, [1] Form Constant 138.7 141. 42.8 Model Summary Constant 138.7 141. 42.8 7 Time Designation Storage X Model Summary 138.7 141. 42.8 7 Time Designation Designation 5 R-rq. R-signation 10.70 2.77 Time Designation Designation Time Time Time Designation Time	Contract	Segretation Analysis: Yeild (V) Versus Illine, IE Control Strangenicity Vision Pageration Strange Vision Imm Coattant 13/32 Oction 16/32 Oction Total Pageration Strange Vision Time 0.13/3 Oction 11/32 Oction Total Pageration Strange Vision Vision Total Pageration Strange Model Summary Vision Total Pageration Strange Vision Designation Vision Designation S New Senset Vision Color Color <td< th=""></td<>	
Tempertaine Cost St Coef T-Value P-Value V Contract -1007 14.1 -2.4 0.000 1.65 -1.1 -	Term Contract	Imm Cord St. Cord T-Value PL PL Cordination Cordination Contact 1107 14.1 42.4 0.000 11 0.10 11.6 Cordination Cordinati	Term Cost SE Cod T-Value P-Value VII Clip Control Cont	
Contact	Contact -130.7 14.1 -8.4 0.000 15.1 16.1 Temperature Call field Call field <th>Contrast 1100 141 424 0.000 11 Intell [Ptic offention Image: Intelligence Intelligence</th> <th>Constant -1307 141 4.24 0.000 C1 Heat The Confidence Time 0.130 0.019 11.35 0.000 100<</th>	Contrast 1100 141 424 0.000 11 Intell [Ptic offention Image: Intelligence	Constant -1307 141 4.24 0.000 C1 Heat The Confidence Time 0.130 0.019 11.35 0.000 100<	
Imme 0.1340 0.0117 1.25 0.000 1.55 0.000	Imme 0.1320 0.001 1.1.2 0.000 1.0.2 c.2.1 Bearing The respersive Design pairs Tempersive 0.110 0.070 0.070 0.000 1.00 0.01	Internet 0,1280 00110 11,23 0020 105 C 2 2.1 00000 105 C 2 0.2 1 00000 105 C 2 0.2 1 00000 105 C 2 0.2 1 0000 105 C 2 0.2 1 00	Time 0.130 0.0170 1.23 0.003 C1 1.23 0.003 C1 1.23 Description Model Summary 5 N-94 N-940 7 graduate for eaclase 0	
Model Summary City City <thcity< th=""> City City</thcity<>	Model Summary City of a construction basis City of a construction basis City of a construction basis 5 R-rag R-sg(adj) R-ragpend) 10-fold S	Nodel Summary City of the segment the segment<	Model Summary Clip with a water induces Clip with a water induces Clip with a water induces 5 R-sqLable	
Model Summary C27 mining Defender schalarie 5 8-sig R-sig R-si	Model Summary C17 Tml Tml Control media 5 R-sq. R-signed) 19-fold 10-fold 10	Single Si	Clip Tranc C the decide mediate	
Model Summary C3 Trief (Derived Summary) C3 Trief (Derived Summary) C3 Trief (Derived Summary) C4 C5 Trief (Derived Summary) C4 C5 C1 C7 C3 C4 C5 C1 C7 C3 C4 C5 C1 C7 C7 C7 C3 C4 C5 C1 C7 C7 C7 C3 C4 C5 C1 C7 C7 C7 C7 C4 C4 C5 C1 C7 C7 C7 C4 C4 C5	Model Summary Cirit Tree Ciri	C2 C3 C4 C5 C10 C10 <thc10< th=""> <thc10< th=""></thc10<></thc10<>	Model Summary Clin Trol Company Clin Trol Company 3.5277 Florida No-6dd 5 106-6dd 5	
S N-rag R-rag/bit	S R-sq. R-sq.ddl, R-sq.pred) 96-bits 100-bit C22 C33 C34 C35 C70 Analysis of Variance C1 C10-bit C1 C10-bit C10-bit<	Sega Resg. Resg. <th< td=""><td>S N=40 R-signeding No-food S 100 mol Conv Conv</td></th<>	S N=40 R-signeding No-food S 100 mol Conv	
JAC397 91944 90,372% 852/16 439510 120 000 Portgs Analysis of Variance 23 C4 C5 C5 C70 • C22 C3 C4 C5 C6 C70 Poive intemp 00, Dose 020; X370 VA30 C6 C17 Dive intemp 00, Dose 020; X10 Academic 020 Single Pointemic 00, Dose 020; Y10 Academic 020 Single Pointemic 020 Pointemic 020; Career Pointemic 020; Pointemic 0	3.62397 91.6949 90.274e 85.214i 4.39510 C10 form C01 form Analysis of Variance C2 C24 C25 C C10 form • C22 C24 C25 C C Form • C22 C24 C25 C C Form • C22 C3 C44 C25 C 0 Form • C25 Form C05 Form C05 Form • C40 6000 Form C05 Form For	3.63297 91.964 90.726 83.219 4.39510 C21	3.62377 91.9446 90.728 85.216 4.36510 CCI Dotioned Analysis of Variance City	
• C22 C31 C44 C55 C 5 C 12 Strength of the	• •	Image: Constraint of the state of	C22 C33 C4 C5 C (1) 3/m Drive image: more D0 V0/m 42.07 V(1m) 42.07	
Drive imite (DD Does (D2) XX,10 A2,30 V/Am Meth Drive imite Meth	Drive inter (X1) Dose (Q2) X12/D1 V2.370 VTmail P0 9 195 4.40 0.0000 0.6667 9 9 111 9 9 195 4.30 -1.0000 -0.1667 174 174	Drive in time (0) Dev (2) IX.310 V/Trans Mode 195 4.00 0.000 0.0667 174 195 4.30 1.000 0.1667 174 225 4.00 0.000 1.000 1.000 1.000 225 4.00 0.000 1.000 1.000 1.000 1.000 225 4.00 0.000 1.000 1.000 1.000 1.000 1.000 1.000 225 4.00 0.000 0.000 1.00	Other in time (XD) Dose (XD) XD (XD) V2.510 VT mms meter OC Game provide provide <thprovide< th=""> provide</thprovide<>	
8 195 4.30 1.0000 40.1667 Heb C Cond 1130 9 225 4.30 1.0000 -0.1667 Heb C Cond 1130 10 225 4.00 1.0000 -0.1000 exerv exerv exerv exerv exerve exerv	8 195 4.30 -1.0000 -0.1667	155 4.30 -1.000 -0.1647 -1.000	Image: state	
9 235 4.30 1.0000 -0.1667 Heb 0K Canod 1130 0 225 4.00 0.0000 -1.0000		255 4.30 1.000 -Heb	0 235 4.00 10000	
0 225 4.00 0.0000 -1.0000 1.000 2.10 3000 900 1.000 1.000 2.10 3000 900179	a 255 430 10000 -0.1667 use 0 cm 1330	225 4.00 0.000 -1.000	0 225 4.00 0.0000 -1.0000	
		225 4.70 0.0000 0.9444 1146 224 416 33.50 -0.70575 5.78792 225 4.30 0.0000 -0.1647 11276 212 416 31.23 -1.90000 55838	1 225 4.70 0.0000 0.9444 1146 224 416 33.50 -0.70575 5.78792	
11 225 4.70 0.0000 0.9444 1146 224 416 33.50 -0.70575 5.78792		225 4.30 0.0000 -0.1667 1276 212 416 31.23 -1.98000 5.58838		
			2 225 4.30 0.0000 -0.1667 1276 212 416 31.23 -1.96000 5.58838	
		225 4.72 0.0000 1.0000 1225 248 416 37.52 -0.20696 6.12536		
		230 4.30 0.1667 +0.1667 1321 260 416 37.13 +0.24300 6.09344	4 230 4.30 0.1667 -0.1667 1321 260 416 37.13 -0.24300 6.09344	
	10 225 4.00 0.0000 -1.0000		2 225 4.30 0.0000 -0.1667 1276 212 416 31.23 -1.96000 5.5888	
3 223 4.72 0.0000 1.0000 1223 248 416 37.52 -0.20696 6.12336		230 4.30 0.1667 -0.1667 1321 260 416 37.13 -0.24300 6.09344	4 230 4.30 0.1667 -0.1667 1321 260 416 37.13 -0.24300 6.09344	

What I will do is that, standardized residual I will save over here again.

(Refer Slide Time: 15:45)

	pression Analysis: Ye					Regression	Regression: Graphs		×	×						
-	ULTIPLE LINEAR REG					_		Effects Plots								
Re	gression Ana	lysis: Ye	ild (Y) v	ersus Ti	me, Te			F Bareto	- 5	~						
Ţ	Term C	oef SEC	ef T-Valu	P-Value	VIF	C8 x3 C9 x4		Residuals for plots: Standardized •		~						Į.
			4.1 -9.2			C11 Hea C12 x1 C13 x2				_						
	Time 0.1		19 11.2 70 2.0		1.05	C13 x2 C14 x3		Residuals plots		0						
1	Temperature 0.	301 0.	10 2.0	0.039	1.05	C15 x4 C17 Tm		 Ingividual plots 								
						C18 Veld		Histogram of residuals Normal probability plot of residuals		~						
N	Model Summary															
						C19 Ten C20 Yel			-							
	S R-sq	R-sq(adj)	R-sq(prec			C20 Yel C22 Driv		Residuals versus fits								
			R-sq(prec 85.21			C20 Yel C22 Driv C23 Dos C24 X1		 ✓ Residuals versus fits ✓ Residuals versus order 	-	^						
	S R-sq 3.62397 91.96%	R-sq(adj) 90.72%				C20 Yel C22 Driv C23 Dos C24 X1		IF Residuals versus fits IF Residuals versus order C Fogr in one	ł	~						
	S R-sq	R-sq(adj) 90.72%				C20 Yel C22 Driv C23 Dos C24 X1		 ✓ Residuals versus fits ✓ Residuals versus order 		< >						
A	S R-sq 3.62397 91.96%	R-sq(adj) 90.72%				C20 Yel C22 Driv C23 Dos C24 X1 C25 X2 C26 Y (1 C28 RP C29 Typ C30 Sar C31 Xe		IF Residuals versus fits IF Residuals versus order C Fogr in one	~	^ 2	C33	C34	C35	C36	C37	
A	S R-sq 3.62397 91.96% Analysis of Varia	R-sq(adj) 90.72% nce C23	85.21 C24	6 4.3951	o c	C20 Yel C22 Driv C23 Dos C24 X1, C25 X2, C26 Y C C28 RP C29 Typ C30 Sur C31 Joh C31 Joh C32 Sar		IF Residuals versus fits IF Residuals versus order C Fogr in one		^ ↓ se 2 M	C33	C34	C35	C36	C37	c
A	S R-sq 3.62397 91.96% Analysis of Varia C22	R-sq(adj) 90.72% nce C23	85.21 C24	6 4.3951 C25 x2_STD 0.6667	o c	C20 Yel C22 Driv C23 Dos C24 X1, C25 X2, C26 Y C C28 RP C29 Typ C30 Sur C31 Joh C31 Joh C32 Sar	Select	IF Residuals versus fits IF Residuals versus order C Fogr in one	✓ spv		C33	C34	C35	C36	C37	c
A	S R-sq 3.62397 91.96% Analysis of Varia C22 Drive in time (X1)	R-sq(adj) 90.72% nce C23 Dose (X2)	85.21 C24 X1_STD	 4.3951 C25 x2_STD 0.6667 -0.1667 	o c	C20 Yel C22 Driv C23 Dos C24 X1, C25 X2, C26 Y C C28 RP C29 Typ C30 Sur C31 Joh C31 Joh C32 Sar	Select	IF Residuals versus fits IF Residuals versus order C Fogr in one	✓ spv	m	C33	C34	C35	C36	C37	c
A	s R-sq 3.62397 91.96% Analysis of Varia C22 Drive in time (X1) 225 195 255	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60 4.30 4.30	85.21 C24 X1_STD 0.0000 -1.0000 1.0000	 4.3951 C25 x2_STD 0.6667 -0.1667 -0.1667 	o c	C20 Yel C22 Driv C23 Dos C24 X1, C25 X2, C26 Y C C28 RP C29 Typ C30 Sur C31 Joh C31 Joh C32 Sar	Select	Repduels years fits Repduels years ofter C Ray in one Repduels versus the variables:	✓ spv	(Y) 911 1774 cel i130	C33	C34	C35	C36	C37	c
	s R-sq 3.62397 91.96% Analysis of Varia C22 Drive in time (X1) 225 195 255 225	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60 4.30 4.30 4.30	85.21 C24 X1_STD 0.0000 -1.0000 1.0000	4.3951 C25 x2_STD 0.6667 -0.1667 -1.0000	o c	C20 Yell C22 Driv C33 Dois C34 X1_ C35 X2_ C36 X4 C38 X4 C48 X4 C	Help	Resolute yervan file Pageballs versus order C frags nois Resolute versus the variables:	v spr pra cancel Car	(Y) 911 1774 cel 1130 wood179	C33	C34	C35	C36	C37	c
	S R-sq 3.62397 91.96% Analysis of Varia C22 Drive in time (X1) 225 195 225 225 225	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30	85.21 C24 X1_STD 0.0000 -1.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -1.0000 0.9444	o c	C30 Yeli C32 Driv C33 Dois C44 X1_ C35 Yel C36 YCI C36 YCI C36 YCI C38 RPI C39 Typ C39 Typ C39 Typ C30 Sar C31 Joh C32 Sar S Help Tzov 1146	Help	Restant years for To Regulate wears offer Crogn noe Reptaint wears the vanishes: Dig. 416 33.50	cancel Can -0.7057	(Y) 911 1774 130 009179 5.78792	C33	C34	C35	C36	C37	c
A	s R-sq 3.62397 91.96% Analysis of Varia C22 Drive in time (X1) 225 195 225 225 225 225 225	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30	85.211 C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667	o c	C30 Yeli C32 Drit C33 Dois C44 X1_ C35 Y2 C35 YC C35 YC C35 YC C35 YC C30 Sur C31 Joh C32 Sgr Help revor 1146 1276	Help 224 212	P Reduct years for P Reduct years for P regulative was offer Optimized Repticular years for writights 416 33.50 416 31.22		(Y) 911 774 130 5.78792 5.58838	C33	C34	C35	C36	C37	c
A +	S R-sq 3.62397 91.96% Analysis of Varia C22 Drive in time (X1) 225 195 225 225 225	R-sq(adj) 90.72% nce C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30	85.21 C24 X1_STD 0.0000 -1.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -1.0000 0.9444	o c	C30 Yeli C32 Driv C33 Dois C44 X1_ C35 Yel C36 YCl C38 RPh C39 Typ C30 Syr C31 Joh C32 Syr C31 Joh C32 Syr Syr Help Tzov 1146	Help	Restant years for To Regulate wears offer Crogn noe Reptaint wears the vanishes: Dig. 416 33.50	cancel Can -0.7057	(Y) 911 774 130 5.78792 5.58838 6.12536	C33	C34	C35	C36	C 37	

And then graphically what we want to see, normal plot, residual plot, and order of the data. Plots like that.

(Refer Slide Time: 15:52)

File															-	Ø
					istant Additional Tools											
	1 👲 🔏 🖻 🕅	50	□ # A	00	fx 3	24. 2										
110		13 4Y 2	000	K*	1 图 米 移 雅 #	F 卷 Y ≥ 🔳	SK * 4 B G	6 d 4 4								
	1	E Y M	BR	* 12	YMBEK											
Regre	ession Analysis: Su	rfa × ×														
	ULTIPLE UNEAR REGI															
-				nich vou	sus RPM, Type	of Cutting 1	ool									
teg	ression And	19515. 54	riace ri	listi vei	sus Krim, Type	or cutting i	501									
Mr	ethod															
Ca	tegorical predictor	coding (1	, 0)													
Cre	oss-validation	1	0-fold													
Ste	epwise Selection	on of Terr	ms													
a te	o enter = 0.15, al	to remove	= 0.15													
ate	o enter = 0.15, a	to remove	= 0.15													
			= 0.15		J	Ş										
Re	o enter = 0.15, a gression Equa		= 0.15		J	6										
Re			= 0.15 C24	C25	C26	C27 C28	C29	C30 5	Gi	C32	C33	C34	C35	C36	C37	
Re	gression Equa	tion C23	C24				C29 Type of Cutting Tool			C32 Sqrt(Y)	C33 SRES	C34	C35	C36	C37	
Re	gression Equa	tion C23	C24		C26	C27 C28	Type of Cutting Tool					C34	C35	C36	C37	
Re	c22 C22 Drive in time (X1)	c23 Dose (X2)	C24 X1_STD	x2_STD	C26 Y (Transistor Gain)	C27 C28 RPM	Type of Cutting Tool 5 302	Surface Finish	Johnson Trans (Y)	Sqrt(Y)	SRES	C34	C35	C36	C37	
Re + D	c22 Orive in time (X1) 225	C23 Dose (X2) 4.60	C24 X1_STD 0.0000	x2_STD 0.6667 -0.1667 -0.1667	C26 Y (Transistor Gain) 1269	C27 C28 RPM 2	Type of Cutting Tool 5 302 9 302	Surface Finish 52.26	Johnson Trans (Y) 1.98000	Sqrt(Y) 7.22911	SRES 0.74661 -0.11129 0.50963	C34	C35	C36	C37	
Re + D	c22 C22 Drive in time (X1) 225 195	C23 Dose (X2) 4.60 4.30	C24 X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	C26 Y (Transistor Gain) 1269 903	C27 C28 RPM 2 2	Type of Cutting Tool 5 302 9 302 1 302	Surface Finish 52.26 50.52	Johnson Trans (Y) 1.98000 1.06984	Sqrt(Y) 7.22911 7.10774	SRES 0.74661 -0.11129	C34	C35	C36	C37	
Re - - 7	c22 C22 Drive in time (X1) 225 195 255	C23 Dose (X2) 4.60 4.30 4.30	C24 X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	C26 Y (Transistor Gain) 1269 903 1555	C27 C28 RPM 2 2 2 2	Type of Cutting Tool 5 302 9 302 1 302 8 302	Surface Finish 52.26 50.52 45.58	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156	Sqrt(Y) 7.22911 7.10774 6.75130	SRES 0.74661 -0.11129 0.50963	C34	C35	C36	C37	
Re 	C22 C22 Drive in time (XI) 225 195 255 225	tion C23 Dose (X2) 4.60 4.30 4.30 4.00	C24 X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	C26 Y (Transistor Gain) 1269 903 1555 1260	C27 C28 RPM 2 2 2 2 2 2	Type of Cutting Tool 5 302 302 9 302 302 1 302 302 8 302 302 4 416 416	Surface Finish 52.26 50.52 45.58 44.78	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	SRES 0.74661 -0.11129 0.50963 0.17507	C34	C35	C36	C37	
Re 	c22 C22 Drive in time (X1) 225 195 255 225 225 225	tion C23 Dose (X2) 4.60 4.30 4.30 4.00 4.70	C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	C26 Y (Transistor Gain) 1269 903 1555 1260 1146	C27 C28 RPM 2 2 2 2 2 2 2 2 2 2	Type of Cutting Tool 5 302 9 302 1 302 8 302 4 416 2 416	Surface Finish 52.26 50.52 45.58 44.78 33.50	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	SRES 0.74661 -0.11129 0.50963 0.17507 0.88643 0.43635 1.34504	C34	C35	C36	C37	
Re 	c22 C22 Drive in time (X1) 225 195 255 225 225 225 225 225	tion C23 Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667	C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276	C27 C28 RPM 2 2 2 2 2 2 2 2 2 2 2 2 2	Type of Cutting Tool 5 302 9 302 1 302 8 302 4 416 2 416 8 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	SRES 0.74661 -0.11129 0.50963 0.17507 0.88643 0.43635	C34	C35	C36	C37	

(Refer Slide Time: 15:53)

					fx 3 - 1 1 1											
1					·Y ≻ ■ @ K ★		P. F. * + 83 0.	CO DE ET PAR	83							
	: 💇 .	EUK	BE	× : 🗠	TEBEL											
łe,	gression Analysis: Sur	fa * ×														
1	MULTIPLE LINEAR REGR	ESSION MW	х													
Re	gression Anal	ysis: Su	rface Fir	nish ver	sus RPM, Type	of Cutting To	lool									
1	Regression Equa	ion														
	Type of															
	Cutting															
	Tool 302 Surface Fir	ich a 1	.48 + 0.1473	ROM												
	ave annevern	an - h	140 + 9/1471	- normal												
	416 Surface Fir	ish = 🗸	.45+0.1473	RPM												
	416 Surface Fir	ish = -{	.45 + 0.1473	крм												
	416 Surface Fir	ish = -{	.45 + 0.1473	RPM												
		ish = -C	45 + 0.1473		P-Value VIF											
	Coefficients		3		P-Value VIF 0.003											
	Coefficients Term	Coef	SE Coef	T-Value		Q7 Q8	C29	C30 5	Gi	C32	C33	C34	C35	C36	C37	
	Coefficients Term Constant	Coef 12.48 C23	SE Coef	T-Value 3.53 C25	0.003	C27 C28 RPM	C29 Type of Cutting Tool			C32 Sqrt(Y)	C33 SRES	C34	C35	C36	C37	
	Coefficients Term Constant C22	Coef 12.48 C23	SE Coef 3.54 C24	T-Value 3.53 C25	0.003 C26		Type of Cutting Tool	Surface Finish	Johnson Trans (Y)			C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (X1)	Coef 12.48 C23 Dose (X2)	SE Coef 3.54 C24 X1_STD	T-Value 3.53 C25 x2_STD	0.003 C26 Y (Transistor Gain)	RPM	Type of Cutting Tool	Surface Finish	Johnson Trans (Y) 1.98000	Sqrt(Y)	SRES	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (X1) 225 195 255	Coef 12.48 C23 Dose (X2) 4.60 4.30 4.30	SE Coef 3.54 C24 X1_STD 0.0000 -1.0000 1.0000	T-Value 3.53 C25 x2_STD 0.6667 -0.1667 -0.1667	0.003 C26 Y (Transistor Gain) 1269 903 1555	RPM 26 25 22	Type of Cutting Tool 3 3 3 3 3 3 3 3 3 3 3 3 3	Surface Finish 52.26 50.52 45.58	Johnson Trans (Y) 1.98000 1.06984 0.43932	Sqrt(Y) 7.22911 7.10774 6.75130	SRES 0.74661 -0.11129 0.50963	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (XI) 225 195 225 225	Coef 12.48 C23 Dose (X2) 4.60 4.30 4.30 4.30	SE Coef 3.54 C24 X1_STD 0.0000 -1.0000 1.0000 0.0000	T-Value 3.53 c25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000	0.003 C26 Y (Transistor Gain) 1269 903 1555 1260	RPM 26 25 22 21	Type of Cutting Tool 3 302 3 302 3 302 3 302	Surface Finish 52.26 50.52 45.58 44.78	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	SRES 0.74661 -0.11129 0.50963 0.17507	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (XI) 225 195 225 225 225	Coef 12.48 C23 Dose (X2) 4.60 4.30 4.30 4.30 4.00 4.70	SE Coef 3.54 C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000	T-Value 3.53 C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	0.003 C26 Y (Transistor Gain) 1269 903 1555 1260 1146	RPM 26 25 22 21 21	Type of Cutting Tool 302 302 302 302 302 302 40 416	Surface Finish 52.26 50.52 45.58 44.78 33.50	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	SRES 0.74661 -0.11129 0.50963 0.17507 0.88643	C34	C35	C36	C37	
	Coefficients Term Constant Drive in time (X1) 225 195 255 225 225 225	Coef 12.48 C23 Dose (X2) 4.60 4.30 4.30 4.30 4.00 4.70 4.30	SE Coef 3.54 C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	T-Value 3.53 C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	0.003 C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276	RPM 26 25 22 21 21 22 21	Type of Cutting Tool 5 302 9 302 1 302 3 302 4 416 2 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	SRES 0.74661 -0.11129 0.50963 0.17507 0.88643 0.43635	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (X1) 225 195 255 225 225 225 225 225	Coef 12.48 C23 Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	SE Coef 3.54 C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000	T-Value 3.53 C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	0.003 C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	RPM 266 255 222 211 222 21 222 21 24	Type of Cutting Tool 302 302 302 302 302 302 40 416 2416 3416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.74661 -0.11129 0.50963 0.17507 0.88643 0.43635 1.34504	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (XI) 225 225 225 225 225 225 225 225 225 22	Coef 12.48 C23 Dose (X2) 4.60 4.30 4.30 4.30 4.70 4.30 4.72 4.30	SE Coef 3.54 C24 X1_STD 0.0000 -1.0000 1.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000000	T-Value 3.53 C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	0.003 C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276	RPM 26 25 22 21 21 22 21	Type of Cutting Tool 302 302 302 302 302 302 404 416 3416 3416 3416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	SRES 0.74661 -0.11129 0.50963 0.17507 0.88643 0.43635 1.34504	C34	C35	C36	637	
	Coefficients Term Constant C22 Drive in time (XI) 225 225 225 225 225 225 225 225 225 22	Coef 12.48 C23 Dose (X2) 4.60 4.30 4.30 4.30 4.70 4.30 4.72 4.30	SE Coef 3.54 C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000	T-Value 3.53 C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	0.003 C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	RPM 266 255 222 211 222 21 222 21 24	Type of Cutting Tool 302 302 302 302 302 302 40 416 2416 3416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.74661 -0.11129 0.50963 0.17507 0.88643 0.43635 1.34504	C34	C35	C36	637	

So, if you click ok what happens is that, it its suggest selection process and then what we have selected like that by default. And, these are the two for 302 types of cutting tool, this is the surface finish is related to RPM, this is the equation, and for 416 it will give a different equation.

(Refer Slide Time: 16:15)

	initab - Untitled														-	8
File	Edit Data Calc	Stat Gran	h View	Helo Ass	istant Additional Tool	4										
					fx 3= 1											
									127							
1							ek★9回 d	CO DO LY TH	Bh							
	<u>@</u>]	Ξ 'Y ≥I	BR	* 12	Y ≥ ∎ 8 K 1	6										
Re	gression Analysis: Sur	fa v x														
	MULTIPLE LINEAR REGR	INM NOOS														
-				nich vo	sus RPM, Type	of Cutting	ad									
		•				orcutting	001									
	Constant	12.48	3.54	3.53	0.003											
	RPM	0.1473	0.0149	9.86	0.000 1.00											
	Type of Cutting Tool															
	416	-12.932	0.512	-25.23	0.000 1.00											
		0														
	Model Summary <u>S R-sq</u> 1.14572 97.77%		R-sq(pred 97.05		s 10-fold R-sq 10 97.02%											
	S R-sq	R-sq(adj) 97.50%														
	S R-sq 1.14572 97.77%	R-sq(adj) 97.50%				C27 C28	C29	C30 5	G1 g	C32	C33	C34	C35	C36	C37	
	S R-sq 1.14572 97.77% Analysis of Variar C22 Drive in time (X1)	R-sq(adj) 97.50% nce C23	97.059 C24 X1_STD	C25 x2_STD	0 97.02% C26 Y (Transistor Gain)	RPM	Type of Cutting Too	Surface Finish	Johnson Trans (Y)	Sqrt(Y)	SRES	C34	C35	C36	C37	
•	<u>S R-sq</u> 1.14572 97.77% Analysis of Variat C22 Drive in time (Xt) 225	R-sq(adj) 97.50% nce C23	97.054 C24	6 1.221 C25	C26 Y (Transistor Gain) 1269	RPM		Surface Finish				C34	C35	C36	C37	
•	s R-sq 1.14572 97.77% Analysis of Variat C22 Drive in time (Xt) 225 195	R-sq(adj) 97.50% C23 Dose (X2)	97.059 C24 X1_STD	C25 x2_STD 0.6667 -0.1667	C26 Y (Transistor Gain) 1269 903	RPM 2	Type of Cutting Too 55 303 59 303	Surface Finish 52.26 50.52	Johnson Trans (Y) 1.98000 1.06984	Sqrt(Y) 7.22911 7.10774	SRES 0.74661 -0.11129	C34	C35	C36	C37	
+ 7 8	<u>S R-sq</u> 1.14572 97.77% Analysis of Variat C22 Drive in time (Xt) 225	R-sq(adj) 97.50% C23 Dose (X2) 4.60	97.059 C24 X1_STD 0.0000	C25 K2_STD 0.6667	C26 Y (Transistor Gain) 1269	RPM 2	Type of Cutting Too 303	Surface Finish 52.26 50.52 45.58	Johnson Trans (Y) 1.98000	Sqrt(Y) 7.22911	SRES 0.74661	C34	C35	C36	C37	
+ 7 8 9	S R-sq 1.14572 97.776 Analysis of Variar C22 Drive in time (XI) 225 195 255 225	R-sq(adj) 97.50% C23 Dose (X2) 4.60 4.30	97.054 C24 X1_STD 0.0000 -1.0000	C25 x2_STD 0.6667 -0.1667 -1.0000	C26 Y (Transistor Gain) 1269 903	RPM 2 2	Type of Cutting Too 55 303 59 303	Surface Finish 52.26 50.52 45.58	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156	Sqrt(Y) 7.22911 7.10774	SRES 0.74661 -0.11129 0.50963 0.17507	C34	C35	C36	C37	
+ 7 8 9	S R-sq 1.14572 97.776 Analysis of Variat C22 Drive in time (XI) 225 195 225 225 225	R-sq(adj) 97.50% C23 Dose (X2) 4.60 4.30	97.05 C24 X1_STD 0.0000 -1.0000 1.0000	C25 x2_STD 0.6667 -0.1667	10 97.02% C26 Y (Transistor Gain) 1269 903 1555 1260 1146	RPM 2 2 2 2 2	Type of Cutting Too 55 303 59 303 21 303	Surface Finish 52.26 50.52 45.58 44.78 33.50	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130	SRES 0.74661 -0.11129 0.50963 0.17507 0.88643	C34	C35	C36	C37	
+ 7 8 9 0	S R-sq 1.14572 97.776 Analysis of Variar C22 Drive in time (XI) 225 195 255 225	R-sq(adj) 97.50% C23 Dose (X2) 4.60 4.30 4.30 4.30	97.054 C24 X1_STD 0.0000 -1.0000 1.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -1.0000	C26 Y (Transistor Gain) 1269 903 1555 1260	22 22 22 22 22 22 22 22 22 22 22 22 22	Type of Cutting Too 55 303 59 303 21 303 18 303	Surface Finish 52.26 50.52 45.58 44.78 33.50	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	SRES 0.74661 -0.11129 0.50963 0.17507	C34	C35	C36	C37	
* 7 8 9 10 11	S R-sq 1.14572 97.776 Analysis of Variat C22 Drive in time (XI) 225 195 225 225 225	R-sq(adj) 97.50% C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30	97.054 C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	C25 K2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	10 97.02% C26 Y (Transistor Gain) 1269 903 1555 1260 1146	RPM 22 22 22 22 22 22 22 22 22 22 22	Type of Cutting Too 55 300 59 300 21 300 18 300 24 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	SRES 0.74661 -0.11129 0.50963 0.17507 0.88643	C34	C35	C36	C37	
	S R-sq 1.14572 97.77% Analysis of Variar C22 Drive in time (XI) 225 195 225 225 225 225	R-sq(adj) 97.50% C23 Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	97.055 C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	K 1.221 K2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276	RPM 22	Type of Cutting Too 55 300 59 300 21 300 18 300 24 416 12 416	Surface Finish 52.26 50.52 45.58 44.78 533.50 533.50 533.50 533.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	SRES 0.74661 -0.11129 0.50963 0.17507 0.88643 0.43635	C34	C35	C36	C37	
* 7 8 9 10 11 12 13 14	S R-sq 1.14572 97.776 Analysis of Variat C22 Drive in time (Xt) 225 225 225 225 225 225 225 225 225 22	R-sq(adj) 97.50% C23 Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	97.055 C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	RPM 22	Type of Cutting Too 55 300 59 300 21 300 18 300 24 416 12 416 18 416	Surface Finish 52.26 50.52 45.58 44.78 533.50 533.50 533.50 533.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.74661 -0.11129 0.50963 0.17507 0.88643 0.43635 1.34504	C34	C35	C36	C37	
* 7 8 9 10 11 12 13	S R-9q 1.14572 97.7% Analysis of Variar C22 Drive in time (Xt) 2255 225 225 225 225 225 225	R-sq(adj) 97.50% C23 Dose (X2) 4.60 4.30 4.30 4.30 4.70 4.30 4.72 4.30 ple Linear R	97.055 C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	RPM 22	Type of Cutting Too 55 300 59 300 10 300 11 300 12 416 12 416 18 416 10 416 10 416	Surface Finish 52.26 50.52 45.58 44.78 533.50 533.50 533.50 533.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.74661 -0.11129 0.50963 0.17507 0.88643 0.43635 1.34504 -0.70605			C36	(37	
* 7 8 9 10 11 12 13 14	S R-sq 1.14572 97.776 Analysis of Variat C22 Drive in time (Xt) 225 225 225 225 225 225 225 225 225 22	R-sq(adj) 97.50% C23 Dose (X2) 4.60 4.30 4.30 4.30 4.70 4.30 4.72 4.30 ple Linear R	97.055 C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	RPM 22	Type of Cutting Too 55 300 59 300 10 300 11 300 12 416 12 416 18 416 10 416 10 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52 37.13	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536 6.09344	SRES 0.74661 -0.11129 0.50963 0.17507 0.88643 0.43635 1.34504 -0.70605			-	C37	

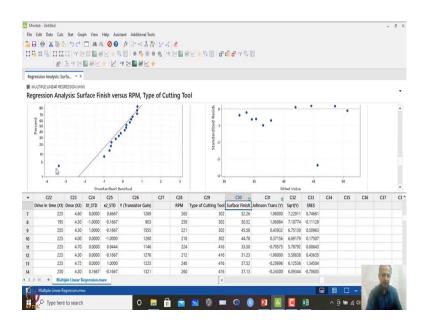
So, categorical variables, different levels that we have selected, each levels we will have a different equation with the continuous variable. So, this is shown over here.

(Refer Slide Time: 16:30)

File End Out Set Explored View Here Additional Book IF Is End Out Set Explored View Here Additional Book IF Is End Out Set Explored View Here Additional Book IF Is End Out Set Explored View Here Here Additional Book IF Is End Out Set Explored View Here Here Additional Book IF Is End Out Set Explored View Here Here Additional Book IF Is End Out Set Explored View Here Here Additional Book IF Is End Out Set Explored View Here Here Additional Book If Is End Out Set Explored View Here Here Additional Book Interview Here Additional Additional Book Intere Additional Additional Addition						
Image: Summary Summary Summary 5 Regression Analysis: Surface Finish versus RPM, Type of Cutting Tool Model Summary 5 Regression 2000 Analysis of Variance Summary 5 Regression 2000 To Provide Provide Storage Analysis of Variance Source 113/22 97.20% 12/10 Provide Provide Storage Provide						
Image: Solution National State Image:						
Superside Mudgets Surface Finish versus RPM, Type of Cutting Tool Model Summary Superside Regession Analysis: Surface Finish versus RPM, Type of Cutting Tool Model Summary Superside Regession Colspan="2">Superside Regession Colspan= Colspan="2">Superside Regession Colspan="2">Supers						
Regression Analysis Surface Finish versus RPM, Type of Cutting Tool Model Summary Surface Finish versus RPM, Type of Cutting Tool Model Summary Surface Finish versus RPM, Type of Cutting Tool Analysis of Variance Source DF Adj 55: Adj MS Finish versus RPM, Type of Cutting Tool Source OF Adj 55: Adj MS Finish versus RPM, Type of Cutting Tool Source OF Adj 55: Adj MS Finish versus RPM, Type of Cutting Tool Source OF Adj 55: Adj MS Finish versus RPM, Type of Cutting Tool Source OF Adj 55: Adj MS Finish versus RPM, Type of Cutting Tool Source OF Adj 55: Adj MS Finish versus RPM, Type of Cutting Tool Source OF Adj 55: Adj MS Finish versus RPM, Type of Cutting Tool Source OF Adj 55: Adj MS Finish versus RPM, Type of Cutting Tool Source OF Adj 55: Adj MS Finish versus RPM, Type of Cutting Tool Source OF Adj 55: Adj MS Finish versus RPM, Type of Cutting Tool Source OF Adj 55: Adj MS Finish versus RPM, Type of Cutting Tool Source Tool Source Tool Source Tool Source Tool Source Tool						
Regression Analysis: Surface Finish versus RPM, Type of Cutting Tool Model Summary 5 Regression 2010 Source 10 Fold 5 10-fold 5 10-fold 6 Noted Regression 2010 Source 2010 Source 10 Source 10 Fold 12:10 Source 10 Colspan="2 COM CO						
Regression Analysis: Surface Finish versus RPM, Type of Cutting Tool Model Summary 5 Regression 2010 Source 10 Fold 5 10-fold 5 10-fold 6 Noted Regression 2010 Source 2010 Source 10 Source 10 Fold 12:10 Source 10 Colspan="2 COM CO						
Model Summary S R-sq R-sq(pre8) 10-645 10-6468 10-6468 10-6468 10-6468 10-648 <th< th=""><th></th><th></th></th<>						
S R-registed 1.14/322 P1/270 P2/281 1/2210 97/2028 Analysis of Variance Source DF Adj SS Adj MS F-Value P-Value Regression 1 277/304 428.523 372.16 0.000 Ryset Country To 1 135.321 132.11 697.200 Pyper Clouring To 1 135.321 132.11 697.200 From 1 17.240 197.205 1000 From 1 17.320 197.216 1000 From 1 17.240 166.72 0.000 From 17 22.216 168.21 197.16 10000 From 17 22.216 131.3 -						
S R-registed 1.14/322 P1/270 P2/281 1/2210 97/2028 Analysis of Variance Source DF Adj SS Adj MS F-Value P-Value Regression 1 277/304 428.523 372.16 0.000 Ryset Country To 1 135.321 132.11 697.200 Pyper Clouring To 1 135.321 132.11 697.200 From 1 17.240 197.205 1000 From 1 17.320 197.216 1000 From 1 17.240 166.72 0.000 From 17 22.216 168.21 197.16 10000 From 17 22.216 131.3 -						
1.14372 97.27% 97.25% 97.25% 97.25% 97.20% Analysis of Variance Source DF Adj S5 Adj MS Fvalue Pvalue Source DF Adj S5 Adj MS Fvalue Pvalue Prove of Common Tor 22 C23 C24 C25 C26 C27 C28 C29 C01 C22 C33 C44 C35 C41						
Analysis of Variance Source IF Adj 55 Adj 50 Colspan="2">Colspan="2" Colspan="2" Colspan="2" <th 2"<="" <="" colspa="" td=""><td></td><td></td></th>	<td></td> <td></td>					
Analysis of Variance Source DF Adj SS C22 C23 C44 C25 CAB CAD CAD CAD CAD CAD CAD CAD CAD <th cad<="" colspan="4" t<="" td=""><td></td><td></td></th>	<td></td> <td></td>					
Source DF Adj SS Adj MS F-Value P-Value Regression 2 977.045 485.023 372.16 0.000 SMI 1127.040 127.040 97.02 0.000 Type of Cuting Teol 1 835.811 85.873 0.000 From 7 2.316 1.313 6.473 0.000 From 7 2.316 4.310 V(Translator Galue) RPM Type of Cuting Teol GC2 C3 C44 C15 C16 Prote in time 001 Dose 002 3.0200 1269 265 3.022 5.226 1.9000 7.2211 6.7464 C15 C16 C1 0.000 6.0647 C160 2.52 5.022 1.00040 7.0174 -0.1125 C1 0.0004 6.0167 6.000 2.59 5.022 5.022 1.00040 -0.1074 -0.1125 C1 0.0004 -0.1074 -0.1125 C1 0.0004 -0.1074 -0.1125 -0.000 -0.000						
Engression 2 977.04 403.03 977.14 0.000 PBM 1122/06 17.02 977.0 977.2 0.000 16.07.3 0.000 Type of Cumig Tool 1 835.21 635.73 0.000 16.07.3 0.000 16.07.3 0.000 Verve 17 223 620 C26 C27 C28 C29 C31.92 C31. C4 C35 C46 C35 C46 C35 C46 C47 C48 C49 C19.92 C31.92 C32. C44. C35 C46 C35 C46 C35 C46 C47 C48 C49 C19.92 C31.92 C32. C41.92 C33.92 C41.92 C37.92 C41.92						
SPM 1 127.40 171.2 0.000 Type of Control Tool 1 127.40 171.2 0.000 Type of Control Tool 1 127.40 171.2 0.000 Tool C21 C21 </th <th></th> <th></th>						
Type of Cuting Tool 1 BISLIT BISLIT <th< th=""><th></th><th></th></th<>						
Error 17 22.316 1.313 • C22 C33 CA4 C25 C66 C27 C28 C29 C10 c C11 C12 C33 C44 C15 C36 C47 C38 C49 C30 c C11 C12 C33 C44 C15 C36 C47 C38 C49 C30 C30 C41 C15 C36 C46 C30 C30 C41 C15 C36 C46 C30 C30 C30 C30 C30 C40 C30 C30 <thc30< th=""> <thc30< th=""> <thc30< th=""></thc30<></thc30<></thc30<>						
Drive in time (01) Dose (02) X15TD x2,5TD V (Transister Gal) PFM Type of Cutting Tool Suttice Field Johnson Trans (Y) SHES 7 225 4.60 0.0000 6.667 1269 265 3226 1.6000 7.2464 1.04641 8 155 4.69 0.0000 6.467 903 2.59 302 50.52 1.04646 1.0744 -1.1159						
7 225 4.60 0.0000 0.6667 1269 265 302 52.26 1.96000 7.22911 0.74661 8 195 4.30 -1.0000 -0.1667 903 259 302 50.52 1.06984 7.10774 -0.11129	C37					
8 195 4.30 -1.0000 -0.1667 903 259 302 50.52 1.06984 7.10774 -0.11129						
9 255 4.30 1.0000 -0.1667 1555 221 302 45.58 0.43932 6.75130 0.50963						
10 225 4.00 0.0000 -1.0000 1260 218 302 44.78 0.37156 6.69179 0.17507						
11 225 4.70 0.0000 0.9444 1146 224 416 33.50 -0.70575 5.78792 0.88643						
12 225 4.30 0.0000 -0.1667 1276 212 416 31.23 -1.96000 5.58838 0.43635						
13 225 4.72 0.0000 1.0000 1225 248 416 37.52 -0.20696 6.12536 1.34504		1				
14 230 4.30 0.1667 -0.1667 1321 260 416 37.13 -0.24300 6.09344 -0.70605	6	8				
4 b H + Multiple Linear Regression.mwx	100					

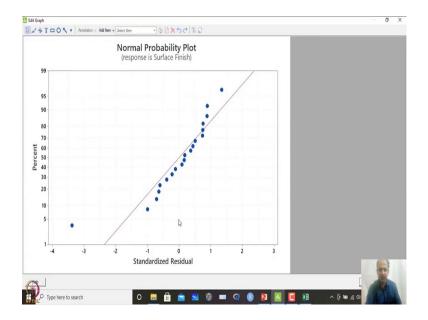
And, the coefficients are also given over here, so based on which we have developed the regression equation. And, VIC, variation inflation factors is approximated, so that is not an issue. So, these two variables type of cutting tool and also RPN both are significant over here. And, about R square adjusted value is 97.5 and cross-validation is 97.02, so very close. So, this model seems to be very accurate.

(Refer Slide Time: 16:38)

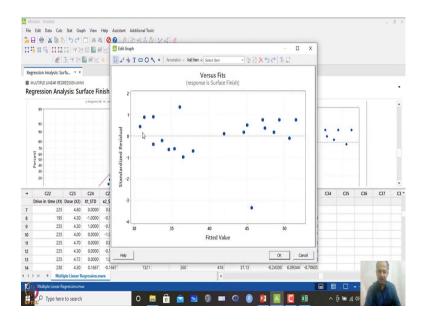

Me	nitab - Untitled																-	8
File	Edit Data Calc	Stat G	aph View	Help	ssistant Ada	ditional Tools	s											
E	3 @ X @ 6	50		1 0	fx 3-	-21.2	200											
										- B w M. I	54							
									NOT N PADE I	LO LI TOVI	0.9							
_	: 🖉 : 1	2 °Y 2		5 × 12	·γ ≥ ∎	BEN												
Reg	ression Analysis: Surfa	a v)																
II M	ULTIPLE LINEAR REGRE	SSION M	NX															
Rec	gression Analy	sis: S	urface	Finish v	ersus RP	M. Type	of Cu	tting To	ol									
	,																	
A	analysis of Variana	ce																
S	iource	DF	Adj SS	Adj MS	Value P-W	alue												
	Regression					.000												
1	RPM			127.490		000.												
					636.73 0	000.												
	Type of Cutting Tool				0.90.73 0	1000												
E	irror	17	22.316	1.313														
E	irror Lack-of-Fit		22.316 21.377	1.313 1.336		1.586												
E	irror	17 16 1	22.316	1.313			N											
E	irror Lack-of-Fit Pure Error	17 16 1	22.316 21.377 0.938	1.313 1.336			2											
Er I Ti	irror Lack-of-Fit Pure Error	17 16 1 19	22.316 21.377 0.938 999.362	1.313 1.336 0.938	1.42 0		2											
E 	irror Lack-of-Fit Pure Error Total	17 16 1 19 C23	22.316 21.377 0.938 999.362 C24	1.313 1.336 0.938	1.42 0	26	27	C28	(29	C30 5	C31 g	C32	C33	C34	C35	C36	C37	
E 	irror Lack-of-Fit Pure Error Total C22 Drive in time (X1) D	17 16 1 19 C23	22.316 21.377 0.938 399.362 C24 X1_STE	1.313 1.336 0.938 C25 x2_STC	1.42 0	26 stor Gain)		RPM	C29 Type of Cutting Tool	Surface Finish	Johnson Trans (Y)	Sqrt(Y)	SRES	C34	C35	C36	C37	
Ei I Ti	irror Lack-of-Fit Pure Error Total	17 16 1 19 C23	22.316 21.377 0.938 3999.362 C24 X1_STE	1.313 1.336 0.938 C25 x2_STC 0 0.666	1.42 0	26 stor Gain) 1269				Surface Finish	Johnson Trans (Y)			C34	C35	C36	C37	
Ei 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	trror Lackof-Fit Pure Error Iotal C22 Drive in time (X1) D 225 195	17 16 1 19 C23 Nose (X2 4.60 4.30	22.316 21.377 0.938 999.362 C24 X1_STE 0.000 -1.000	1.313 1.336 0.938 C25 x2_STE 0 0.660 0 -0.160	1.42 0	26 26 1269 903		RPM 265 259	Type of Cutting Tool 302 302	Surface Finish 52.26 50.52	Johnson Trans (Y) 1.98000 1.06984	Sqrt(Y) 7.22911 7.10774	SRES 0.74661 -0.11129	C34	C35	C36	C37	-
Ei 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Irror Lack-of-Fit Pure Error Total C22 Drive in time (X1) 225 195 255	17 16 1 19 C23 Nose (X2 4.60 4.30 4.30	22.316 21.377 0.938 999.362 C24 X1_STE 0.000 -1.000	1.313 1.336 0.938 C25 x2_STE 10 0.666 10 -0.166 10 -0.166	1.42 0	26 26 3tor Gain) 1269 903 1555		RPM 265 259 221	Type of Cutting Tool 302 302 302	Surface Finish 52.26 50.52 45.58	Johnson Trans (Y) 1.98000 1.06984 0.43932	Sqrt(Y) 7.22911 7.10774 6.75130	SRES 0.74661 -0.11129 0.50963	C34	C35	C36	C37	
Ei 1 1 1 1 7 8 9	Irror Lack-of-Fit Pure Error Total C22 Drive in time (XI) 225 195 255 225	17 16 1 19 C23 Nose (X2 4.60 4.30 4.30	22.316 21.377 0.938 399.362 C24 X1_STE 0.000 -1.000 1.000	1.313 1.336 0.938 C25 K2_STE 0 0.666 0 -0.166 0 -0.166 0 -1.000	1.42 0	26 stor Gain) 1269 903 1555 1260		RPM 265 259 221 218	Type of Cutting Tool 302 302 302 302 302 302 302	Surface Finish 52.26 50.52 45.58 44.78	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	SRES 0.74661 -0.11129 0.50963 0.17507	C34	C35	C36	C37	
Ei 1 1 1 1 1 7 8 8 9 9 10	trror Lackof-Fit Pure Error otal Drive in time (XI) D 225 195 255 225 225 225	17 16 1 19 C23 Nose (X2 4.60 4.30 4.30 4.30 4.30 4.30	22.316 21.377 0.938 999.362 C24 X1_STE 0.000 -1.000 0.000 0.000	1.313 1.336 0.938 C25 x2_STE 0 0.666 0 -0.166 0 -0.166 0 -0.166 0 -0.166 0 0 0 -0.166 0 0 0 -0.166 0 0 0 0 -0.166 0 0 0 0 -0.166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.42 0	26 26 5tor Gain) 1269 903 1555 1260 1146		RPM 265 259 221 218 224	Type of Cutting Tool 302 302 302 302 416	Surface Finish 52.26 50.52 45.58 44.78 33.50	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	SRES 0.74661 -0.11129 0.50963 0.17507 0.88643	C34	C35	C36	C37	
Ei 1 1 1 1 1 7 8 8 9 10 11 11 12	Irror Lack-of-Fit Pure Error lotal 222 Drive in time (X1) 225 195 255 225 225 225 225	17 16 1 19 C23 Nose (X2 4.60 4.30 4.30 4.30 4.30 4.30 4.30 4.30	22.316 21.377 0.938 999.362 C24 X1_STE 0.000 1.000 0.000 0.000 0.000	1.313 1.336 0.938 C25 x2_STE 0 0.666 0 -0.166 0 -0.160 0 -0.161 0 -0.161	1.42 0 C2 Y (Transis 7 7 7 0 4 4 7	26 26 26 26 269 903 1555 1260 1146 1276		RPM 265 259 221 218 224 212	Type of Cutting Tool 302 302 302 302 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	SRES 0.74661 -0.11129 0.50963 0.17507 0.88643 0.43635	C34	C35	C36	C37	
En 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	trror Lackof-Fit Pure Error otal Drive in time (XI) D 225 195 255 225 225 225	17 16 1 19 C23 Nose (X2 4.60 4.30 4.30 4.30 4.30 4.30	22.316 21.377 0.938 999.362 C24 X1_STE 0.000 -1.000 0.000 0.000 0.000 0.000	1.313 1.336 0.938 C25 x2_STE 0 0.666 0 -0.166 0 -0.166 0 -0.166 0 0.944 0 -0.166 0 0.944 0 -0.166 0 0.944 0 0.944	1.42 0 Y (Transis 7 7 7 0 4 4 7 0	26 26 5tor Gain) 1269 903 1555 1260 1146		RPM 265 259 221 218 224	Type of Cutting Tool 302 302 302 302 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	SRES 0.74661 -0.11129 0.50963 0.17507 0.88643 0.43635 1.34504	C34	C35	C36	C37	

And, what we are getting is that no lack of fit is observed over here.

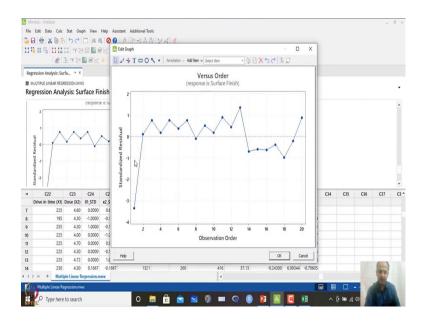
(Refer Slide Time: 16:42)


11			0 .	K+	ן אין אין אין א איז איז איז אין	₩ · · · · · · · · · · · · · · · · · · ·	8K*48 6	to d i 14 10 (8							
Reg	gression Analysis: Su	-														
	MULTIPLE LINEAR REGR	RESSION MW	x													
Re	gression Anal	ysis: Su	rface Fi	nish ver	sus RPM, Type	of Cutting	ool									
	1 42.000 45	5.626 -3.63	-3	37 K												
	1 42.000 45 R Large residual	5.626 -3.62	Normal	Probabil						us Fits	nieth)					
		5.626 -3.62	Normal		ity Plot	,	21		Vers (response is		nish)			_		
•	R Large residual	6.626 -3.63 C23	Normal	Probabil	ity Plot	C27 C28	C29	C30 z	(response is C31 g		nish) C33	C34	C35	C36	C37	
	R Large residual 99 T C22 Drive in time (X1)	C23 Dose (X2)	Normal (respons C24 X1_STD	Probabil e is Surface C25 x2_STD	(12 Plot 2 Finish) C26 Y (Transistor Gain)	RPN	C29 Type of Cutting Too	Surface Finish	(response is C31 g Johnson Trans (Y)	C32 Sqrt(Y)	C33 SRES	C34	C35	C36	C37	
	R Large residual 99 - C22 Drive in time (X1) 225	C23 Dose (X2) 4.60	Normal (respons C24 X1_STD 0.0000	Probabil e is Surface C25 x2_STD 0.6667	C26 Y (Transistor Gain) 1269	RPN	C29 Type of Cutting Too 65 302	Surface Finish	(response is C31 g Johnson Trans (V) 1.98000	C32 Sqrt(Y) 7.22911	C33 SRES 0.74661	C34	C35	C36	C37	
	R Large residual 99 1 C22 Drive in time (X1) 225 195	C23 Dose (X2) 4.60 4.30	Normal (respons C24 X1_STD 0.0000 -1.0000	Probabil e is Surface c25 x2_STD 0.6667 -0.1667	C26 Y (Transistor Gain) 1269 903	RPN	C29 Type of Cutting Too 65 302 59 302	Surface Finish 52.26 50.52	(response is C31 Z Johnson Trans (Y) 1.98000 1.06984	C32 Sqrt(Y) 7.22911 7.10774	C33 SRES 0.74661 -0.11129	C34	C35	C36	C37	
	R Large residual 99 T C22 Drive in time (XI) 225 195 255	C23 Dose (X2) 4.60 4.30 4.30	Normal (respons C24 X1_STD 0.0000 -1.0000 1.0000	Probabil E is Surface x2_STD 0.6667 -0.1667	C26 Y (Transistor Gain) 1269 903 1555	RPN	C29 Type of Cutting Too 65 300 59 300 21 300	Surface Finish 2 52.26 2 50.52 2 45.58	(response is C31 Johnson Trans (Y) 1.98000 1.06984 0.43932	C32 Sqrt(Y) 7.22911 7.10774 6.75130	C33 SRES 0.74661 -0.11129 0.50963	C34	C35	C36	C37	
r 8	R Large residual 99 1 C22 Drive in time (XI) 225 195 225 225	C23 Dose (X2) 4.60 4.30 4.30 4.30	Normal (respons C24 X1_STD 0.0000 -1.0000 1.0000 0.0000	Probabil E is Surface x2_STD 0.6667 -0.1667 -0.1667 -1.0000	C26 Y (Transistor Gain) 1269 903 1555 1260	RPh	C29 Type of Cutting Too 65 300 59 300 21 300 18 300	Surface Finish 2 52.26 2 50.52 2 45.58 2 44.78	(response is C31 Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156	C32 Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	C33 SRES 0.74661 -0.11129 0.50963 0.17507	C34	C35	C36	C37	
	R Large residual 99 1 C22 Drive in time (XI) 225 255 225 225	C23 Dose (X2) 4.60 4.30 4.30 4.00 4.70	Normal (respons C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	Probabil e is Surface x2_STD 0.6667 -0.1667 -1.0000 0.9444	ty Plot Finish) C26 Y (Transistor Galn) 1269 903 1555 1260 1146	RPN	C29 Type of Cutting Too 65 300 59 300 21 300 18 300 24 410	Surface Finish 2 52.26 2 50.52 2 45.58 2 44.78 5 33.50	(response is C31 Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	C32 Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	C33 SRES 0.74661 -0.11129 0.50963 0.17507 0.88643	C34	C35	C36	C37	
1	R Large residual 99 1 C22 Drive in time (XI) 225 195 225 225	C23 Dose (X2) 4.60 4.30 4.30 4.30	Normal (respons C24 X1_STD 0.0000 -1.0000 1.0000 0.0000	Probabil E is Surface x2_STD 0.6667 -0.1667 -0.1667 -1.0000	C26 Y (Transistor Gain) 1269 903 1555 1260	RPN	C29 Type of Cutting Too 65 300 59 300 21 300 18 300 24 410	Surface Finish 2 52.26 2 50.52 2 45.58 2 44.78 5 33.50 5 31.23	(response is C31 Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156	C32 Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	C33 SRES 0.74661 -0.11129 0.50963 0.17507	C34	C35	C36	C37	
7	R Large residual 99 1 C22 Drive in time (XI) 225 195 255 225 225 225	C23 Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	Normal (respons C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000	Probabil e is Surface x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276	RPh	C29 Type of Cutting Too 59 300 59 300 21 300 21 300 24 416 24 416 416 416 416 416 416 416 41	Surface Finish 2 52.26 2 50.52 2 45.58 2 45.58 2 44.78 5 33.50 5 31.23 5 37.52	(response is C31 g Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	C32 Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	C33 SRES 0.74661 -0.11129 0.50963 0.17507 0.88643 0.43635	C34	C35	C36	C37	

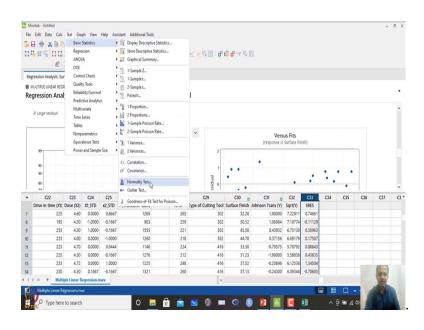
(Refer Slide Time: 16:44)


Only thing is that, we have to check whether normality assumptions is violated.

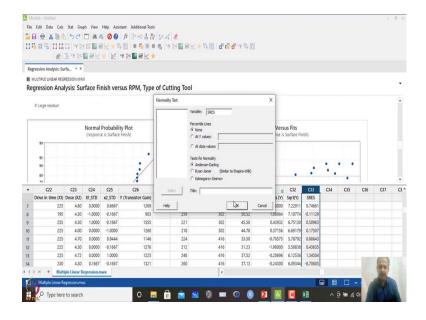
(Refer Slide Time: 16:47).


So, here what you see, is maybe there is a problem with normality over here. One point is over here, some has gone outside like that, so we have to test that one.

(Refer Slide Time: 16:55)


And, heteroscedasticity does not seem to be a problem because it seems to be random.

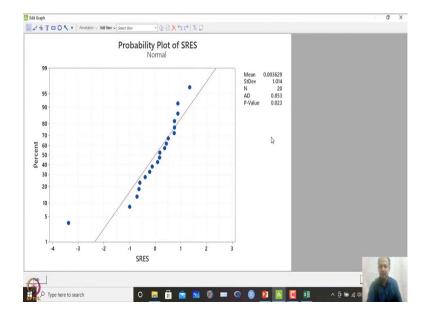
(Refer Slide Time: 17:01)



And, also we can see that this one may not be auto correlation is not so significant. So, these two checks can be done, but what we want to see normality, so this C 33 column will tell me whether normality assumptions is violated or not.

(Refer Slide Time: 17:15)

(Refer Slide Time: 17:17)



So what I will do is that, basic stat and normality test and what we will do is that, normality residual we can check and try to see what happens.

(Refer Slide Time: 17:22)

III III II I								m .m co W R	1		124	istant Additional Tool	00	- 4	50	8 8 8 6	-
INVERTER LINKARK Probability Plot of SRES Normal Main 6853627 Main 6853627 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>00 0, 11 14 R</th><th>SC X 54 80 101</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>								00 0 , 11 14 R	SC X 54 80 101								
Probability Plot of SRES															* X	obability Plot of SRES	Pro
Probability Plot of SRES Normal Probability Plot of SRES Normal Normal Probability Plot of SRES Normal														¢	ESSION MW	MULTIPLE LINEAR REGR	
Normal Mase doubled by doub															of SRES	obability Plot	Pro
Normal Mase doubled by doub																	
Main Bio Bio Bio Bio Bio Bio Bio Bio Bio Bio												of SRES	ity Plot o	Probabi			
Mon Mon Goldstry Bio Mon Goldstry Bio Mon Goldstry Bio Mon Goldstry Bio Mon Goldstry Bio Mon Goldstry Bio Goldstry Bio <td></td> <td>Normal</td> <td></td> <td></td> <td></td> <td></td>													Normal				
99 90 90 90 90 90 90 90 90 90 90 90 90 9												/				99	
30 90 90 90 90 90 90 90 90 90 90 90 90 90										20	N	•/				95	
000 000 010 020 024 C5 C66 C7 C8 C39 C10 C11 C12 C13 C14 C15 C15 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0.023</th> <th></th> <th>:/</th> <th></th> <th></th> <th></th> <th>90</th> <th></th>										0.023		:/				90	
6 0 0 C22 C33 C44 C25 C26 C27 C28 C29 C30 C11 III C33 C43 C33 C4 C33 C4 C35 C46 C37 C28 C29 C30 III III III C33 C41 C43										13							
C22 C23 C24 C25 C26 C27 C28 C29 C30 C11 C 32 C31 C 44 C 35 C 35 C 35 C 34 C 34 <thc 34<="" th=""> <thc 34<="" th=""> <thc 34<="" th=""></thc></thc></thc>													1				
Drive in time (V0) Dove (V2) XLSTD s2/STD V (Transistor Gain) PPM Type of Cutting Tool Surface Finith Johnson Trans (Y) Setts 225 4.60 0:0000 0:667 1269 285 0:000 52:26 1:0000 72:41 67:461 1915 4.30 1:0000 1:016 9:020 25:02 0:0004 7:074 0:116 255 4.30 0:0000 0:166 1555 221 0:20 4:58 0:4992 6:7510 0:5068						_							1			50 SO	
225 4.46 0.0000 0.6667 1269 285 302 52.26 1.96000 72.2911 0.74661 195 4.30 -1.0000 -0.1667 903 259 302 50.52 1.06984 7.10774 0.11129 225 4.30 1.0000 -0.1667 1555 221 302 4.55 0.43982 6.7510 0.50963	C37	C36	C35	C34							C27						
169 4.30 -1.0600 -0.1667 903 259 302 50.52 1.06984 7.1074 -0.11129 255 4.30 1.0000 -0.1667 1555 221 302 453 0.4992 6.75130 0.50963																	
255 4.30 1.0000 -0.1667 1555 221 302 45.58 0.43932 6.75130 0.50963																	
225 4.00 0.0000 -1.0000 1260 218 302 44.78 0.37156 6.69179 0.17507																	
					0.17507	6.69179	0.37156	44.78	302	218		1260	-1.0000	0.0000	4.00	225	
225 4.70 0.0000 0.9444 1146 224 416 33.50 -0.70575 5.76792 0.88643					0.88643	5.78792	-0.70575	33.50	416	224		1146	0.9444	0.0000	4.70	225	
225 4.30 0.0000 -0.1667 1276 212 416 31.23 -1.98000 5.58838 0.43635					0.43635	5.58838	-1.98000		416	212		1276		0.0000	4.30		
225 4.72 0.0000 1.0000 1225 248 416 37.52 -0.20696 6.12536 1.34504		-															
230 4.30 0.1667 -0.1667 1321 260 416 37.13 -0.24300 6.09344 -0.70605	100				-0.70605	6.09344	-0.24300	37.13		260		1321					
1 D H + Multiple Linear Regression.mwx 4													wx	egression.m	ole Linear R	DH + Multip	1

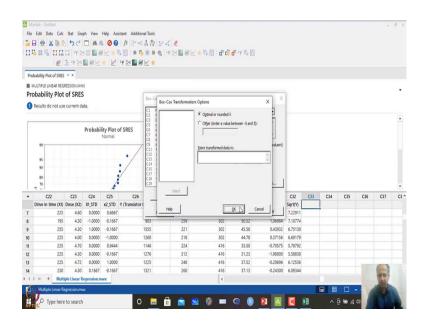
(Refer Slide Time: 17:24)

Normality test and what we observe over here for the residuals is that P-Value is less than 0.05. That indicates that there is a problem of normality issue over here of the residuals.

So, in this case, directly the Y characteristics needs some transformation and we have Box-Cox transformation and also Johnson transformation, both the options are there.

(Refer Slide Time: 17:46)

M	initab - L		-														-	0 >
	Edit			ph View Statistics		istant Additional Tools												
			Regre ANO DOE	ssion			· 微 4		K ★ \$ 10 0	<mark>68 d</mark> 8 Y X)	B							
Pro	bability	Plot of SRES	Contr	ol Charts	,	1 Box-Cox Transfor	mation											
Pre	obabi	E UNEAR REGR Iity Plot 5 do not use	Reliab Predi Multi Time Table	ty Tools oility/Surviva ctive Analyti variate Series s arametrics		Variables Charts f Variables Charts f Attributes Charts Time-Weighted C Multivariate Chart Rare Event Charts	or Individuals Charts ts		×									*
	99 95 90			alence Tests r and Sampl	e Size	./	Mean C StDev N AD P-Value	0.003629 1014 20 0.853 0.023										
	80 70 **				1	<u> </u>												¥
+		C22	C23	C24	C25	C26	C27	C28	C29	C30 5			C33	C34	C35	C36	C37	C3
7	Drive	n time (X1) 225	4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269		RPM 265	Type of Cutting Tool 302	Surface Finish 52.26		Sqrt(Y) 7.22911						
8		195	4.30	-1.0000	-0.1667	903		259	302	50.52		7.10774						
9		255	4.30	1.0000	-0.1667	1555		221	302	45.58		6.75130						
10		225	4.00	0.0000	-1.0000	1260		218	302	44.78	0.37156	6.69179						
11		225	4.70	0.0000	0.9444	1146		224	416	33.50	-0.70575	5.78792						
12		225	4.30	0.0000	-0.1667	1276		212	416	31.23	-1.98000	5.58838						
13		225	4.72	0.0000	1.0000	1225		248	416	37.52	-0.20696	6.12536						
14		230	4.30	0.1667	+0.1667	1321		260	416	37.13	-0.24300	6.09344					90	
4	D H	+ Multip	de Linear R	egression.n	IWX				4								A.	
Į.	Mult	iple Linear Rep	gression.mv	vx										₩		/		
1		Type here	to rearch			0	1	-	😼 🚳 📼	0			×I		õ 🐿 🖉	44		

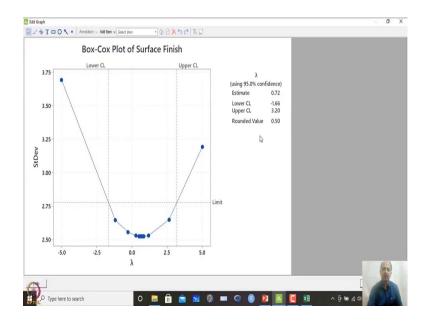

So, in this case what we will do is that, first we will see whether Box-Cox transformation works for this, for the Y variable. So what we will do, control chart Box-Cox transformation.

(Refer Slide Time: 17:51)

		1 La 44	2000	BK *	i fx }	浙	₩		1211年1月1日	d" (d ⁿ 'Y 🏷 🗄								
Prot	ability Plot of SR	ES Y X																	
B M	ULTIPLE LINEAR R	EGRESSION M	XNX																
Pro	bability Plo	ot of SRE	S			Box	Cox Transform	nation				×	1						
0	Results do not u	ise current o	iata.			_	Pull strength Wre length		All observations fo	r a chart are	in one column:								
			Probabi	ility Plot	of SRES	1000000000	Die height y x1 x2		'Surface Pinish'			< >							
	99 95 90 80 70				:/	C8 C9 C11 C12 C13 C14 C15 C17 C18 C19	x1_1 x2_1		Sybgroup sizes: [1	(enter a n	umber or ID column)							٣
+	C22	C23	C24	C25	C26		Select						C32	C33	C34	C35	C36	C37	C
	Drive in time ()				Y (Transistor	(6			~ 1	-	Sqrt(Y)						
7	23			0.6667		_	Help			_	QK 50.52	Cancel	7.22911						
8	2					903		255		302	45.58	1.06984	6.75130						
10	2					1260		218		302	43.35	0.43952	6.69179						
11	2					1146		224		416	33.50	-0.70575	5.78792						
12	2					1276		212		416	31.23	-1.98000	5.58838						
13	2			1.0000		1225		248		416	37.52	-0.20696	6.12536						
14	23	4.30	0.1667	-0.1667		1321		260)	416	37.13	-0.24300	6.09344					1	
		dalada Umana	Regression.r							4								1000	

And, for this surface finish we have taken this variable over here. Subgroup size is 1 selected.

(Refer Slide Time: 17:57)



And in options optimal or rounded value of alpha just mention that one.

(Refer Slide Time: 18:00)

-		50 13 47 2		00	<i>fx</i> 3= -5 k	わ ⇒ 先 Y		₩★茶園 6	c¦i d " \Y ³ 0	19							8
Во	x-Cox Plot of Surface	FL. • X															
	MULTIPLE LINEAR REGR	ESSION MW	x														
Bo	ox-Cox Plot of	Surface	Finish														
	B	ox-Cox P	lot of Su	face Fini	sh												
		.ower CL			Upper CL												
	3.75					λ (using 95.0% cor	diam'										
						Estimate	0.72										
	3.50					Long CL	-1.66										
	3.25	、 · · ·				Rounded Value	0.50										
	6																
	StDev				1												
•	G22	C23	C24	C25	/ C26	C27	C28	C29	C30 👦	C31 👦	C32	C33	C34	C35	C36	C37	
•	C22 Drive in time (X1)		C24 X1_STD		C26 Y (Transistor Gain		C28 RPM	C29 Type of Cutting Tool			C32 Sqrt(Y)	C33	C34	C35	C36	C 37	
,	C22 Drive in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain 1269)	RPM 265	Type of Cutting Tool 302	Surface Finish 52.26	Johnson Trans (Y) 1.98000	Sqrt(Y) 7.22911	C33	C34	C35	C36	C37	
7	C22 Drive in time (Xt) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain 1269 903	3	RPM 265 259	Type of Cutting Tool 302 302	Surface Finish 52.26 50.52	Johnson Trans (Y) 1.98000 1.06984	Sqrt(Y) 7.22911 7.10774	C33	C34	C35	C36	C37	
7 B 9	C22 Drive in time (X1) 225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain 1261 903 1555	3	RPM 265 259 221	Type of Cutting Tool 302 302 302	Surface Finish 52.26 50.52 45.58	Johnson Trans (Y) 1.98000 1.06984 0.43932	Sqrt(Y) 7.22911 7.10774 6.75130	C33	C34	C35	C36	C37	
7 8 9	C22 Drive in time (X1) 225 195 255 225	Dose (X2) 4,60 4,30 4,30 4,00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain 1269 903 1553 1269	0 9 8 5 0	RPM 265 259 221 218	Type of Cutting Tool 302 302 302 302	Surface Finish 52.26 50.52 45.58 44.78	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	C33	C34	C35	C36	C37	
7 B 9 0	C22 Drive in time (X1) 225 195 255 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain 126) 903 1555 1260 1140	0 9 8 5 5	RPM 265 259 221 218 224	Type of Cutting Tool 302 302 302 302 416	Surface Finish 52.26 50.52 45.58 44.78 33.50	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	C33	C34	C35	C36	C37	
r 8 0 1 2	C22 Drive in time (X1) 225 195 225 225 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain 1266 903 1553 1266 1146 1146 1276	0 8 5 5 5	RPM 265 259 221 218 224 212	Type of Cutting Tool 302 302 302 302 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	C33	C34	C35	C36	C37	
7 8 9 0 11 2 3	C22 Drive in time (X1) 225 195 225 225 225 225 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70 4,30 4,72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain 1266 903 1555 1266 1144 1276 1277 1225		RPM 265 259 221 218 224 212 248	Type of Cutting Tool 302 302 302 302 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	C33	C34	C35	C36	C37	
* 7 8 9 10 11 12 13 14	C22 Drive in time (X1) 225 195 225 225 225 225 225 225 225 225 225 2	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.70 4.72 4.30	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	Y (Transistor Gain 1266 903 1553 1266 1146 1146 1276		RPM 265 259 221 218 224 212	Type of Cutting Tool 302 302 302 302 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	C33	C34	C35	C36	(37	
7 8 9 10 11 12 13	C22 Drive in time (X1) 225 195 225 225 225 225 225 225 225 225 225 2	Dose (X2) 4.60 4.30 4.30 4.30 4.30 4.70 4.30 4.72 4.30 ble Linear R	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.1667 egression.m	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	Y (Transistor Gain 1266 903 1555 1266 1144 1276 1277 1225		RPM 265 259 221 218 224 212 248	Type of Cutting Tool 302 302 302 302 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	C33	C34		C36	C37	

(Refer Slide Time: 18:01)

And when we when you just click that option, what happens is that it suggest you that rounded value is 0.5; that means, lambda is approximately we can take as 0.5, although the actual value is 0.72, but we can take a rounded value of which is lying within the confidence interval over here.

So, 0.5 we are selecting over here as rounded value. So, I have taken a square root transformation over here. So, 0.5 means Y to the power 0.5 means, square root transformation that is suggested ok.

(Refer Slide Time: 18:30)

	linitab - Untitled Edit Data Calc S		ph View Statistics		istant Additiona	1 Tools	,									-	8
-		Regres	ssion	,	Fitted Line	Plot	6	12 - 14. 59 L	a stry the								
		ANOV	A	,	Regression			Fit,Regression Model.		10							
	M 1	DOE			Nonlinear R	legression	6	Best Subsets									
Bo	x-Cox Plot of Surface	Contre	ol Charts		Stability Stu	idv		Predict									
8	MULTIPLE LINEAR REGR	Qualit	y Tools	,				Factorial Plots									
-	x-Cox Plot of	Reliab	ility/Surviva	()	Orthogonal	Regression	i										•
	a contrict of	Predic	tive Analyti	cs)	2 Partial Least	t Squares		Surface Plot									
-		Multiv	variate	,	Binary Fitte	d Line Plot	-	Overlaid Contour Plot									*
	Be	Time !	Series			stic Regression											
		Tables		,		istic Regression											
	3.75	Nonpo	arametrics		- Long	gistic Regression											
		Equiva	alence Tests	,													
	3.50	Power	r and Sampl	e Size 🔹	Poisson Reg	Lower CL	-1.65										
	StDev				1	Upper CL Rounded Value	320 0.50										
+	C22	C23	C24	C25	C26	C27	C28	C29	C30 g	C31	C32	C33	C34	C35	C36	C37	C3
	Drive in time (X1) Do	ose (X2)	X1_STD	x2_STD	Y (Transistor G	ain)	RPM	Type of Cutting Tool			Sqrt(Y)						
7	225	4.60	0.0000	0.6667	1	269	265	302	52.26	1.98000	7.22911						
в	195	4.30	-1.0000	-0.1667		903	259	302	50.52	1.06984	7.10774						
9	255	4.30	1.0000	-0.1667	1	555	221	302	45.58	0.43932	6.75130						
0	225	4.00	0.0000	-1.0000	1	260	218	302	44.78	0.37156	6.69179						
11	225	4.70	0.0000	0.9444	1	146	224	416	33.50	-0.70575	5.78792						
	225	4.30	0.0000	-0.1667	1	276	212	416	31.23	-1.98000	5.58838						
	225	4.72	0.0000	1.0000	1	225	248	416	37.52	-0.20696	6.12536					-	
12		4.30	0.1667	-0.1667	1	321	260	416	37.13	-0.24300	6.09344					600	
12 13	230							1.1								1000	
12 13 14		Linear R	egression.n	IWX				4								1000	
12 13 14 4			-	IWX				4	_				₩			E.	

(Refer Slide Time: 18:33)

	x Plot of Surface Fi	Y X									_						
	TIPLE LINEAR REGRESSIO				Regression						×						
-	Cox Plot of Sur			_	06 x1 ^ C7 x2 C8 x3 C9 x4	Responses: 'Sqrt(Y)'					<u>^</u>						
	Box-C	ox Plot of Su		sh Upper CL	C11 Heat C12 x1_1 C13 x2_1 C14 x3_1 C15 x4_1 C15 x4_1 C17 Tme C18 Velocity	Centinuous (RPM	oredictors:				^						
	3.50				C19 Temperature C20 Yeld (Y) C22 Drive in time (C23 Dose (X2) C24 X1_STD	Categorical p					^						
StDev	8.25			1	C25 x2_STD C26 Y (Transistor (C28 RPM C29 Type of Cuttr C30 Surface Firsth						v						,
4 StDev	C22 C		C25	/	C26 Y (Transistor (C28 RPM		Model	Optiogs	Coging	Stepwise	 	C33	C34	C35	C36	C37	¢
t StDev	C22 C2 ive in time (X1) Dose	(X2) X1_STD	x2_STD	/	C26 Y (Transistor C C28 RPM C29 Type of Cuttr C30 Surface Pinish C31 Johnson Trare C32 Sqrt(Y) Y						m	C33	C34	C35	C36	C37	c
* Dri 7	C22 C2 ive in time (Xt) Dose 225	(X2) X1_STD 4.60 0.0000	x2_STD 0.6667	/	C26 Y (Transistor (C28 RPM C29 Type of Cuttir C30 Surface Finish C31 Johnson Trare		Model Validation	Optiogs	Coging Besuits	Stepwise Storage	(911	C33	C34	C35	C36	C37	c
t StDev	C22 C2 ive in time (Xt) Dose 225 195	(X2) X1_STD	x2_STD	/	C26 Y (Transistor (C28 RPM C29 Type of Cuttr C30 Surface Pinish C31 Johnson Trans C32 Sert(Y) V				Besults	Storage.	(Y) 911 1774	C33	C34	C35	C36	C37	C
* Dri 7 8	C22 C2 ive in time (X1) Dose 225 195 255	(X2) X1_STD 4.60 0.0000 4.30 -1.0000	x2_STD 0.6667 -0.1667	/	C26 Y (Transistor C C28 RPM C29 Type of Cuttr C30 Surface Pinish C31 Johnson Trare C32 Sqrt(Y) Y	610					(Y) 911 1774	C33	C34	C35	C36	C37	c
* Dri 7 2 9	C22 C2 ive in time (Xt) Dose 225 195 255 225	X1_STD 4.60 0.0000 4.30 -1.0000 4.30 1.0000	x2_STD 0.6667 -0.1667 -0.1667	/	C26 Y (Transistor (C28 RPM C28 Type of Cutter C30 Surface Finish C31 Johnson Tran C32 Sert(Y) v Select Help	¢10 224	Yalidation	Graphs	Besuits	Storage. Cancel	(Y) 1911 1774 1130	C33	C34	C35	C36	C37	c
* Dri 7 8 9 10	C22 C2 ive in time (X1) Dose 225 195 255 225 225 225	X1_STD 4.60 0.0000 4.30 -1.0000 4.30 1.0000 4.00 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	/	C26 Y (Transistor (C28 RPM C29 Type of Cutter C30 Surface Finah C31 Johnson Trans C32 Sert(Y) v Select Help		Yaldation	graphs 900	Besults <u>B</u> K	Cancel	(Y) 911 1774 130 009179	C33	C34	C35	C36	C37	c
* Dri 7 8 9 10 11	C22 C2 ive in time (X1) Dose 225 195 225 225 225 225 225 225	X1_STD 4.60 0.0000 4.30 -1.0000 4.30 1.0000 4.00 0.0000 4.70 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	/	C26 Y (Transistor C28 R94) C28 R94 C29 Type of Cutter C30 Surface Printh C31 Johnson Trant C32 Sert(Y) * Help rzov 1146	224	<u>Yaldation</u>	graphs 900	Besults <u>BK</u> 33.50	Storage. Cancel 0.57150 -0.70575	(Y) 911 7774 130 000179 5.78792	C33	C34	C35	C36	C37	

With square root transformation, then what have what we have to do is, that regress variables fit. Instead of surface finish what we will do is that, we will mention that let us go for square root transformation of Y that values and do all the analysis same analysis over here. So, regression analysis over here.

(Refer Slide Time: 18:43)

File					fx 3 - 1 10												
								· <u>★ 本</u> 図 .									
1					YNBRK			C. A MON . U		14							
Per	gression Analysis: Sqr			N . K.	DE DE												
	MULTIPLE UNEAR REGR																
-				rsus RP	M, Type of Cut	ting Tool											
	gression rata	y 5151 5 4		545 14	in, type of eac	ang loor											
N	Method																
C	Categorical predictor	coding (1	, 0)														
C	Cross-validation	10)-fold														
S	Stepwise Selectio	n of Terr	ns		D												
					D												
	<mark>Stepwise Selectic</mark> a to enter = 0.15, a t				D												
a	a to enter = 0.15, a t	o remove			ß												
a		o remove			ß												
a R	a to enter = 0.15, a t	o remove		C25	C26		28	C29	C30 g	C31 (2)	C32 12	C33	C34	C35	C36	C37	
a R	a to enter = 0.15, a t Regression Equal	o remove tion C23	= 0.15			C27 C		C29 Type of Cutting Tool				C33 SRES	C34	C35	C36	C37	
a R	a to enter = 0.15, a t Regression Equat	o remove tion C23	= 0.15 C24		C26	C27 C							C34	C35	C36	C37	
a R •	a to enter = 0.15, a t Regression Equal C22 Drive in time (X1)	c23 Dose (X2)	C24 X1_STD	x2_STD	C26 Y (Transistor Gain)	C27 C	PM	Type of Cutting Tool	Surface Finish	Johnson Trans (Y)	Sqrt(Y)	SRES	C34	C35	C36	C37	
a R *	a to enter = 0.15, a t Regression Equal C22 Drive in time (XI) 225 195 255	c23 Dose (X2) 4.60	C24 X1_STD 0.0000	x2_STD 0.6667	C26 Y (Transistor Gain) 1269 903 1555	C27 C	PM 265	Type of Cutting Tool 302	Surface Finish 52.26 50.52 45.58	Johnson Trans (Y) 1.98000	Sqrt(Y) 7.22911	SRES 0.41734 -0.29723 0.65615	C34	C35	C36	C37	
a R •	a to enter = 0.15, a t Regression Equal C22 Drive in time (XI) 225 195 255 225	c remove cion C23 Dose (X2) 4.60 4.30	C24 X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	C26 Y (Transistor Gain) 1269 903	C27 C	PM 265 259	Type of Cutting Tool 302 302	Surface Finish 52.26 50.52	Johnson Trans (Y) 1.98000 1.06984	Sqrt(Y) 7.22911 7.10774	SRES 0.41734 -0.29723 0.65615 0.33606	C34	C35	C36	C37	
a R •	a to enter = 0.15, a t Regression Equal C22 Drive in time (XI) 225 195 225 225 225	c23 C23 Dose (X2) 4.60 4.30	C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	C26 Y (Transistor Gain) 1269 903 1555 1260 1146	C27 C	PM 265 259 221 218 224	Type of Cutting Tool 302 302 302 302 416	Surface Finish 52.26 50.52 45.58 44.78 33.50	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990	C34	C35	C36	C37	
a R * *	225 225 225 225 225 225 225	C23 C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30 4.30	C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	C26 Y (Transistor Gain) 1269 903 1555 1260 1260 1146 1276	C27 C	PM 265 259 221 218 224 212	Type of Cutting Tool 302 302 302 302 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566	C34	C35	C36	C37	
a R * * 0 1 2 3	c22 Drive in time (X1) 225 255 225 225 225 225 225 225	C23 C23 Dose (X2) 4.60 4.30 4.30 4.00 4.30 4.30 4.72	C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1146 11275	C27 C	PM 265 259 221 218 224 212 248	Type of Cutting Tool 302 302 302 302 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032	C34	C35	C36	C37	
a R +	225 225 225 225 225 225 225	C23 C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30 4.30	C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	C26 Y (Transistor Gain) 1269 903 1555 1260 1260 1146 1276	C27 C	PM 265 259 221 218 224 212	Type of Cutting Tool 302 302 302 302 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566	C34	C35	C36	C37	
a R * * 0 1 2 3	a to enter = 0.15, a t Regression Equal C22 Drive in time (XI) 225 255 225 225 225 225 225 225 225 22	C23 C23 Dose (X2) 4.60 4.30 4.30 4.00 4.30 4.30 4.72	C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1146 11275	C27 C	PM 265 259 221 218 224 212 248	Type of Cutting Tool 302 302 302 302 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032	C34	C35	C36	637	

(Refer Slide Time: 18:46)

Regres		50 1 4 12															8
Regres	∂@% @ 1000 1000 1000 1000	50 1 4 12				k											
Regres		3 4Y 2			1 fx 3= -: 1 5												
Regret	23																
		E 'Y 🖂					CIE	医****	CO 0. 11 14 5	8							
	colors Anatherine Cost		BR	* 2	YNS												
	ssion Analysis: 5du	(Y * X															
a MUP	LTIPLE LINEAR REGRE	ESSION MW.	ĸ														
Regr	ression Analy	sis: Sq	rt(Y) ver	rsus RP	M, Type of Cut	ting Too	bl										
Mc	del Summary																
	S R-sq	R-sn/ad) R-sq(pr	red) 50-	fold S 10-fold R-sq												
0.	.0848366 98.00%	97.76			04384 97.33%												
An	alysis of Varian	ce D															
	urce	.4	dj SS Ad	ALANC E.	Value P-Value												
-	gression	2 5			16.42 0.000												
RP		1 0.	75534 0.7	75534 10	04.95 0.000												
	pe of Cutting Tool				16.36 0.000												
Erro	C22	C23	12235 0.0 C24	C25	C26	C27	C28	C29	C30 m	C31 .	C32 m	C33	C34	C35	C36	C37	_
		623			Y (Transistor Gain)	cer	RPM	Type of Cutting Tool				SRES	634	CSJ	C30	631	
	rive in time (X1)	ase (Y2)	X1 STD				in m										
	rive in time (X1) E		X1_STD 0.0000		1269		265	302	52.26	1,98000	7.22911	0.41734					
7 8	rive in time (X1) E 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	0.6667	1269 903		265 259	302	52.26 50.52	1.98000 1.06984	7.22911	0.41734					
7	225	4.60	0.0000	0.6667	903												
7 B	225 195	4.60 4.30	0.0000	0.6667	903 1555		259	302	50.52	1.06984	7.10774	-0.29723					
7 B 9	225 195 255	4.60 4.30 4.30	0.0000 -1.0000 1.0000	0.6667 -0.1667 -0.1667	903 1555		259 221	302 302	50.52 45.58	1.06984 0.43932	7.10774 6.75130	-0.29723 0.65615					
7 8 9 0	225 195 255 225	4.60 4.30 4.30 4.00	0.0000 -1.0000 1.0000 0.0000	0.6667 -0.1667 -0.1667 -1.0000	903 1555 1260 1146 1276		259 221 218	302 302 302	50.52 45.58 44.78	1.06984 0.43932 0.37156	7.10774 6.75130 6.69179	-0.29723 0.65615 0.33606					
7 8 9 0 11	225 195 255 225 225	4.60 4.30 4.30 4.00 4.70	0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	0.6667 -0.1667 -0.1667 -1.0000 0.9444	903 1555 1260 1146 1276 1225		259 221 218 224	302 302 302 416	50.52 45.58 44.78 33.50	1.06984 0.43932 0.37156 -0.70575	7.10774 6.75130 6.69179 5.78792	-0.29723 0.65615 0.33606 0.87990					
7 8 9 0 11 2	225 195 255 225 225 225	4.60 4.30 4.30 4.00 4.70 4.30	0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	903 1555 1260 1146 1276 1225		259 221 218 224 212	302 302 302 416 416	50.52 45.58 44.78 33.50 31.23	1.06984 0.43932 0.37156 -0.70575 -1.98000	7.10774 6.75130 6.69179 5.78792 5.58838	-0.29723 0.65615 0.33606 0.87990 0.08566 1.71032					

And, here also we see that R square adjusted 97.

(Refer Slide Time: 18:50)

	Edit Data Calc	Gat Gra	nh View	Helo Arr	istant Additional Tool										-	8
					fx 3= -2 1 1											
								n III. m								
							8区*沟图 6	o Co do sy st	BCI							
	<u>a</u>	Ξ чγ ⊠	BR	* 12	Y ≥ ∎ 8 K 1	K.										
Re	gression Analysis: Sc	rt(Y × ×														
8	MULTIPLE UNEAR REG	RESSION MW	x													
Re	egression Ana	lysis: Sq	rt(Y) ve	rsus RP	M, Type of Cut	ting Tool										
	416 Sqrt(Y)	3.178 + 0	01134 RPM													
	Coefficients															
	Term	Coef		T-Value	P-Value VIF											
	Constant	4.194	0.262	16.01	0.000											
	RPM	0.01134	0.00111	10.24	0.000 1.00											
				10.2.4	0.000 1.00											
	Type of Cutting Tool															
				-26.76	0.000 1.00											
	Type of Cutting Tool 416	-1.0157														
	Type of Cutting Tool 416 Model Summar	-1.0157	0.0379	-26.76	0.000 1.00	01 0	C 20	610		611	C 11		C 1	01	637	
	Type of Cutting Tool 416 Model Summary C22	-1.0157 C23	0.0379 C24	-26.76 C25	0.000 1.00 C26	C27 C2		C30 g		C32 g	C33 SRES	C34	C35	C36	C37	
•	Type of Cutting Tool 416 Model Summary C22 Drive in time (Xt)	-1.0157 C23 Dose (X2)	0.0379 C24 X1_STD	-26.76 C25	0.000 1.00 C26 Y (Transistor Gain)	RPI	Type of Cutting To	Surface Finish	Johnson Trans (Y)	Sqrt(Y)	C33 SRES 0.41734	C34	C35	C36	C37	
+	Type of Cutting Tool 416 Model Summary C22	-1.0157 C23	0.0379 C24	-26.76 C25 x2_STD	0.000 1.00 C26	RPI		2 Surface Finish 2 52.26	Johnson Trans (Y) 1.98000		SRES	C34	C35	C36	C37	
* 7 8	Type of Cutting Tool 416 Model Summary C22 Drive in time (X1) 225	-1.0157 C23 Dose (X2) 4.60	0.0379 C24 X1_STD 0.0000	-26.76 C25 x2_STD 0.6667	0.000 1.00 C26 Y (Transistor Gain) 1269	RPI	Type of Cutting To 265 30	Surface Finish 2 52.26 2 50.52	Johnson Trans (Y) 1.98000 1.06984	Sqrt(Y) 7.22911	SRES 0.41734	C34	C35	C36	C37	
+ 7 8 9	Type of Cutting Tool 416 Model Summary C22 Drive in time (X1) 225 195	-1.0157 C23 Dose (X2) 4.60 4.30	0.0379 C24 X1_STD 0.0000 -1.0000	-26.76 C25 x2_STD 0.6667 -0.1667	0.000 1.00 C26 Y (Transistor Gain) 1269 903 1555	RPI	Type of Cutting To 265 30 259 30	Surface Finish 2 52.26 2 50.52 2 45.58	Johnson Trans (Y) 1.98000 1.06984 0.43932	Sqrt(Y) 7.22911 7.10774	SRES 0.41734 -0.29723	C34	C35	C36	C37	
+ 7 8 9	Type of Cutting Tool 416 Model Summary C22 Drive in time (XI) 225 195 255	-1.0157 C23 Dose (X2) 4.60 4.30	0.0379 C24 X1_STD 0.0000 -1.0000 1.0000	-26.76 C25 x2_STD 0.6667 -0.1667 -0.1667	0.000 1.00 C26 Y (Transistor Gain) 1269 903 1555	RPI	Type of Cutting To 265 30 259 30 221 30	al Surface Finish 2 52.26 2 50.52 2 45.58 2 44.78	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156	Sqrt(Y) 7.22911 7.10774 6.75130	SRES 0.41734 -0.29723 0.65615	C34	C35	C36	C37	
+ 7 8 9 0	Type of Cutting Tool 416 Model Summar C22 Drive in time (XI) 225 195 255 225	-1.0157 C23 Dose (X2) 4.60 4.30 4.30	0.0379 C24 X1_STD 0.0000 -1.0000 1.0000 0.0000	-26.76 C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000	0.000 1.00 C26 Y (Transistor Gain) 1269 903 1555 1260	RPI	Type of Cutting To 265 30 259 30 221 30 218 30	Surface Finish 2 52.26 2 50.52 2 45.58 2 44.78 6 33.50	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	SRES 0.41734 -0.29723 0.65615 0.33606	C34	C35	C36	C37	
* 7 8 9 0 11 2	Type of Cutting Tool 416 Model Summar C22 Drive in time (XI) 225 195 255 225 225 225	-1.0157 C23 Dose (X2) 4.60 4.30 4.30 4.30 4.70	0.0379 C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	-26.76 c25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	0.000 1.00 C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276	RPI	Type of Cutting To 265 30 259 30 221 30 218 30 224 41	Surface Finish 2 52.26 2 50.52 2 45.58 2 44.78 6 33.50 6 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990	C34	C35	C36	C37	
* 7 8 9 10 11 12 13	Type of Cutting Tool 416 Model Summary C22 Drive in time (X1) 225 195 235 225 225 225 225 225	-1.0157 C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30 4.70 4.30	0.0379 C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	-26.76 c25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	0.000 1.00 C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276	RPI	Type of Cutting To 265 30 259 30 221 30 218 30 224 41 212 41	Surface Finish 2 52.26 2 50.52 2 45.58 2 44.78 6 33.50 6 31.23 6 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032	C34	C35	C36	C37	
	Type of Cutting Tool 416 Model Summarr C22 Drive in time (Xt) 225 235 225 225 225 225 225 225 225 225	-1.0157 C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30 4.70 4.30	0.0379 C24 X1_STD 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	-26.76 c25 x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	0.000 1.00 C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1146 1275	RPI	Type of Cutting To 265 30 259 30 221 30 218 30 224 41 212 41 213 41 214 41	Surface Finish 2 52.26 2 50.52 2 45.58 2 44.78 6 33.50 6 31.23 6 37.52 6 37.13	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032	C34	C35	C36	637	
* 7 8 9 10 11 12 13 14	Type of Cutting Tool 416 Model Summarn 225 2255 2255 2255 2255 2255 2255 225	-1.0157 C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.3	0.0379 C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1667 regression.m	-26.76 c25 x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	0.000 1.00 C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1146 1275	RPI	Type of Cutting To 265 30 259 30 221 30 218 30 224 41 212 41 213 41 214 41 215 41 216 41 217 41 218 41 219 41 210 41 211 41 212 41 213 41 214 41	Surface Finish 2 52.26 2 50.52 2 45.58 2 44.78 6 33.50 6 31.23 6 37.52 6 37.13	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032 -0.43188			C36	637	
* 7 8 9 10 11 12 13 14	Type of Cutting Tool 416 Model Summarr C22 Drive in time (Xt) 225 235 225 225 225 225 225 225 225 225	-1.0157 C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.3	0.0379 C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1667 regression.m	-26.76 c25 x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	0.000 1.00 C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1146 1275	RPI	Type of Cutting To 265 30 259 30 221 30 218 30 224 41 212 41 213 41 214 41 215 41 216 41 217 41 218 41 219 41 210 41 211 41 212 41 213 41 214 41	Surface Finish 2 52.26 2 50.52 2 45.58 2 44.78 6 33.50 6 31.23 6 37.52 6 37.13	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032 -0.43188	C34		C36	37	

And so it has regressed square root of Y with the variable.

(Refer Slide Time: 18:53)

File	linitab - Untitled	Stat Gra	nh View	Helo Ass	istant Additional Tool	x											. 0
					fx]= -2 1 1												
								111-1-1	-m -m - 15 1								
1							208	PEC # 49 83 10"	CO 0 - Y - Y	G							
		Ξчγ≥	BR	* 12	4 x x 8 8 K 1												
Re	gression Analysis: Si	art(Y v x															
	MULTIPLE UNEAR REC	OFFSCION MW	v														
-				cue DD	M, Type of Cut	ting Too											
			11(1) 40	Sus INF	m, type of eut	ang ioo	~										
	Regression Equi	ation															
	Type of Cutting																
	Tool																
1	302 Sqrt(Y)	4.194+0	.01134 RPM														
	416 Sqrt(Y)	3.178 + 0	.01134 RP)													
	Coefficients Term	Coef	SE Coef	T-Value	P-Value VIF												
	Coefficients Term Constant	Coef 4.194	SE Coef 0.262	T-Value 16.01	0.000												
	Coefficients Term Constant C22	Coef 4.194 C23	SE Coef 0.262 C24	T-Value 16.01 C25	0.000 C26	Q7	(28	C29	C30 5		C32 12	C33	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (X1)	Coef 4.194 C23 Dose (X2)	SE Coef 0.262 C24 X1_STD	T-Value 16.01 C25 x2_STD	0.000 C26 Y (Transistor Gain)	(27	RPM	Type of Cutting Tool	Surface Finish	Johnson Trans (Y)	Sqrt(Y)	SRES	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (XI) 225	Coef 4.194 C23 Dose (X2) 4.60	SE Coef 0.262 C24 X1_STD 0.0000	T-Value 16.01 C25 x2_STD 0.6667	0.000 C26 Y (Transistor Gain) 1269	C27	RPM 265	Type of Cutting Tool 302	Surface Finish 52.26	Johnson Trans (Y) 1.98000	Sqrt(Y) 7.22911	SRES 0.41734	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (XI) 225 195	Coef 4.194 C23 Dose (X2) 4.60 4.30	SE Coef 0.262 C24 X1_STD 0.0000 -1.0000	T-Value 16.01 C25 x2_STD 0.6667 -0.1667	0.000 C26 Y (Transistor Gain) 1269 903	C27	RPM 265 259	Type of Cutting Tool 302 302	Surface Finish 52.26 50.52	Johnson Trans (Y) 1.98000 1.06984	Sqrt(Y) 7.22911 7.10774	SRES 0.41734 -0.29723	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (XI) 225 195 255	Coef 4.194 C23 Dose (X2) 4.60 4.30 4.30	SE Coef 0.262 C24 X1_STD 0.0000 -1.0000 1.0000	T-Value 16.01 C25 x2_STD 0.6667 -0.1667 -0.1667	0.000 C26 Y (Transistor Gain) 1269 903 1555	C27	RPM 265 259 221	Type of Cutting Tool 302 302 302	Surface Finish 52.26 50.52 45.58	Johnson Trans (Y) 1.98000 1.06984 0.43932	Sqrt(Y) 7.22911 7.10774 6.75130	SRES 0.41734 -0.29723 0.65615	C34	C35	C36	C37	
*	Coefficients Term Constant C22 Drive in time (XI) 225 195 255 225	Coef 4.194 C23 Dose (X2) 4.60 4.30 4.30 4.30	SE Coef 0.262 C24 X1_STD 0.0000 -1.0000 1.0000 0.0000	T-Value 16.01 C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000	0.000 C26 Y (Transistor Gain) 1269 903 1555 1260	27	RPM 265 259 221 218	Type of Cutting Tool 302 302 302 302	Surface Finish 52.26 50.52 45.58 44.78	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	SRES 0.41734 -0.29723 0.65615 0.33606	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (XI) 225 255 225 225 225	Coef 4.194 C23 Dose (X2) 4.60 4.30 4.30 4.00 4.70	SE Coef 0.262 C24 X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	T-Value 16.01 C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	0.000 C26 Y (Transistor Gain) 1269 903 1555 1260 1146	27	RPM 265 259 221 218 224	Type of Cutting Tool 302 302 302 302 416	Surface Finish 52.26 50.52 45.58 44.78 33.50	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (XII) 2255 2255 2255 2255 2255 2255 2255	Coef 4.194 C23 Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	SE Coef 0.262 C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	T-Value 16.01 C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	0.000 C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276	Q7	RPM 265 259 221 218 224 212	Type of Cutting Tool 302 302 302 302 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (XI) 225 255 225 225 225 225 225 225 225 22	Coef 4.194 C23 Dose (X2) 4.60 4.30 4.30 4.30 4.00 4.70 4.30 4.72	SE Coef 0.262 C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000	T-Value 16.01 C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	0.000 C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	27	RPM 265 259 221 218 224 212 212 248	Type of Cutting Tool 302 302 302 302 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032	C34	C35	C36	C37	
* * 0 1 2 3 4	Coefficients Term Constant C22 Drive in time (XI) 2255 255 225 225 225 225 225 225 225 2	Coef 4.194 C23 Dose (X2) 4.60 4.30 4.30 4.30 4.30 4.70 4.30 4.72 4.30	SE Coef 0.262 C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	T-Value 16.01 C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	0.000 C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276	27	RPM 265 259 221 218 224 212	Type of Cutting Tool 302 302 302 302 416 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032	C34	C35	C36	C37	
+ + 0 1 2 3	Coefficients Term Constant C22 Drive in time (XI) 2255 255 225 225 225 225 225 225 225 2	Coef 4,194 C23 Dose (X2) 4,60 4,30 4,30 4,30 4,70 4,30 4,72 4,30 1,52 4,30	SE Coef 0.262 C24 X1_STD 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.1667 egression.m	T-Value 16.01 C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	0.000 C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	C27	RPM 265 259 221 218 224 212 212 248	Type of Cutting Tool 302 302 302 302 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032 -0.43188	C34		C36	C37	

And only one with the variable RPN over here. So this both the variables are significant.

(Refer Slide Time: 18:58)

	Edit Data Calc	Que Gra	nh View	Help Are	istant Additional Tor	h										-	Ø
							1										
					fx 3= -1 1												
1		2 4Y 5	: 🗊 🛄 (SK*	乌图 带 雅	₩ ·Y	× • 8	K★◇图 6	🐻 🗗 'Y 🖏								
	1 M	Y N	BBK	* 12	YNBEL	*											
	gression Analysis: Sqrt(
	MULTIPLE LINEAR REGRE	SSION MW	Х														
Re	gression Analy	sis: Sq	rt(Y) ve	rsus RP	M, Type of Cu	tting To	ol										
	Analysis of Varian	ce															
	Source	DF	Adj SS A	I MS F-	Alue P-Value												
1	Regression				6.42 0.000												
	RPM	1 0	75534 0.1	75534 10	4.95 0.000												
	Type of Cutting Tool	1 5	15582 5.1	15582 71	6.36 0.000												
	Error	17 0		00720													
	Lack-of-Fit				1.01 0.666	3											
	Pure Error	1 0	00715 0.0		1.01 0.666	3											
			00715 0.0		1.01 0.666	2											
	Pure Error Total	1 0 19 6	00715 0.0 11658	00715		2											
	Pure Error Total	1 0	00715 0.0	00715			C/8	C29	C30 -	61	CV -	C33	634	(35	C36	C37	
	Pure Error Total	1 0 19 6	00715 0.1 11658 C24	00715 C25	C26	27	C28 RPM	C29 Type of Cutting Tool	C30 5		C32 g	C33 SRES	C34	C35	C36	C37	
	Pure Error Total	1 0 19 6	00715 0.0	00715 C25				C29 Type of Cutting Tool 302		Johnson Trans (Y)			C34	C35	C36	C37	
	Pure Error Total C22 Drive in time (X1) D	1 0 19 6 C23 Nose (X2)	00715 0.1 11658 C24 X1_STD	C25 x2_STD	C26 Y (Transistor Gain)		RPM	Type of Cutting Tool	Surface Finish	Johnson Trans (Y) 1.98000	Sqrt(Y)	SRES	C34	C35	C36	C37	
	Pure Error Total C22 Drive in time (X1) D 225	1 0 19 6 C23 Nose (X2) 4.60	00715 0.1 11658 C24 X1_STD 0.0000	C25 x2_STD 0.6667	C26 Y (Transistor Gain) 1269		RPM 265	Type of Cutting Tool 302	Surface Finish 52.26	Johnson Trans (Y) 1.98000 1.06984	Sqrt(Y) 7.22911	SRES 0.41734	C34	C35	C36	C37	
	Pure Error Total C22 Drive in time (X1) D 225 195	1 0 19 6 C23 Nose (X2) 4.60 4.30	C24 X1_STD 0.0000 -1.0000	C25 x2_STD 0.6667 -0.1667	C26 Y (Transistor Gain) 1269 903 1555		RPM 265 259	Type of Cutting Tool 302 302	Surface Finish 52.26 50.52	Johnson Trans (Y) 1.98000 1.06984 0.43932	Sqrt(Y) 7.22911 7.10774	SRES 0.41734 -0.29723	C34	C35	C36	C37	
+ 7 8	Pure Error Total C22 Drive in time (X1) 225 195 255	1 0 19 6 C23 Nose (X2) 4.60 4.30	C24 X1_STD 0.0000 -1.0000 1.0000	C25 x2_STD 0.6667 -0.1667 -0.1667	C26 Y (Transistor Gain) 1269 903 1555		RPM 265 259 221	Type of Cutting Tool 302 302 302	Surface Finish 52.26 50.52 45.58	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156	Sqrt(Y) 7.22911 7.10774 6.75130	SRES 0.41734 -0.29723 0.65615	C34	C35	C36	C37	
	Pure Error Total	1 0 19 6 C23 Nose (X2) 4.60 4.30 4.30	C24 X1_STD 0.0000 1.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -1.0000	C26 Y (Transistor Gain) 1269 903 1555 1260		RPM 265 259 221 218	Type of Cutting Tool 302 302 302 302	Surface Finish 52.26 50.52 45.58 44.78	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	SRES 0.41734 -0.29723 0.65615 0.33606	C34	C35	C36	C37	
	Pure Error Total	1 0 19 6 C23 Nose (X2) 4.60 4.30 4.30 4.30 4.00 4.70	00715 0.1 11658 C24 X1_STD 0.0000 -1.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -1.0000 0.9444	C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276		RPM 265 259 221 218 224	Type of Cutting Tool 302 302 302 302 416	Surface Finish 52.26 50.52 45.58 44.78 33.50	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990	C34	C35	C36	C37	
+ 7 8 9 0 11 2 3	Pure Error Total	1 0 19 6 C23 Nose (X2) 4.60 4.30 4.30 4.30 4.70 4.30	00715 0.1 11658 C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276		RPM 265 259 221 218 224 212	Type of Cutting Tool 302 302 302 302 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032	C34	C35	C36	C37	
* 7 8 9 10 11 12 13	Pure Error Total	1 0 19 6 C23 Nose (X2) 4.60 4.30 4.30 4.30 4.70 4.72	00715 0.1 11658 C24 X1_STD 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225		RPM 265 259 221 218 224 212 212 248	Type of Cutting Tool 302 302 302 302 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032	C34	C35	C36	3	17
* 7 8 9 0 11 2 3 4	Pure Error Total C22 Drive in time (XI) D 225 25 25 25 25 25 25 25 25 25 25	1 0 19 6 C23 Nose (X2) 4.60 4.3	00715 0.1 11658 C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225		RPM 265 259 221 218 224 212 212 248	Type of Cutting Tool 302 302 302 302 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032 -0.43188			C36	C37	
+ 7 8 9 10 11	Pure Error Total C22 Drive in time (XI) D 225 255 225 255 255 255 255 255 255 255 255	1 0 19 6 C23 Nose (X2) 4.60 4.3	00715 0.1 11658 C24 X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	C25 x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	C26 Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225		RPM 265 259 221 218 224 212 212 248	Type of Cutting Tool 302 302 302 302 416 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032 -0.43188	C34		C36	C37	

And, the equations is given, lack of fit is not prominent.

(Refer Slide Time: 19:01)

	initab - Untitled			Mari	the to	istant Additional Tool											-	Ø
						∫ fx]= -2 ↓ ₽			N. 571 10	B								
1						今回 # ◎ 雅 #		86	≤★母間Ⅰ₫		89							
	1	E Y	×	BK	* 12	Y ≥ ∎ 8 K ≯	ł											
Re	gression Analysis	Sqrt(Y	×															
	MULTIPLE LINEAR	EGRESSIO	MWO															
Re	aression A	alvsis	Sar	t(Y) ver	rsus RP	M, Type of Cut	ting Tool											
			- 4.															
1	its and Diag	iostics f	or Ui	nusual O	bservati	ons												
	Obs Sqrt(Y)	Fit	Resi	d Std Re	sid													
1	1 6.4907	6.7449	0.264	2 .3	132 R													
	R Large residual																	
				Manual	Probabil	in plat	3				Marca	us Fits						
					probabil onse is Sq							e is Sart(Y)						
			_	t set.			,		2		(p		-					
	99						/				•							
	90										C31 m	C32 m	C33	C34	C35	C36	C37	
•	C22	C2		C24	C25	C26	C27 C28		C29	C30 👩				634				
	C22 Drive in time ((1) Dose	X2)	X1_STD	x2_STD	Y (Transistor Gain)	RPM	1 T)	pe of Cutting Tool	Surface Finish	Johnson Trans (Y)	Sqrt(Y)	SRES	CS4				
,	C22 Drive in time ((1) Dose	X2)	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	RPM	1 T) 265	pe of Cutting Tool 302	Surface Finish 52.26	Johnson Trans (Y) 1.98000	Sqrt(Y) 7.22911	SRES 0.41734	0.54				
7	C22 Drive in time ((1) Dose 25 95	x2) 1.60 1.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903	RPM 2	1 T) 265 259	ype of Cutting Tool 302 302	Surface Finish 52.26 50.52	Johnson Trans (Y) 1.98000 1.06984	Sqrt(Y) 7.22911 7.10774	SRES 0.41734 -0.29723	CA	- Chi			
7 B 9	C22 Drive in time (2 1	(1) Dose 25 95 55	X2) 1.60 1.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555	RPM 2 2	1 T) 265 259 221	ype of Cutting Tool 302 302 302	Surface Finish 52.26 50.52 45.58	Johnson Trans (Y) 1.98000 1.06984 0.43932	Sqrt(Y) 7.22911 7.10774 6.75130	SRES 0.41734 -0.29723 0.65615					
7 8 9	C22 Drive in time (2 1 2 2 2	 Dose 25 95 55 25 	x2) 1.60 1.30 1.30	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260	RPM 2 2 2 2 2 2 2 2 2 2	1 T) 265 259 221 218 218	pe of Cutting Tool 302 302 302 302 302	Surface Finish 52.26 50.52 45.58 44.78	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	SRES 0.41734 -0.29723 0.65615 0.33606					
7 B 9 0	C22 Drive in time (2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 Choice Choice	x2) 1.60 1.30 1.30 1.00	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146	RPN 22	1 Ty 265 259 221 218 224	ype of Cutting Tool 302 302 302 302 416	Surface Finish 52.26 50.52 45.58 44.78 33.50	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990					
7 B 9 0 11 2	C22 Drive in time (2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(1) Dose 25 95 55 25 25 25	x2) 1.60 1.30 1.30 1.00 1.70 1.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	RPM	1 Ty 265 259 221 221 221 2224 2224 2224 2224 2224 2	ype of Cutting Tool 302 302 302 302 302 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566					
7 B 9 0 11 2 3	C22 Drive in time (2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(1) Dose 25 95 55 25 25 25 25 25 25	x2) 1.60 1.30 1.30 1.00 1.70 1.30 1.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	RPN 22	I Ty 265 2 259 2 218 2 212 2 212 2 212 2 213 2 214 2 215 2	ype of Cutting Tool 302 302 302 302 416 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032					
7 8 9 10 11 12 13 14	C22 Drive in time (2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(1) Dose 25 55 25 25 25 25 25 25 30	x2) 1.60 1.30 1.30 1.30 1.70 1.30 1.72 1.30	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1667	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276	RPN 22	1 Ty 265 259 221 221 221 2224 2224 2224 2224 2224 2	ype of Cutting Tool 302 302 302 302 416 416 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566					
7 B 9 0 11 2 3 4	C22 Drive in time (2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(1) Dose 25 55 25 25 25 25 25 25 30	x2) 1.60 1.30 1.30 1.30 1.70 1.30 1.72 1.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	RPN 22	I Ty 265 2 259 2 218 2 212 2 212 2 212 2 213 2 214 2 215 2	ype of Cutting Tool 302 302 302 302 416 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032					
* 7 8 9 10 11 12 13 14 4	C22 Drive in time (2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(1) Dose 25 55 25 25 25 25 25 25 30	x2) 1.60 1.30 1.30 1.30 1.70 1.30 1.72 1.30	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1667	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	RPN 22	I Ty 265 2 259 2 218 2 212 2 212 2 212 2 213 2 214 2 215 2	ype of Cutting Tool 302 302 302 302 416 416 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032 -0.43188				-	2
	C22 Drive in time (2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(1) Dose 25 95 55 25 25 25 25 30 30 90 90 90 90 90 90 90 90 90 90 90 90 90	x2) 1.60 1.30 1.30 1.30 1.70 1.30 1.72 1.30 1.72 1.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.1667 gression.m	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225	RPM 2	I Ty 265 2 259 2 218 2 212 2 212 2 212 2 213 2 214 2 215 2	ype of Cutting Tool 302 302 302 302 416 416 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52 37.13	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536 6.09344	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032 -0.43188					

So in this case, one out layer is recorded over here as it is minus 3 point more than plus or minus 2.

(Refer Slide Time: 19:09)

	1 m m		ן היא אין				24 € ## 41≥		⊠ ★ \$\$ 10 10	6 ⁰ 6 ⁰ 44 30	83								
_			-	BK	* 12	Y ≥ ■ 8 K 1	ł.												
	gression Analy																		
-	MULTIPLE LINE																		
ĸe	gression	Anal	iysis: Sq	rt(Y) vei	rsus RP	M, Type of Cut	ting lool												
	99						/		2										
	95						•												
	90					:/			- 1	• •					•	• .			
	80					1			enpi o-				•	•			22		
	70 10 10					*			Res			•				•			
	Percent & & &					1.8			pag .1		•								
					1				gard										
	20 20				1.1				, s.										
	30			/	1				Sta										
•	30 20 10		C23	C24	C25	C26	C27 (C28	,	C30		H m	C32	C33	C34	C35	C36	C37	
•	30 20	e (X1)	C23 Dose (X2)	C24 X1_STD	C25 x2_STD	C26 Y (Transistor Gain)		C28 RPM			s C3			C33 SRES	C34	C35	C36	C37	
	30 20 10 C22	e (X1) 225							C29		h Johnson				C34	C35	C36	C37	
,	30 20 10 C22		Dose (X2)	X1_STD	x2_STD 0.6667 -0.1667	Y (Transistor Gain)		265 259	C29 Type of Cutting Tool	Surface Finis	h Johnson 1 6 2	Trans (Y) 1.98000 1.06984	Sqrt(Y) 7.229 7.10774	SRES 0.41734 -0.29723	C34	C35	C36	C37	
	30 20 10 C22	225 195 255	Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555		265	C29 Type of Cutting Tool 302 302 302	Surface Finis 52.2 50.5 45.5	h Johnson 1 6 2 8	Trans (Y) 1.98000 1.06984 0.43932	Sqrt(Y) 7.22907 7.10774 6.75130	SRES 0.41734 -0.29723 0.65615	C34	C35	C36	C37	
r 3	30 20 10 C22	225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903		265 259	C29 Type of Cutting Tool 302 302	Surface Finis 52.2 50.5	h Johnson 1 6 2 8	Trans (Y) 1.98000 1.06984	Sqrt(Y) 7.22907 7.10774 6.75130	SRES 0.41734 -0.29723	C34	C35	C36	C37	
r 3 0	30 20 10 C22	225 195 255 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146		265 259 221 218 224	C29 Type of Cutting Tool 302 302 302 302 416	Surface Finis 52.2 50.5 45.5 44.7 33.5	h Johnson 1 6 2 8 8 0	Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.229 7.10774 6.75130 6.69179 5.78792	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990	C34	C35	C36	C37	
7 3 0 1	30 20 10 C22	225 195 255 225 225 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70 4,30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276		265 259 221 218	C29 Type of Cutting Tool 302 302 302 302 302	Surface Finis 52.2 50.5 45.5 44.7 33.5 31.2	h Johnson 1 6 2 8 8 8 0 3	Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.229 7.10774 6.75130 6.69179	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566	C34	C35	C36	C37	
1	30 20 10 C22	225 195 255 225 225 225 225 225 225	Dose (X2) 4,60 4,30 4,30 4,00 4,70 4,30 4,72	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225		265 259 221 218 224 212 212 248	C29 Type of Cutting Tool 302 302 302 302 416	Surface Finis 52.2 50.5 45.5 44.7 33.5 31.2 37.5	h Johnson ' 6 2 8 8 8 0 3 2	Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.229 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990	C34	C35	C36	C37	
	30 20 10 C22	225 195 255 225 225 225 225 225 225 225 230	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.1667	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276		265 259 221 218 224 212	, C29 Type of Cutting Tool 302 302 302 302 416 416	Surface Finis 52.2 50.5 45.5 44.7 33.5 31.2 37.5	h Johnson ' 6 2 8 8 8 0 3 2	Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.22907 7.10774 6.75130 6.69179 5.78792 5.58838	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566	C34	C35	C36	(37	
+ 7 8 9 0 11 2 3 4	30 20 10 C22	225 195 255 225 225 225 225 225 225 225 230	Dose (X2) 4,60 4,30 4,30 4,00 4,70 4,30 4,72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.1667	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225		265 259 221 218 224 212 212 248	229 Type of Cutting Tool 302 302 302 302 416 416 416	Surface Finis 52.2 50.5 45.5 44.7 33.5 31.2 37.5	h Johnson ' 6 2 8 8 8 0 3 2	Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.229 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032	C34	C35	C36	C37	

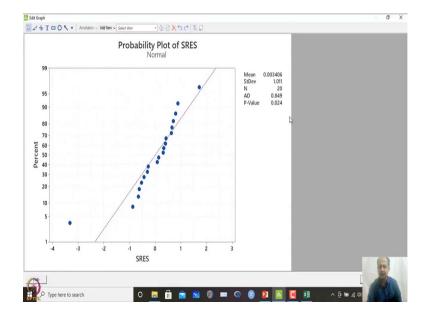
So in this case, what we have to see is that, again there is a after this transformation there is a residual that is generated over here.

(Refer Slide Time: 19:15)

Regr		Data Calc C	Basic Regn ANO DOE Cont Quali Relial			stant Additional Tools Image: Display Descriptive State Store Descriptive State Image: Display Descriptive State Graphical Summary Image: Display Descriptive State Store Descriptive State Image: Display Descriptive State Graphical Summary Image: Display Descriptive State Store Descriptive State Image: Display Descripting State Store Descring	atistics	★ \$\$ 10	n co ou st s	4 12								•
	99 95 90		Multi Time Table	variate Series		P 1 Proportion 1 2 Proportions 1 3 ample Poisson P 1 2 Sample Poisson P		2			•			:				*
	80 - 10 -			alence Tests r and Sample		 1 Variance 2 Variances 11 Correlation O² Covariance Normality Test Outlier Test 		Standardized Residual	•	•.•	. •							
+		22	C23	C24	C25			C29	C30		C31 n	C32 m	C33	C34	C35	C36	C37	C3 -
1	Drive in	time (X1)	Dose (X2)	X1_STD	x2_STD	λ Goodness-of-Fit Ter	R for Poisson	Type of Cutting To	ol Surface Fin	ish John	son Trans (Y)	Sqrt(Y)	SRES					
7		225	4.60	0.0000	0.6667	1269	265	31			1.98000	7.22911	0.41734					
8		195	4.30	-1.0000	-0.1667	903	259	31			1.06984	7.10774	-0.29723					
9		255	4.30	1.0000	-0.1667	1555	221	3			0.43932	6.75130	0.65615					
10		225	4.00	0.0000	-1.0000	1260	218	31			0.37156	6.69179 5.78792	0.33606					
11		225	4.70	0.0000	-0.1667	1146	224		16 33 16 31		-0.70575	5.58838	0.08566					
12		225	4.50	0.0000	-0.1667	1276	212			.23	-1.98000	6.12536	1.71032					
13		225	4.72	0.1667	-0.1667	1225	248			.52	-0.20696	6.09344				-	0	
14 (4 (1))	н			egression.m		1321	200		4	.19	-0.24300	0.09344	-0.45100				-R	
C.	1.	ole Linear Re	gression m to search	vx		0 🗔	8	M 🕲 🛛	•	8	2	•	x)		€ 🗆 . @ ₩0 ,4	40	R	

Let us try to check whether the correction has happened with Box-Cox transformation or this is not adequate. So, in this case what we will do is that, we will see the residual over here and try to see ok.

(Refer Slide Time: 19:32)


		500 12 4 2			istant Additional Tool ∫ fx =: ↓	} ½ 4 € ₩ Y ≥		l K ★ \$\$ 10 d° d	d" Y % E	17								
Regressi	on Analysis: S	qrt(Y × ×																
-	PLE LINEAR REI																	
Regre	ssion Ana	ilysis: Sq	rt(Y) ve	rsus RP	M, Type of Cut	ting Tool					_							
5	0					Normality Test)	<							
-	15						-	Variable: SRES										
	0				:/			Percentile Lines						•	•			
	0				· · ·			(* None				•	•					
= 1					1			C At Y values:							•			
	0				1.8			C At data values:										
	0			1	•			Tests for Normality										
1	0			1:				Anderson-Darling	to Shaniro-Milk)									
3			/	1.				Anderson-Darling	to Shapiro-Wilk)									×
3	×0.	C23	C24	C25	C26	Select	1	 Anderson-Darling C Ryan-Joiner (Simila) 	to Shapiro-Wilk)			C32 🕫	C33	C34	C35	C36	C37	÷
•	0		C24 X1_STD		C26 Y (Transistor Gain)	Select		Anderson-Darling Ryan-Joiner (Simla Kolmogorov-Smirnov	to Shapiro-Wilk)		s (Y)	Sqrt(Y)	C33 SRES	C34	C35	C36	C37	
•	C22 re in time (X1) 225	Dose (X2) 4.60	X1_STD 0.0000	x2_STD 0.6667	Y (Transistor Gain) 1269	Select Help	J	Anderson-Darling Ryan-Joiner (Simla Kolmogorov-Smirnov	OK D	Cancel	s (Y) 8000	Sqrt(Y) 7.22911	SRES 0.41734	C34	C35	C36	C37	
+ Driv	C22 c22 re in time (XI) 225 195	Dose (X2) 4.60 4.30	X1_STD 0.0000 -1.0000	x2_STD 0.6667 -0.1667	Y (Transistor Gain) 1269 903		259	Anderson-Darling Nyan-Joiner (Simila Kolmogorov-Smirnov Title: [ок 🔊		s (M) 8000 1.06984	Sqrt(Y) 7.22911 7.10774	SRES 0,41734 -0.29723	C34	C35	C36	C37	
+ Driv	C22 re in time (X1) 225 195	Dose (X2) 4,60 4,30 4,30	X1_STD 0.0000 -1.0000 1.0000	x2_STD 0.6667 -0.1667 -0.1667	Y (Transistor Gain) 1269 903 1555		221	Anderson-Darling C Ryan-Joiner (Simila C Kolmogorov-Smirnov Title: [302 302	ок [,] 50.52 45.58		s (Y) 8000 1.06984 0.43932	Sqrt(Y) 7.22911 7.10774 6.75130	SRES 0.41734 -0.29723 0.65615	C34	C35	C36	C37	
* Driv 7 0 8 0	C22 re in time (Xt) 225 195 255 225	Dose (X2) 4.60 4.30 4.30 4.00	X1_STD 0.0000 -1.0000 1.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000	Y (Transistor Gain) 1269 903 1555 1260		221 218	Anderson-Darling C Ryan-Joiner (Simila C Kolmogorov-Smirnov Title: [302 302 302	OK 50.52 45.58 44.78		s (Y) 8000 1.06984 0.43932 0.37156	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	SRES 0.41734 -0.29723 0.65615 0.33606	C34	C35	C36	C37	
+ Driv 7 0 8 0 0 1	C22 re in time (XI) 225 195 255 225 225	Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444	Y (Transistor Gain) 1269 903 1555 1260 1146		221 218 224	Anderson-Darling C Ryan-Jainer (Simila Kolmoparov-Smirnov Title:	OK 50.52 45.58 44.78 33.50	-	s (Y) 8000 1.06984 0.43932 0.37156 0.70575	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990	C34	C35	C36	C37	
+ Driv 7 33 00 11 22	00 C22 192 192 225 225 225 225 225 225 225 2	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276		221 218 224 212	(* Anderson-Darling (* Ryan-Joher (* Kolmogorou-Smimov Title: 302 302 302 302 416 416	ок 50.52 45.58 44.78 33.50 31.23	-	s (Y) 8000 1.06984 0.43932 0.37156 0.70575 1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566	C34	C35	C36	C37	
* Driv 7 0 8 0 0 1 1 2 3 0	222 re in time (XI) 225 225 225 225 225 225 225 225 225 22	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD 0.6667 -0.1667 -1.0000 0.9444 -0.1667 1.0000	Y (Transistor Gain) 1269 903 1555 1260 1146 1276 1225		221 218 224 212 248	(* Anderson-Daring (* Ryan-Joher (Simila (* Kainoparev Smirov Title: 3002 3002 3002 416 416 416	ок 50.52 45.58 44.78 33.50 31.23 37.52	-	s (Y) 8000 1.06984 0.43932 0.37156 0.70575 1.98000 0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566 1.71032	C34	C35	C36	C37	
+ Driv 7 33 00 11 22	222 195 225 225 225 225 225 225 225 225 225 2	Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1667	x2_STD 0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	Y (Transistor Gain) 1269 903 1555 1260 1146 1276		221 218 224 212	(* Anderson-Darling (* Ryan-Joher (* Kolmogorou-Smimov Title: 302 302 302 302 416 416	ок 50.52 45.58 44.78 33.50 31.23	-	s (Y) 8000 1.06984 0.43932 0.37156 0.70575 1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	SRES 0.41734 -0.29723 0.65615 0.33606 0.87990 0.08566	C34	C35	C36	C37	

So, let me just check this is stat basic stat, normality test over here, so I will go to the last variable, that is recorded.

(Refer Slide Time: 19:36)

	⊟ ∰ & © (0 11 ⊟ 5 = 6 ∭ ∭	5¢ □ Ψ⊵ ±Ψ⊠		00	istant Additional Tools fx = -:: ↓ h 	} 2 4 ℓ ⊧ #a ¥ ⊠ ≣ #	€ ★ \$ 8 ď	co o n 44 (t)	1							
	obability Plot of SRES															
-	obability Plot															
			Probabi	ity Plot	of SRES											
	99	_		r tyr crae		Mean 0.003405										
	95				•	StDev 1.011										
	90				• /	AD 0.849 P-Value 0.024										
	80.			;	/	D.										
	ercent : 5 8 3			1												
				12							_					
	C22	C23	C24	C25 x2 STD	C26	C27 C28	C29	C30 👩		C32 🛛	C33	C34	C35	C36	C37	
•					Y (Transistor Gain)	RPM	Type of Cutting Tool	Surface Finish		Sqrt(Y)	SRES					
	Drive in time (X1)		X1_STD			265	202	62.26	1 00000	7 33011						
,	Drive in time (X1) 225	4.60	0.0000	0.6667	1269	265			1.98000	7.22911	0.41734					
	Drive in time (X1) 225 195	4.60 4.30	0.0000			265 255 221	302	50.52	1.06984	7.10774	0.41734 -0.29723 0.65615					
7 B 9	Drive in time (X1) 225	4.60	0.0000	0.6667	1269 903 1555	255	302 302	50.52 45.58			-0.29723					
+ 7 8 9 0	Drive in time (X1) 225 195 255	4.60 4.30 4.30	0.0000 -1.0000 1.0000	0.6667 -0.1667 -0.1667	1269 903 1555	255	302 302 302	50.52 45.58 44.78	1.06984 0.43932	7.10774 6.75130	-0.29723 0.65615					
7 3 0	Drive in time (X1) 225 195 255 225	4.60 4.30 4.30 4.00	0.0000 -1.0000 1.0000 0.0000	0.6667 -0.1667 -0.1667 -1.0000	1269 903 1555 1260	255 221 218	302 302 302 416	50.52 45.58 44.78 33.50	1.06984 0.43932 0.37156	7.10774 6.75130 6.69179	-0.29723 0.65615 0.33606					
1	Drive in time (X1) 225 195 255 225 225	4.60 4.30 4.30 4.00 4.70	0.0000 -1.0000 1.0000 0.0000 0.0000	0.6667 -0.1667 -0.1667 -1.0000 0.9444	1269 903 1555 1260 1146 1276	255 221 218 224	302 302 302 416 416	50.52 45.58 44.78 33.50 31.23	1.06984 0.43932 0.37156 -0.70575	7.10774 6.75130 6.69179 5.78792	-0.29723 0.65615 0.33606 0.87990					
1	Drive in time (X1) 225 195 255 225 225 225	4.60 4.30 4.30 4.00 4.70 4.30	0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	1269 903 1555 1260 1146 1276	255 221 218 224 212 214	302 302 302 416 416 416	50.52 45.58 44.78 33.50 31.23 37.52	1.06984 0.43932 0.37156 -0.70575 -1.98000	7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	-0.29723 0.65615 0.33606 0.87990 0.08566					
	Drive in time (XI) 225 195 225 225 225 225 225 225 225 225 225 2	4,60 4,30 4,30 4,00 4,70 4,30 4,72	0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.1667	0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	1269 903 1555 1260 1146 1276 1225	255 221 216 224 212 246	302 302 302 416 416 416	50.52 45.58 44.78 33.50 31.23 37.52	1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	-0.29723 0.65615 0.33606 0.87990 0.08566 1.71032					

(Refer Slide Time: 19:37)

And then I see what is the value of the P-Value. So, P-Value is again less than 0.05. So again there is a problem and that the problem is not resolved, so error is not coming out to be normal, so in this case again it is not white noise. So, in this case what we have to do is that we have to so then what I have done is that I have gone for Johnson's transformation, family of transformation so Johnson's transformation.

(Refer Slide Time: 20:00)

	tab - Untitled															-	8
File					istant												
6	👲 🔏 🖻 🏠		Statistics			1											
Ц 13		Regre ANOV DOE				} * ⁷ 0 # * * ≥∎ ⊛⊻ *	₩ ≥∎ 8⊻★	4回 6	on -4 🖏								
Probl	ibility Plot of SRES		ol Charts														
E MU	UTIPLE LINEAR REGR	Qualit	y Tools	,		Run Chart											
Pro	pability Plot		ility/Surviva		_												
	esults do not use		tive Analytic	cs)	*	Cause-and-Effect											
0	ezuits do not use	Multi		1	M	Individual Distribution Ide	intification										
_		Time		1	2	Johnson Transformation.											1
		Tables				Capability Analysis		,									
			arametrics	1		Capability Sixpack		,									
	99		alence Tests r and Sample		W	Tolerance Intervals (Norm	al Distribution)										
	95	FUNE	ano sempo	e sue s	N	Tolerance Intervals (Nonn	ormal Distribution)										
	90					Gage Study		,									
Ι,	80-			1		Create Attribute Agreeme Attribute Agreement Ana											,
+	C22	C23	C24	C25	1	Acceptance Sampling by	Attributes		C30 g	C31 x	C32 👩	C33	C34	C35	C36	C37	(
C	vrive in time (X1) D	ose (X2)	X1_STD	x2_STD		Acceptance Sampling by	Variables	, ig Tool	Surface Finish	Johnson Trans (Y)	Sqrt(Y)						
7	225	4.60	0.0000	0.6667	6	Multi-Vari Chart		302	52.26		7.22911						
8	195	4.30	-1.0000	-0.1667		Variability Chart		302	50.52		7.10774						
9	255	4.30	1.0000	-0.1667		Symmetry Plot		302	45.58		6.75130						
	225	4.00	0.0000	-1.0000	-	1600		302	44.78		6.69179						
	225	4.70	0.0000	0.9444		1146	224	416	33.50		5.78792						
11		4.30	0.0000	-0.1667		1276	212	416	31.23		5.58838						
11	225			1,0000		1225	248	416	37.52		6.12536 6.09344					(
11 12 13	225	4.72	0.0000														
11 12 13 14	225 230	4.30	0.1667	-0.1667		1321	260		37113		0.00044					100	
10 11 12 13 14 4 Þ	225 230 H + Multipl	4.30 e Linear R	0.1667 egression.m	-0.1667		1321	260	4	5115							and a	-
11 12 13 14	225 230	4.30 e Linear R	0.1667 egression.m	-0.1667		1321	260		5115							T	

So, what I have done is that basic stat, sorry this is quality tools, and in that case Johnson's transformation is there.

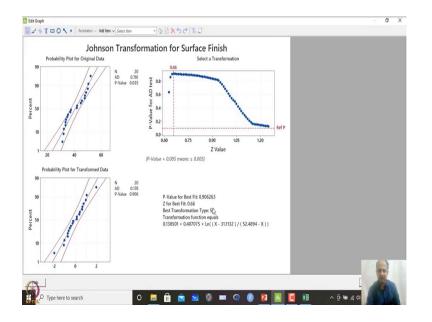
(Refer Slide Time: 20:06)

					Y 🖂 🖬 🖻 🗠 ★	N ¥ ⊠ 8	C									
Prob	ability Plot of SR															
B M	ULTIPLE LINEAR R	Johnson Trans	formation			×										
Pro	bability Ple	C1 Pull stren C2 Wire leng		are arranged a		Options										
	Results do not a		e	Single column: Subgroups acros	Surface Finish'											
	99	C7 x2 C8 x3 C9 x4 C11 Heat C12 x1_1 C13 x2_1 C14 x3_1 C15 x4_1	s	e transformed d ingle column: ubgroups acros	c31		¥									
	95 90 80 70 72	C17 Time Select Help	• [a roos or) v	OK Cartili	(29)	(30	(1)	(2) -	C13	634	(35	(36	637	
	90 - 80 - 70 -	C17 Time Select Help	× [46.5		e1	C29 Type of Cutting Tool 1	C30 5	C31 Johnson Trans (Y)	C32 🕎	C33	C34	C35	C36	C37	
	90 80 70 C22 Drive in time ()	C17 Time Select Help	* [46.5	~ ~	e1	C29 Type of Cutting Tool 3 302				C33	C34	C35	C36	C37	
	90 80 70 C22 Drive in time ()	C17 Time Select Help C10 Dose (X2) 25 4.60	× [x2_STD Y	(Transistor Gain)	RPM T	ype of Cutting Tool	urface Finish	Johnson Trans (Y)	Sqrt(Y)	C33	C34	C35	C36	C37	
	90 80 70 C22 Drive in time () 21	C17 Time Select Help C10 Dose (X2) 25 4.60 95 4.30	× [x2_STD Y 0.6667	(Transistor Gain) 1269	RPM T 265	Type of Cutting Tool 5 302	Surface Finish 52.26	Johnson Trans (Y) 1.98000	Sqrt(Y) 7.22911	C33	C34	C35	C36	C37	
	90 00 70 C22 Drive in time () 2: 11	C17 Time Select Help C10 Dose (X2) 25 4.60 95 4.30 55 4.30	× X1_STD 0.0000 -1.0000	x2_STD Y 0.6667 -0.1667	(Transistor Gain) 1269 903	RPM T 265 259	Type of Cutting Tool 5 302 302	52.26 50.52	Johnson Trans (Y) 1.98000 1.06984	Sqrt(Y) 7.22911 7.10774	C33	C34	C35	C36	C37	
	90 00 70 C22 Drive in time () 2: 1! 2:	C17 Time Select Help C10 Dose (X2) 25 4.60 95 4.30 25 4.00	× [x1_STD 0.0000 -1.0000 1.0000	x2_STD Y 0.6667 -0.1667 -0.1667	(Transistor Gain) 1269 903 1555	RPM T 265 259 221	Type of Cutting Tool 5 302 302 302	Surface Finish 52.26 50.52 45.58	Johnson Trans (Y) 1.98000 1.06984 0.43932	Sqrt(Y) 7.22911 7.10774 6.75130	C33	C34	C35	C36	C37	
Ī	90 90 90 00 00 00 00 00 00 00 00 00 00 0	C17 Tere Select Hep C5 4.60 95 4.30 55 4.30 25 4.00 25 4.70	× (x1_STD 0.0000 -1.0000 1.0000 0.0000	x2,5TD Y 0.6667 -0.1667 -1.0000	(fransistor Gain) 1269 903 1555 1260	RPM T 265 259 221 218	Type of Cutting Tool 302 302 302 302 302 302	Surface Finish 52.26 50.52 45.58 44.78	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	C33	C34	C35	C36	C37	
	90 90 22 Drive in time () 21 11 22 22 21 22 21	C17 Tree Select Help C19 Dose (X2) 25 4.60 95 4.30 25 4.00 25 4.70 25 4.30	× [X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000	x2_STD Y 0.6667 -0.1667 -1.0000 0.9444	(Transistor Gain) 1269 903 1355 1355 1356 1146	RPM T 265 259 221 218 224	Type of Cutting Tool 3 302 302 302 302 302 416	Surface Finish 52.26 50.52 45.58 44.78 33.50	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	C33	C34	C35	C36	C37	
	99- 60- 70- 22 Drive in time (D 22 11- 22 22 22 22 22 22 22 22 22	C17 Tree Select Help C19 Dose (X2) 25 4.60 95 4.30 25 4.00 25 4.70 25 4.30	× X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000	x2_STD Y 0.6667 -0.1667 -1.0000 0.9444 -0.1667	(Transistor Gain) 1269 903 1555 1260 1146 1276	RPM T 265 259 221 218 224 224 212	Type of Cutting Tool 3 302 302 302 302 416 416	turface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	C33	C34	C35	C36	C37	

And in this case, I have reported that place it into single column data are arranged where the data is. So, I will say surface finish is the data and store in which column. So, I have mentioned over here as C31.

So, when you click that one C31 over here, so in this case what happens is that, if I click ok.

(Refer Slide Time: 20:25)

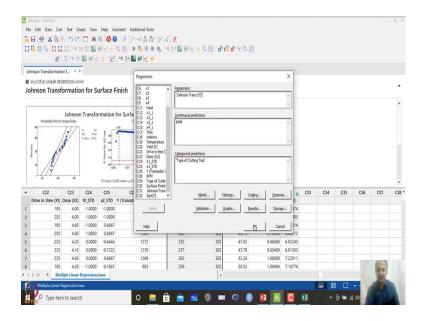

2	8 8 8 6	50	- 4.4	00	tant Additional Tools fx 음		(大学な四日子)	<mark>6 6 4 </mark> 201								
_					Y 🖂 🖬 🖻 🗠 \star											
	bability Plot of S	hnson Transf	ormation	_		×										
-	MULTIPLE UNEAR R		Data	are arranged	85	0.000										
	obability Pl				Surface Finish'	Options										
0	Results do not		C	Subgroups acri	ass rows of:											
_		Lake	una Tranda	mation: Opti	A	x										
		1000	ison iransio	mator: Opt	ons	^	~									
		P-Va	ue to select b	est fit: 0.1	0											
	99															
		1.1														
	20	_	Help		QK Cance											
	95	_	Help	_	OK Cano											
		Select	Help ,	_	OK Cance											
	90		Help	-	OK Canor	ок										
+	90 80 70	Select	Help		OK Cano		C29	C30 g	C31 g	C32 m	C33	C34	C35	C36	C37	
•	90 80 70	Help	Help	K2_STD	(Transistor Gain)	OK Cancel	C29 Type of Cutting Tool				C33	C34	C35	C36	C37	
	90 60 70 C22 Drive in time (Xt) 225	Help	X1_STD 0.0000	0.6667	(Transistor Gain) 1269	OK Cancel RPM 265	Type of Cutting Tool 302	Surface Finish 52.26	Johnson Trans (Y) 1.98000	Sqrt(Y) 7.22911	C33	C34	C35	C36	C37	
7	90 00 00 00 00 00 00 00 00 00	Help Dose (X2)	X1_STD	0.6667	/ (Transistor Gain) 1269 903	OK Cancel RPM 265 259	Type of Cutting Tool	Surface Finish 52.26 50.52	Johnson Trans (Y) 1.98000 1.06984	Sqrt(Y) 7.22911 7.10774	C33	C34	C35	C36	C37	
7	90 00 70 C22 Drive in time (X1) 225 195 255	Help Dose (X2) 4.60	X1_STD 0.0000 -1.0000 1.0000	0.6667	(Transistor Gain) 1269	OK Cancel RPM 265	Type of Cutting Tool 302	Surface Finish 52.26	Johnson Trans (Y) 1.98000 1.06984 0.43932	Sqrt(Y) 7.22911 7.10774 6.75130	C33	C34	C35	C36	C37	
7 8 9	90 00 20 C22 Drive in time (X1) 225 195 255 225	Help Dose (X2) 4.60 4.30 4.30 4.00	X1_STD 0.0000 -1.0000	0.6667 -0.1667 -0.1667 -1.0000	/ (Transistor Gain) 1269 903	OK Cancel RPM 265 259	Type of Cutting Tool 302 302	Surface Finish 52.26 50.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156	Sqrt(Y) 7.22911 7.10774	C33	C34	C35	C36	C37	
7 8 9 10	90 00 222 Drive in time (XI) 225 195 225 225 225	Help Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	0.6667 -0.1667 -0.1667	/ (fransistor Gain) 1269 903 1555 1260 1146	ОК Салові 265 259 221 218 224	Type of Cutting Tool 302 302 302	Surface Finish 52.26 50.52 45.58	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130	C33	C34	C35	C36	C37	
7 8 9 10	90 90 22 C22 Drive in time (XI) 225 195 225 225 225 225 225	Help Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000	0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	(fransistor Gain) 1269 903 1355 1260 1146 1276	ОК Салові 265 259 221 218 224 212	Type of Cutting Tool 302 302 302 302	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838	C33	C34	C35	C36	C37	
7 8 9 10 11	90 00 222 Drive in time (XI) 225 195 225 225 225	Help Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	0.6667 -0.1667 -0.1667 -1.0000 0.9444	/ (fransistor Gain) 1269 903 1555 1260 1146	ОК Салові 265 259 221 218 224	Type of Cutting Tool 302 302 302 302 416	Surface Finish 52.26 50.52 45.58 44.78 33.50	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	C33	C34	C35	C36	C37	
7 8 9 10 11 12 13	90 90 22 C22 Drive in time (XI) 225 195 225 225 225 225 225	Help Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667	(fransistor Gain) 1269 903 1355 1260 1146 1276	ОК Салові 265 259 221 218 224 212	Type of Cutting Tool 302 302 302 302 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	C33	C34	C35	C36	C37	
7 8 9 10 11 12 13 14	90 90 72 72 0 0 0 0 0 0 0 0 0 0 0 0 0	Help Dose (X2) 4.60 4.30 4.30 4.30 4.70 4.30 4.72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1667	0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	(Transistor Gain) 1269 903 1555 1260 1146 1146 1146 11276 1225	0K Cancel 265 259 221 218 224 212 218 224 212 248	Type of Cutting Tool 302 302 302 302 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	C33	C34	C35	C36	C37	
+ 7 8 9 10 11 12 13 14 4	90 90 72 72 0 0 0 0 0 0 0 0 0 0 0 0 0	Help Dose (X2) 4.60 4.30 4.30 4.30 4.70 4.30 4.72 4.30 de Linear Ro	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.1667 rgression.m	0.6667 -0.1667 -0.1667 -1.0000 0.9444 -0.1667 1.0000 -0.1667	(Transistor Gain) 1269 903 1555 1260 1146 1146 1146 11276 1225	0K Cancel 265 259 221 218 224 212 218 224 212 248	Type of Cutting Tool 302 302 302 302 416 416 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	C33	C34			C37	

And options what we have given is that 0.1 is the value to select the best fit, so in this case ok.

(Refer Slide Time: 20:30)

	Edit Data Calc	Stat Gra	ph View	Help Ass	istant Additional Tool	5										Ð
		150		00	fx]= -≍ , n	2420										
1					YMBSK		N.C. A HYDE I		0.6							
				× : 2	TEBEL	·										
oh	inson Transformatio	nf * ×														
8	MULTIPLE LINEAR REG	RESSION MW	x													
Jo	hnson Transfe	ormatio	n for Su	rface Fi	inish											
			Transfor	mation f	or Surface Finish											
	Probability Plot for 0	Driginal Oata			Select a Transform	sation										
	-	11/	N 20 AD 6.791	1 ·	-											
	10	1	P-Webs 0.613	9 as	1											
1	E /4	1		X												
	2 so 1/7			9 64												
6	· N/			A 10	<u>i</u> [2 BAR										
	. /			0. 10 P. Valu	en eso	2										
				a	075 050 Z Value											
	· //	60		6. 0.0 6.00												
	C22	C23	C24	6. 00 000 (P. Volue + 0.00 C25	Z Value 05 meters & 0.005) C26	105 120 C27 C28	C29	C30 5	G1 x	C32 g	C33	C34	C35	C36	C37	
		C23	C24 X1_STD	6. 00 000 (P. Volue + 0.00 C25	Z Value 55 metre & 0.005)	1.05 1.20	C29 Type of Cutting Tool				C33	C34	C35	C36	C37	
	C22 Drive in time (Xt) 225	C23 Dose (X2) 4.60	X1_STD 0.0000	(P-Volur + 0.0) C25 x2_STD 0.6667	Z Value 25 meters ± 0.000 C26 Y (Transistor Gain) 1269	tós 120 C27 C28 RPM 265	Type of Cutting Tool 302	Surface Finish 52.26	Johnson Trans (Y) 1.98000	Sqrt(Y) 7.22911	C33	C34	C35	C36	C37	
	C22 Drive in time (X1) 225 195	C23 Dose (X2) 4.60 4.30	X1_STD	(P-Volue = 0.00 C25 x2_STD 0.6667 -0.1667	Z Value 25 meters 4 00050 C26 Y (Transistor Gain) 1269 903	tós 120 C27 C28 RPM 265 255	Type of Cutting Tool 302 302	Surface Finish	Johnson Trans (Y) 1.98000 1.06984	Sqrt(Y) 7.22911 7.10774	C33	C34	C35	C36	C37	
	C22 Drive in time (Xt) 225 195 255	C23 Dose (X2) 4.60 4.30 4.30	X1_STD 0.0000 -1.0000 1.0000	6 00 6 00	Z Value C26 Y (Transistor Gain) 1269 903 1555	tös täb C27 C28 RPM 265 255 221	Type of Cutting Tool 302 302 302	Surface Finish 52.26 50.52 45.58	Johnson Trans (V) 1.98000 1.06984 0.43932	Sqrt(Y) 7.22911 7.10774 6.75130	C33	C34	C35	C36	C37	
	C22 Drive in time (Xt) 225 195 255 225	C23 Dose (X2) 4.60 4.30 4.30 4.00	X1_STD 0.0000 -1.0000	(P-Volue = 0.00 C25 x2_STD 0.6667 -0.1667	Z Value C26 Y (Transistor Gain) 1269 903 1555	tós 120 C27 C28 RPM 265 255	Type of Cutting Tool 302 302 302	Surface Finish 52.26 50.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	C33	C34	C35	C36	C37	
7 3)	C22 Drive in time (Xt) 225 195 255 225 225 225	C23 Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000	 asterna (19) (P) Volur + 0.00 (C25) (K2_STD) (0.6667) (0.6677) 	Z Value 25 means 4 00050 7 (Transistor Gain) 1269 903 1555 1260 1146	tis tis C27 C28 RPM 265 255 221 216 224 214 224	Type of Cutting Tool 302 302 302 302 416	Surface Finish 52.26 50.52 45.58	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	C33	C34	C35	C36	C37	
1	C22 Drive in time (Xt) 225 195 255 225	C23 Dose (X2) 4.60 4.30 4.30 4.00 4.70	X1_STD 0.0000 -1.0000 1.0000 0.0000	6. 000 (P. Volue + 0.00 C25 K2_STD 0.6667 -0.1667 -0.1667 -1.0000	Z Value C26 Y (Transistor Gain) 1269 903 1555 1260	tós tás C27 C28 RPM 265 255 221 216	Type of Cutting Tool 302 302 302 302 416	Surface Finish 52.26 50.52 45.58 44.78	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179	C33	C34	C35	C36	C37	
1	C22 Drive in time (Xt) 225 195 255 225 225 225	C23 Dose (X2) 4.60 4.30 4.30 4.00 4.70 4.30	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000	 asterna (19) (P) Volur + 0.00 (C25) (K2_STD) (0.6667) (0.6677) 	2 Value 5 meter s c 0000 Y (Transistor Gain) 1269 903 1555 1260 1146 1276	tis tis C27 C28 RPM 265 255 221 216 224 214 224	Type of Cutting Tool 302 302 302 302 416 416	Surface Finish 52:26 50:52 45:58 44:78 33:50	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792	C33	C34	C35	C36	C37	
1	C22 Drive in time (Xt) 225 195 2255 225 225 225 225 225 225	C23 Dose (X2) 4,60 4,30 4,30 4,30 4,00 4,70 4,30 4,72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	 accession accession	2 Value 5 meter s c 0000 Y (Transistor Gain) 1269 903 1555 1260 1146 1276	tis tis C27 C28 RPM 265 255 221 216 224 212 214	Type of Cutting Tool 302 302 302 302 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	C33	C34	C35	C36	C37	
* * 0 1 2 3 4	C22 Drive in time (Xt) 225 195 225 225 225 225 225 225 225 225 225 2	C23 Dose (X2) 4,60 4,30 4,30 4,30 4,00 4,70 4,30 4,72	X1_STD 0.0000 -1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1667	 assistantial assistantial (P. Volue + 0.02 C25 x2_STD 0.6667 -0.1667 -0.1667 -0.1667 1.0000 -0.1667 -0.1667 -0.1667 	2 Value 5 mener s 2000 Y (Transistor Galn) 1269 903 1555 1260 1146 1276 1225	tió tảo C27 C28 RPM 265 221 216 224 212 248	Type of Cutting Tool 302 302 302 302 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536	C33	C34	C35	C36	C37	
1	C22 Drive in time (Xt) 225 195 225 225 225 225 225 225 225 225 225 2	C23 Dose (X2) 4.60 4.30 4.30 4.30 4.70 4.30 4.72 4.30 iple Linear R	X1_STD 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1667 tegression.m	 assistantial assistantial (P. Volue + 0.02 C25 x2_STD 0.6667 -0.1667 -0.1667 -0.1667 1.0000 -0.1667 -0.1667 -0.1667 	2 Value 5 mener s 2000 Y (Transistor Galn) 1269 903 1555 1260 1146 1276 1225	tió tảo C27 C28 RPM 265 221 216 224 212 248	Type of Cutting Tool 302 302 302 302 416 416 416 416	Surface Finish 52.26 50.52 45.58 44.78 33.50 31.23 37.52	Johnson Trans (Y) 1.98000 1.06984 0.43932 0.37156 -0.70575 -1.98000 -0.20696	Sqrt(Y) 7.22911 7.10774 6.75130 6.69179 5.78792 5.58838 6.12536		C34		C36	637	

(Refer Slide Time: 20:32)


So, it will give you the transformation that is required. So, this is the transformed equation transform function over here that is given L n what you see the last over here and this is transforming the variable. So initially P-Value is less than point the original data is less than 0.05 and after transformation P-Value is coming out to be 0.906; that means it has done a rightful transformations.

Now we have to only confirm. And, this is saved over here Johnson's transformation is saved over here in C31 column. Now, what we will do is that, with this column we will regress with RPN and type of over here.

(Refer Slide Time: 21:02)

	le Edit Data Calc				sistant Additional Top												
			Statistics		fx 3= -2 14												
	16 II 🖓 🗖 17		ession		Fitted Line Plot.			副レ 🎍 新、 開 🕴 🚜	1 4 4 th	· 12							
	e :	ANC			Regression Konlinear Regre			Fit Regression Mode	leo .								
	ohnson Transformation		trol Charts		-	ession											
			ity Tools		Stability Study			Y Predict									
-	MULTIPLE LINEAR REGR		bility/Survivi		Orthogonal Reg	pression		 Factorial Plots 									
JC	ohnson Transfo		ictive Analyti		Partial Least Squ	unres	_	Contour Plot									
			ivariate					Surface Plot									
		Time	Series		Binary Fitted Lin			Overlaid Contour Pla Response Optimizer.									
	Probability Plot for Or	Table	ts		Binary Logistic		,	Kesponse Optimizer.									
	99	Non	parametrics		Crdinal Logistic												
	*	Equi	valence Tests		,		fhar										
	1 /A	Pow	er and Sampl	le Size	Poisson Regress	noi	,										
	Recent			Value		1											
	· ///			6 0.0 ECO	0.75 6.90	1.05	1.20 Ref F										
	1 20 ED	60		8.60		1.05											¥
+	1, 20 40 C22	60 C23	C24	8.60	675 690 Z Value	1.05		C29	C30 5	3 G1 8	C32 😰	C33	C34	C35	C36	C37	v C38
•		C23	C24 X1_STD	(P-Volue + 0) (25	6/5 6/0 Z Value 005 metri 6 0 005)	1.05	1,20					C33	C34	C35	C36	C37	• C38
	C22 Drive in time (X1) D 195	C23 ose (X2) 4.00	X1_STD -1.0000	(P-Volue + 0) C25 x2_STD -1.0000	6/5 6/6 Z Value 005 meters 4 0005) C26 Y (Transistor Gain) 1004	1.05	1.20 C28	C59	Surface Finish 42.00	Johnson Trans (Y) 0.15364	Sqrt(Y) 6.48074	C33	C34	C35	C36	C37	v C38
1	C22 Drive in time (X1) D	C23 lose (X2)	X1_STD -1.0000 1.0000	(P-Volue + 0) (25 x2_STD	675 690 Z Value 005 meter & 0005 C26 Y (Transistor Gain)	1.05	C28 RPM	C29 Type of Cutting Tool	Surface Finish	Johnson Trans (Y) 0.15364	Sqrt(Y) 6,48074 6,48305	C33	C34	C35	C36	C37	C38
1 2	C22 Drive in time (X1) D 195	C23 ose (X2) 4.00	X1_STD -1.0000 1.0000 -1.0000	(P-Volue + 0) C25 x2_STD -1.0000	6/5 8/0 Z Value 005 meets 4 0005 Y (Transistor Gain) 1004 1636 852	1.05	C28 RPM 225	C29 Type of Cutting Tool 302	Surface Finish 42.00 42.03 50.10	Johnson Trans (V) 0.15364 0.15592 0.98224	Sqrt(Y) 6.48074 6.48305 7.07814	C33	C34	C35	C36	C37	¢
1 2 3	C22 Drive in time (X1) D 195 255 195 255	C23 ose (X2) 4.00 4.00	X1_STD -1.0000 1.0000 -1.0000 1.0000	(P-Volue = 0 (P-Volue = 0 C25 x2_STD -1.0000 -1.0000 0.6667 0.6667	615 640 Z Value 005 menns 60005 V (Transistor Gain) 1004 1636 852 1506	1.05	225 200 250 245	C29 Type of Cutting Tool 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212	C33	C34	C35	C36	C37	C38
1 2 3 4	C22 Drive in time (X1) D 195 255 195 255 225	C23 lose (X2) 4.00 4.00 4.60	X1_STD -1.0000 1.0000 -1.0000 1.0000 0.0000	(P-Volue = 0 (P-Volue = 0 x2_STD -1.0000 0.6667 0.6667 -0.4444	6/5 6/6 Z Value 005/means ± 0000 Z Value C26 Y (Transistor Gain) 1004 1636 852 1506 1272	1.05	120 C28 RPM 225 200 250 245 235	C29 Type of Cutting Tool 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243	C33	C34	C35	C36	C37	C38
1 2 3 4 5 6	C22 Drive in time (X1) D 195 255 195 255 225 225	C23 ose (X2) 4.00 4.00 4.60 4.60 4.20 4.10	X1_STD -1.0000 1.0000 -1.0000 1.0000 0.0000 0.0000	(P-Volue + 0) (P-Volue + 0) (P	2 6/5 6/6 2 Value 005 metrix 4 0000 2 Value 2	1.05	228 RPM 225 200 250 245 235 237	C29 Type of Cutting Tool 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303	C33	C34	C35	C36	C37	C38
1 2 3 4 5 6	C22 Drive in time (X) D 195 255 195 255 225 225 225 225 225	C23 tose (X2) 4.00 4.00 4.60 4.60 4.20 4.10 4.60	X1_STD -1.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	(P-Volue + 0) (P-Volue + 0) (P	eis eie 2 Value 2 Va	1.05	225 200 250 245 235 237 265	C29 Type of Cutting Tool 302 302 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66668 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	C33	C34	C35	C36	C37	C38
1 2 3 4 5 6 7	C22 Drive in time (Xt) D 195 255 195 255 255 225 225 225 225 225 195	C23 vose (X2) 4.00 4.60 4.60 4.20 4.10 4.60 4.30	X1_STD -1.0000 1.0000 -1.0000 1.0000 0.0000 0.0000 -1.0000	(P-Volue + 0) C25 x2_STD -1.0000 0.6667 0.6667 -0.4444 -0.7222 0.6667 -0.1667	2 6/5 6/6 2 Value 005 metrix 4 0000 2 Value 2	1.05	228 RPM 225 200 250 245 235 237	C29 Type of Cutting Tool 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66668 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303	C33	C34	C35	C36	C37	C38
1 2 3 4 5 6 7 8	C22 Drive in time (Xt) D 195 255 195 255 255 225 225 225 225 225 195	C23 vose (X2) 4.00 4.60 4.60 4.20 4.10 4.60 4.30	X1_STD -1.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	(P-Volue + 0) C25 x2_STD -1.0000 0.6667 0.6667 -0.4444 -0.7222 0.6667 -0.1667	eis eie 2 Value 2 Va	1.05	225 200 250 245 235 237 265	C29 Type of Cutting Tool 302 302 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26 50.52	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66668 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	C33	C34	C35	C36	C37	C38
+ 1 2 3 4 5 6 7 8 4	C22 Drive in time (Xt) D 195 255 195 255 255 225 225 225 225 225 195	C23 ose (X2) 4.00 4.00 4.60 4.60 4.10 4.10 4.60 4.30 ose Linear	X1_STD -1.0000 1.0000 -1.0000 1.0000 0.0000 0.0000 -1.0000 -1.0000 Regression.r	(P-Volue + 0) C25 x2_STD -1.0000 0.6667 0.6667 -0.4444 -0.7222 0.6667 -0.1667	eis eie 2 Value 2 Va	1.05	225 200 250 245 235 237 265	C29 Type of Cutting Tool 302 302 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26 50.52	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66668 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	C33	C34		C36	C37	C38

(Refer Slide Time: 21:05)

So, what we will do is that we will go to regression, regression analysis, fit regression, instead of this square root what we will do is that we will use Johnson's transform variable and other things remain same. So, I will click ok.

(Refer Slide Time: 21:14)

	nitab - Untitled														-	8)
File	Edit Data Cali	c Stat Gr	aph View	Help As	sistant Additional Too	ls										
2	3 👲 X 🖻	3 50	- A	400) fx 2= -:	244 2										
		I CI LY	-0.	ak +	收回 # ◎ # !	●先 47 >>■	SK**	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	图							
					YMERKI											
Re	ression Analysis: Jo															
	ULTIPLE LINEAR REI															
_				Trans /) versus RPM,	Tuno of Cutt	ng Tool									•
NC	gression And	ary 515. 70	mison	iraiis (i) versus krivi,	type of cutt	ing loor									
1	Aethod															*
	ategorical predicto	or coding	1.0)													
	ross-validation		10-fold													
1	tepwise Select	ion of Ter	ms													
	to enter = 0.15. c	to remove	= 0.15													
(to enter = 0.15, c	to remove	= 0.15													
			= 0.15													
	to enter = 0.15, c		= 0.15													
	legression Equ		c24	C25	C26	C27 C28	C29	C30 10	C31 👦	C32 g	C4	C34	C35	C36	C37	v C38
	egression Equ	ation C23			C26 Y (Transistor Gain)	C27 C28 RPM	C29 Type of Cutting Tool			C32 g Sqrt(Y)	CAL	C34	C35	C36	C37	¥ C38
•	tegression Equ	ation C23	C24				Type of Cutting Tool					C34	C35	C36	C37	v C38
•	c22 C22	c23 Dose (X2)	C24 X1_STD	x2_STD	Y (Transistor Gain)	RPM	Type of Cutting Tool 5 302	Surface Finish	Johnson Trans (Y)	Sqrt(Y)	SRES	C34	C35	C36	C37	C38
•	C22 C22 Drive in time (X1) 195	C23 Dose (X2) 4.00	C24 X1_STD -1.0000	x2_STD -1.0000	Y (Transistor Gain) 1004	RPM 2	Type of Cutting Tool 5 302 0 302	Surface Finish 42.00	Johnson Trans (Y) 0.15364	Sqrt(Y) 6.48074	SRES -1.19021	C34	C35	C36	C37	C 38
•	C22 C22 Drive in time (X1) 195 255	C23 Dose (X2) 4.00 4.00	C24 X1_STD -1.0000 1.0000	x2_STD -1.0000 -1.0000	Y (Transistor Gain) 1004 1636	RPM 2	Type of Cutting Tool 5 302 0 302 0 302	Surface Finish 42.00 42.03	Johnson Trans (Y) 0.15364 0.15592	Sqrt(Y) 6.48074 6.48305	SRES -1.19021 1.48612	C34	C35	C36	C37	C38
•	cz2 Crive in time (X1) 195 255 195 255 225	C23 Dose (X2) 4.00 4.00 4.60	C24 X1_STD +1.0000 1.0000 -1.0000	x2_STD -1.0000 -1.0000 0.6667	Y (Transistor Gain) 1004 1636 852 1506 1272	RPM 2 2 2	Type of Cutting Tool 5 302 0 302 0 302 5 302	Surface Finish 42.00 42.03 50.10	Johnson Trans (Y) 0.15364 0.15592 0.98224	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721	C34	C35	C36	C37	C38
• 1 2 3 1	czz Crive in time (X1) 195 255 195 255	C23 Dose (X2) 4.00 4.60 4.60	C24 X1_STD -1.0000 -1.0000 1.0000	x2_STD -1.0000 -1.0000 0.6667 0.6667	Y (Transistor Gain) 1004 1636 852 1506	RPM 2 2 2 2	Type of Cutting Tool 5 302 0 302 0 302 5 302 5 302 5 302	Surface Finish 42.00 42.03 50.10 48.75	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721	C34	C35	C36	C37	C38
• 1 2 3 1 5 5	cz2 Crive in time (X1) 195 255 195 255 225	C23 Dose (X2) 4.00 4.60 4.60 4.60 4.20	C24 X1_STD -1.0000 1.0000 -1.0000 0.0000	x2_STD -1.0000 -1.0000 0.6667 0.6667 -0.4444	Y (Transistor Gain) 1004 1636 852 1506 1272	RPM 2 2 2 2 2 2 2	Type of Cutting Tool 5 302 302 0 302 302 5 302 302 5 302 302 7 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110	C34	C35	C36	C37	C38
• 1 2 3 4 5 6 7	c22 Drive in time (X1) 195 255 195 255 225 225 225	C23 Dose (X2) 4.00 4.60 4.60 4.60 4.20 4.10	C24 X1_STD -1.0000 1.0000 -1.0000 0.0000 0.0000	x2_STD -1.0000 -1.0000 0.6667 0.6667 -0.4444 -0.7222	Y (Transistor Gain) 1004 1636 852 1506 1272 1270	RPM 2 2 2 2 2 2 2 2 2 2 2	Type of Cutting Tool 5 302 0 302 0 302 5 302 5 302 7 302 5 302 7 302 9 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79	Johnson Trans (V) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110	C34	C35	C36	C37	C38
+	C22 C22 Drive in time (X1) 195 255 195 225 225 225 225 225 195	C23 Dose (X2) 4.00 4.60 4.60 4.60 4.20 4.10 4.60	C24 X1_STD -1.0000 -1.0000 -1.0000 0.0000 0.0000 -1.0000 -1.0000	x2_STD -1.0000 -1.0000 0.6667 0.6667 -0.4444 -0.7222 0.6667 -0.1667	Y (Transistor Gain) 1004 1636 852 1506 1272 1270 1269	RPM 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Type of Cutting Tool 5 302 0 302 0 302 5 302 5 302 7 302 5 302 5 302 7 302 5 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110 2.14214	C34	C35	C36	C37	 C38
+ 1 2 3 4 5 6 7 8	tegression Equ 222 Drive in time (xt) 195 255 255 225 225 225 225 225 2	223 Dose (X2) 4.00 4.60 4.60 4.60 4.20 4.10 4.60 4.30 tiple Linear	C24 X1_STD -1.0000 1.0000 1.0000 0.0000 0.0000 -1.0000 Regression.	x2_STD -1.0000 -1.0000 0.6667 0.6667 -0.4444 -0.7222 0.6667 -0.1667	Y (Transistor Gain) 1004 1636 852 1506 1272 1270 1269	RPM 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Type of Cutting Tool 5 302 0 302 0 302 5 302 5 302 7 302 5 302 7 302 9 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110 2.14214 -1.03456				C37	 C38
+ 1 2 3 4 5 6 7 8	tegression Equ cz 201vie in the 0x0 1195 255 255 225 225 225 225 225 225 225 2	223 Dose (X2) 4.00 4.60 4.60 4.60 4.20 4.10 4.60 4.30 tiple Linear	C24 X1_STD -1.0000 -1.0000 0.0000 0.0000 0.0000 -1.0000 r1.0000 Regression.	x2_STD -1.0000 -1.0000 0.6667 0.6667 -0.4444 -0.7222 0.6667 -0.1667	Y (Transistor Gain) 1004 1636 852 1506 1527 1272 1270 1269 903	RPM 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Type of Cutting Tool 5 302 0 302 0 302 5 302 5 302 7 302 5 302 7 302 9 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26 50.52	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110 2.14214 -1.03456				C37	 C38

(Refer Slide Time: 21:17)

					sistant Additional Too											
					fx 3= -= + +				177							
1							8日本分园 6	CO Do sy sty	83							
		E Y N	BBR	× 12	YNBR	*										
łe,	gression Analysis: J	ohns v x														
	MULTIPLE LINEAR RE	GRESSION MI	vx													
Re	egression An	alysis: Jo	hnson	Trans (Y) versus RPM,	Type of Cuttin	Iool									
	Regression Equ															
	Type of															
1	Cutting															
	Tool															
	302 Johnson	Trans (f) =	-5.267+	0.02544 RPI	м											
		0	6 724 +													
	416 Johnson	Trans (Y) =	-0-124 +	U.UZSAA KPI	M											
	416 Johnson Coefficients	Trans (Y) =	-0.724 *	0.02544 8.91	м											
-	Coefficients Term	Coe	SE Coef	T-Value	P-Value VIF											
-	Coefficients Term Constant	Coe -5.267	5E Coef	T-Value -6.27	P-Value VIF 0.000	617 616			-	C 11	(1)	-	01	01	637	
	Coefficients Term Constant C22	Coe -5.267 C23	f SE Coef 0.840 C24	T-Value -6.27 C25	P-Value VIF 0.000 C26	C27 C28	C29 Type of Cutting Tool	C30 g		C32 g	C33 SRES	C34	C35	C36	C37	
	Coefficients Term Constant	Coe -5.267 C23	5E Coef	T-Value -6.27 C25	P-Value VIF 0.000	C27 C28 RPM 225	Type of Cutting Tool			C32 5 Sqrt(Y) 6,48074	C33 SRES -1,19021	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (X1)	Coe -5.267 C23 Dose (X2)	f SE Coef 7 0.840 C24 X1_STD	T-Value -6.27 C25 x2_STD	P-Value VIF 0.000 C26 Y (Transistor Gain)	RPM	Type of Cutting Tool 302	Surface Finish	Johnson Trans (Y)	Sqrt(Y)	SRES	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (X1) 195	Coe -5.267 C23 Dose (X2) 4.00	f SE Coef 0.840 C24 X1_STD -1.0000	T-Value -6.27 C25 x2_STD -1.0000	P-Value VIF 0.000 C26 Y (Transistor Gain) 1004	RPM 225	Type of Cutting Tool 302 302	Surface Finish 42.00	Johnson Trans (Y) 0.15364	Sqrt(Y) 6.48074	SRES -1.19021	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (X1) 195 255	Coe -5.267 C23 Dose (X2) 4.00 4.00	f SE Coef 7 0.840 C24 X1_STD +1.0000 1.0000	T-Value -6.27 c25 x2_STD -1.0000 -1.0000	P-Value VIF 0.000 C26 Y (Transistor Gain) 1004 1636	RPM 225 200	Type of Cutting Tool 302 302 302	Surface Finish 42.00 42.03 50.10	Johnson Trans (Y) 0.15364 0.15592	Sqrt(Y) 6.48074 6.48305	SRES -1.19021 1.48612	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (X1) 195 255 195	Coe -5.267 C23 Dose (X2) 4.00 4.00 4.00	f SE Coef 7 0.840 C24 X1_STD -1.0000 1.0000 -1.0000	T-Value -6.27 x2_STD -1.0000 -1.0000 0.6667	P-Value VIF 0.000 C26 Y (Transistor Gain) 1004 1636 852	RPM 225 200 250	Type of Cutting Tool 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75	Johnson Trans (Y) 0.15364 0.15592 0.98224	Sqrt(Y) 6.48074 6.48305 7.07814	SRES -1.19021 1.48612 -0.43980	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (X1) 195 255 195 255	Coe -5.267 C23 Dose (X2) 4.00 4.00 4.60 4.60	f SE Coef 7 0.840 C24 X1_STD -1.0000 1.0000 1.0000	T-Value -6.27 x2_STD -1.0000 -1.0000 0.6667 0.6667	P-Value VIF 0.000 C26 Y (Transistor Gain) 1004 1636 852 1506	RPM 225 200 250 245	Type of Cutting Tool 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212	SRES -1.19021 1.48612 -0.43980 -0.76768	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (X1) 195 255 195 255 255 225	Coe -5.267 C23 Dose (X2) 4.00 4.60 4.60 4.60 4.20	f SE Coef 0.840 C24 X1_STD -1.0000 1.0000 1.0000 0.0000	T-Value -6.27 C25 x2_STD -1.0000 -1.0000 0.6667 0.6667 -0.4444	P-Value VIF 0.000 C26 Y (Transistor Gain) 1004 1636 852 1506 1272	RPM 225 200 250 245 245 235	Type of Cutting Tool 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721	C34	C35	C36	C37	
	Coefficients Term Constant C22 Drive in time (X1) 195 255 195 255 225 225 225	Coe -5.267 Dose (X2) 4.00 4.00 4.60 4.60 4.20 4.10	f SE Coef 7 0.840 C24 X1_STD -1.0000 1.0000 0.0000 0.0000 0.0000	T-Value -6.27 c25 x2_STD -1.0000 -1.0000 0.6667 0.6667 -0.4444 -0.7222	P-Value VIF 0.000 C26 Y (Transistor Gain) 1004 1636 852 852 1506 1272 1270	RPM 225 200 250 245 245 235 235	Type of Cutting Tool 302 302 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79	Johnson Trans (V) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110	C34	C35	C36	C37	
	Coefficients Term Constant Drive in time (X1) 195 255 255 225 225 225 225 225 225 225 2	Coe -5.267 Dose (X2) 4.00 4.00 4.60 4.60 4.10 4.60	f SE Coef 0.840 C24 X1_STD -1.0000 -1.0000 0.0000 0.0000 0.0000 -1.0000 -1.0000	T-Value -6,27 c25 x2_STD -1,0000 -1,0000 0,6667 0,6667 -0,4444 -0,7222 0,6667 -0,1667	P-Value VIF 0.000 C26 Y (Transistor Gain) 1004 1036 852 1506 1272 1270 1269	RPM 225 200 250 245 235 235 237 265	Type of Cutting Tool 302 302 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26 50.52	Johnson Trans (V) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110 2.14214	C34	C35	C36	C37	
	Coefficients Term Constant Drive in time (X1) 195 255 255 225 225 225 225 225 225 225 2	Coe -5.267 C23 Dose (X2) 4.00 4.60 4.60 4.60 4.10 4.60 4.30 Itiple Linear I	f SE Coef 0.840 C24 X1_STD -1.0000 -1.0000 0.0000 0.0000 0.0000 -1.0000 c.0000 c.0000 c.0000	T-Value -6,27 c25 x2_STD -1,0000 -1,0000 0,6667 0,6667 -0,4444 -0,7222 0,6667 -0,1667	P-Value VIF 0.000 C26 Y (Transistor Gain) 1004 1036 852 1506 1272 1270 1269	RPM 225 200 250 245 235 235 237 265	Type of Cutting Tool 302 302 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26 50.52	Johnson Trans (V) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110 2.14214 -1.03456	C34		C36	C37	

And we will get a residual over here and we will get the equation. So, after Johnston's transformed variable with RPN, this is given for 302 and 416 types of tools like that.

(Refer Slide Time: 21:24)

					ssistant Additional Too										-	Ø
					fx == + +		8比★英国16		50							
-					₩ × • •		B K X 19 101	CO 0 Y Y	63							
D.	egression Analysis: Jol	_	_		I LEBL											
	MULTIPLE UNEAR REG															
-				Trans ()) versus RPM,	Tuno of Cuttin	a Tool									
	egression Ana	iysis: Jo	Juison	frans () versus kpivi,	Type of Cutum	g 1001									
	Model Summary															
	S R-sq 0.271870 92.12%			red) 10-h .69% 0.30	old S 10-fold R-sq 2815 88.49%											
	OLETION PETER	6		vin 4.20	00.451											
	Analysis of Varia															
		ince														
		100	1000													
	Source	DF		Adj MS F												
			14.6796	7.3398	Value P-Value 99.30 0.000 51.45 0.000											
	Source Regression	2	14.6796 3.8030	7.3398 3.8030	99.30 0.000											
	Source Regression RPM Type of Cutting Too Error	2 1 1 1 17	14.6796 3.8030 10.6112 1 1.2565	7.3398 3.8030 0.6112 0.0739	99.30 0.000 51.45 0.000 43.56 0.000											
	Source Regression RPM Type of Cutting Too Error C22	2 1 1 17 C23	14.6796 3.8030 10.6112 1 1.2565 C24	7.3398 3.8030 0.6112 0.0739 C25	99.30 0.000 51.45 0.000 43.56 0.000 C26	Q7 Q8	C29	C30 5			G3	C34	C35	C36	C37	c
	Source Regression RPM Type of Cutting Too Error C22 Drive in time (X1)	2 1 1 17 C23 Dose (X2)	14.6796 3.8030 10.6112 1 1.2565 C24 X1_STD	7.3398 3.8030 0.6112 0.0739 C25 x2_STD	99.30 0.000 51.45 0.000 43.56 0.000 C26 Y (Transistor Gain)	RPM	Type of Cutting Tool	Surface Finish	Johnson Trans (Y)	Sqrt(Y)	SRES	C34	C35	C36	C37	(
	Source Regression RPM Type of Cutting Too Error C22 Drive in time (X1) 1 195	2 1 1 17 C23 Dose (X2) 4.00	14.6796 3.8030 10.6112 1 1.2565 C24 X1_STD -1.0000	7.3398 3.8030 0.6112 0.0739 C25 x2_STD -1.0000	99.30 0.000 51.45 0.000 43.56 0.000 C26 Y (Transistor Gain) 1004	RPM 225	Type of Cutting Tool 302	Surface Finish 42.00	Johnson Trans (Y) 0.15364	Sqrt(Y) 6,48074	SRES -1.19021	C34	C35	C36	C37	(
	Source Regression RPM Type of Cutting Too Error C22 Drive in time (X1) 195 255	2 1 17 C23 Dose (X2) 4.00 4.00	14.6796 3.8030 10.6112 1 1.2565 C24 X1_STD -1.0000 1.0000	7.3398 3.8030 0.6112 0.0739 C25 x2_STD -1.0000 -1.0000	99.30 0.000 51.45 0.000 143.56 0.000 C26 Y (Transistor Gain) 1004 1636	RPM 225 200	Type of Cutting Tool 302 302	Surface Finish 42.00 42.03	Johnson Trans (Y) 0.15364 0.15592	Sqrt(Y) 6,48074 6,48305	SRES +1.19021 1.48612	C34	C35	C36	C37	(
•	Source Regression RPM Type of Cutting Too Error C22 Drive in time (X1) 195 255 195	2 1 1 17 C23 Dose (X2) 4.00	14.6796 3.8030 10.6112 1 1.2565 C24 X1_STD -1.0000 1.0000 -1.0000	7.3398 3.8030 0.6112 0.0739 C25 x2_STD -1.0000	99.30 0.000 51.45 0.000 43.56 0.000 Y (Transistor Gain) 1004 1636 852	RPM 225	Type of Cutting Tool 302 302 302	Surface Finish 42.00	Johnson Trans (Y) 0.15364 0.15592 0.98224	Sqrt(Y) 6.48074 6.48305 7.07814	SRES -1.19021 1.48612 -0.43980	C34	C35	C36	C37	c
•	Source Regression RPM Type of Cutting Too Error C22 Drive in time (X1) 195 255	2 1 17 C23 Dose (X2) 4.00 4.00 4.00	14.6796 3.8030 10.6112 1 1.2565 C24 X1_STD -1.0000 1.0000 1.0000	7.3398 3.8030 0.6112 0.0739 C25 x2_STD -1.0000 -1.0000 0.6667	99.30 0.000 51.45 0.000 143.56 0.000 C26 Y (Transistor Gain) 1004 1636	RPM 225 200 250	Type of Cutting Tool 302 302	Surface Finish 42.00 42.03 50.10	Johnson Trans (Y) 0.15364 0.15592	Sqrt(Y) 6,48074 6,48305	SRES +1.19021 1.48612	C34	C35	C36	C37	c
	Source Regression RPM Type of Cutting Too Error C22 Drive in time (XI) 195 255 195	2 1 17 C23 Dose (K2) 4.00 4.60 4.60	14.6796 3.8030 10.6112 1 1.2565 C24 X1_STD -1.0000 1.0000 1.0000 0.0000	7.3398 3.8030 0.6112 0.0739 c25 x2_STD -1.0000 0.6667 0.6667	99.30 0.000 51.45 0.000 43.56 0.000 Y (Transistor Gain) 1004 1636 852 1506	RPM 225 200 250 245	Type of Cutting Tool 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212	SRES -1.19021 1.48612 -0.43980 -0.76768	C34	C35	C36	C37	(
	Source Regression RPM Type of Cutting Too Error C22 Drive in time (XI) 195 2255 195 2255 225	2 1 1 17 C23 Dose (X2) 4.00 4.00 4.60 4.60 4.60	14.6796 3.8030 10.6112 1 1.2565 C24 X1_STD -1.0000 1.0000 1.0000 0.0000	7.3398 3.8030 0.6112 0.0739 c25 x2_STD -1.0000 -1.0000 0.6667 -0.4444	99.30 0.000 51.45 0.000 43.56 0.000 Y (Transistor Gain) 1004 1636 852 1506 1272	RPM 225 200 250 245 245 235	Type of Cutting Tool 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92	Johnson Trans (V) 0.15364 0.15592 0.98224 0.76990 0.66868	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721	C34	C35	C36	C37	(
	Source Regression RPM Type of Cutting Too Error C22 Drive in time (X1) 195 255 195 255 225 225	2 1 1 17 C23 Dose (X2) 4.00 4.00 4.60 4.60 4.60 4.60 4.10	14.6796 3.8030 10.6112 1 1.2565 C24 X1_STD -1.0000 1.0000 0.0000 0.0000 0.0000	7.3398 3.8030 0.6112 0.0739 C25 x2_STD -1.0000 -1.0000 0.6667 -0.4444 -0.7222	99.30 0.000 51.45 0.000 C26 Y (Transistor Gain) 1004 1636 852 1506 1506 1272 1270	RPM 225 200 250 245 235 235 237	Type of Cutting Tool 302 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79	Johnson Trans (V) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110	C34	C35	C36	C37	(
•	Source Regression RPM Type of Cutting Too Error C22 Drive in time (X1) 1955 2255 195 2255	2 1 1 17 C23 Dose (X2) 4.00 4.00 4.60 4.60 4.20 4.10 4.30	14.6796 3.8030 10.6112 1.2565 C24 X1_STD -1.0000 1.0000 0.0000 0.0000 0.0000	7.3398 3.8030 0.6112 0.0739 C25 x2_STD -1.0000 -1.0000 0.6667 -0.4444 -0.7222 0.6667 -0.1667	99.30 0.000 51.45 0.000 C26 Y (Transistor Gain) 1004 1636 852 1506 1507 1272 1270 1269	RPM 225 200 250 245 235 235 237 265	Type of Cutting Tool 302 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26 50.52	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110 2.14214	C34	C35	C36	C37	c
•	Source Regression RPM Type of Cutting Too Error C22 Drive in time (X1) 1955 2255 195 2255	2 1 1 17 C23 Dose (X2) 4.00 4.00 4.60 4.60 4.20 4.10 4.60 4.30 iple Linear	14.6796 3.8030 10.6112 1 1.2565 C24 X1_STD -1.0000 1.0000 0.0000 0.0000 -1.0000 Regression.	7.3398 3.8030 0.6112 0.0739 C25 x2_STD -1.0000 -1.0000 0.6667 -0.4444 -0.7222 0.6667 -0.1667	99.30 0.000 51.45 0.000 C26 Y (Transistor Gain) 1004 1636 852 1506 1507 1272 1270 1269	RPM 225 200 250 245 235 235 237 265	Type of Cutting Tool 302 302 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26 50.52	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110 2.14214 -1.03456	C34		C36	C37	(

And, what we observe is that 91 percent R square adjusted 88, so very close.

(Refer Slide Time: 21:28)

	e Edit Data Calc	Stat G	raph View	Help A	ssistant Additional Too	ols											
-	8 8 8 6	500		400	fx 2-2 4	8 2 4	2										
1		LI Y	×GI	Rk +	我回 # 卷 #	# 先 4Y	×	111 11 11	6 d 4 1	間							
					YMERK												
		_	_		C C C C												
Re	egression Analysis: Jol	hns v	×														
₿	MULTIPLE LINEAR REG	RESSION M	WX														
R	egression Ana	lysis: Jo	ohnson	Trans (() versus RPM,	Type of C	Cuttin	g Tool									
	Analysis of Varia	ince															
	Source	DF	Adj SS	Adj MS F	Value P-Value												
	Regression	2	14.6796	7.3398	99.30 0.000												
	RPM	1		3.8030	51.45 0.000	6											
	Type of Cutting Too				143.56 0.000	R											
	Error Lack-of-Fit	17		0.0739													
				0.0741	1.05 0.656												
	Pure Error	1	0.0706	0.0705	1.05 0.656												
		1			1.05 0.656												
	Pure Error	1 19	0.0706	0.0705													
•	Pure Error Total	1 19 C23	0.0706 15.9362 	0.0706 C25	C26	C27	C28	C29	C30 5			C33	C34	C35	C36	C37	
	Pure Error Total	1 19 C23	0.0706 15.9362 C24 X1_STD	0.0705 C25 x2_STD			RPM	C29 Type of Cutting Tool	Surface Finish	Johnson Trans (Y)	C32 p Sqrt(Y)	SRES	C34	C35	C36	C37	
•	Pure Error Total	1 19 C23	0.0706 15.9362 	0.0706 C25	C26 Y (Transistor Gain) 1004		RPM 225		Surface Finish 42.00	Johnson Trans (Y) 0.15364			C34	C35	C36	C37	
	Pure Error Total C22 Drive in time (XI)	1 19 C23 Dose (X2) 4.00	0.0706 15.9362 C24 X1_STD -1.0000 1.0000	0.0705 C25 x2_STD -1.0000 -1.0000	C26 Y (Transistor Gain) 1004 1636		RPM 225 200	Type of Cutting Tool 302 302	Surface Finish 42.00 42.03	Johnson Trans (Y) 0.15364 0.15592	Sqrt(Y) 6,48074 6,48305	SRES -1.19021 1.48612	C34	C35	C36	C37	
•	Pure Error Total C22 Drive in time (X1) 1 195	1 19 C23 Dose (X2) 4.00	0.0706 15.9362 C24 X1_STD -1.0000 -1.0000	0.0705 C25 x2_STD -1.0000 0.6667	C26 Y (Transistor Gain) 1004 1636 852		RPM 225 200 250	Type of Cutting Tool 302	Surface Finish 42.00 42.03 50.10	Johnson Trans (Y) 0.15364	Sqrt(Y) 6.48074 6.48305 7.07814	SRES -1.19021 1.48612 -0.43980	C34	C35	C36	C37	
	Pure Error Total C22 Drive in time (X1) 195 255	1 19 C23 Dose (X2) 4.00	0.0706 15.9362 C24 X1_STD -1.0000 1.0000	0.0705 C25 x2_STD -1.0000 -1.0000	C26 Y (Transistor Gain) 1004 1636		RPM 225 200	Type of Cutting Tool 302 302	Surface Finish 42.00 42.03	Johnson Trans (Y) 0.15364 0.15592	Sqrt(Y) 6,48074 6,48305	SRES -1.19021 1.48612	C34	C35	C36	C37	
	Pure Error Total C22 Drive in time (X1) 195 255 195	1 19 C23 Dose (X2) 4.00 4.00 4.60	0.0706 15.9362 C24 X1_STD -1.0000 -1.0000	0.0705 C25 x2_STD -1.0000 0.6667	C26 Y (Transistor Gain) 1004 1636 852		RPM 225 200 250	Type of Cutting Tool 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92	Johnson Trans (Y) 0.15364 0.15592 0.98224	Sqrt(Y) 6.48074 6.48305 7.07814	SRES -1.19021 1.48612 -0.43980	C34	C35	C36	C37	
	Pure Error Total C22 Drive in time (XI) 195 255 195 255	1 19 C23 Dose (X2) 4.00 4.60 4.60	0.0706 15.9362 C24 X1_STD -1.0000 1.0000 1.0000	0.0706 C25 x2_STD -1.0000 0.6667 0.6667	C26 Y (Transistor Gain) 1004 1636 852 1506		RPM 225 200 250 245	Type of Cutting Tool 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212	SRES -1.19021 1.48612 -0.43980 -0.76768	C34	C35	C36	C37	
	Pure Error Total C22 Drive in time (XI) 195 255 195 255 225	1 19 C23 Dose (X2) 4.00 4.60 4.60 4.60 4.60	0.0706 15.9362 C24 X1_STD -1.0000 1.0000 0.0000	C25 x2_STD -1.0000 0.6667 -0.4444	C26 Y (Transistor Gain) 1004 1636 852 1506 1272		RPM 225 200 250 245 235	Type of Cutting Tool 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721	C34	C35	C36	C37	
	Pure Error Total C22 Drive in time (X1) 195 255 195 225 225 225	1 19 C23 Dose (X2) 4.00 4.60 4.60 4.60 4.60 4.60 4.10	0.0706 15.9362 C24 X1_STD -1.0000 1.0000 0.0000 0.0000 0.0000	0.0706 C25 x2_STD -1.0000 0.6667 0.6667 -0.4444 -0.7222	C26 Y (Transistor Gain) 1004 1636 852 1506 1272 1270		RPM 225 200 250 245 235 237	Type of Cutting Tool 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110	C34	C35	C36	C37	
	Pure Error Total C22 Drive in time (XI) 1 195 255 195 2255 225 225 225 225 225 225	1 19 C23 Dose (X2) 4.00 4.00 4.60 4.60 4.20 4.10 4.30	0.0706 15.9362 C24 X1_STD -1.0000 1.0000 0.0000 0.0000 0.0000	0.0706 C25 x2_STD -1.0000 0.6667 -0.4444 -0.7222 0.6667 -0.1667	C26 Y (Transistor Gain) 1004 1636 852 1506 1527 1272 1270 1270 1269		RPM 225 200 250 245 235 237 265	Type of Cutting Tool 302 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110 2.14214	C34	C35	C36	C37	
	Pure Error Total C22 Drive in time (XI) 1 195 255 195 2255 225 225 225 225 225 225	1 19 C23 Dose (X2) 4.00 4.00 4.60 4.60 4.60 4.20 4.10 4.30 iple Linear	0.0706 15.9362 C24 X1_STD -1.0000 -1.0000 0.0000 0.0000 -1.0000 Regression	0.0706 C25 x2_STD -1.0000 0.6667 -0.4444 -0.7222 0.6667 -0.1667	C26 Y (Transistor Gain) 1004 1636 852 1506 1527 1272 1270 1270 1269		RPM 225 200 250 245 235 237 265	Type of Cutting Tool 302 302 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110 2.14214 -1.03456	C34		C36	C37	

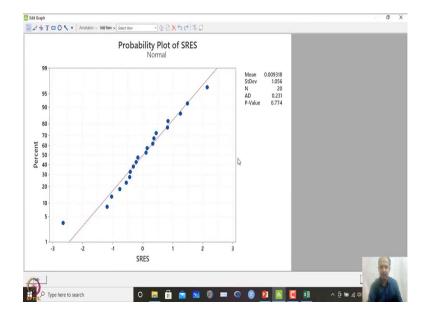
So, this is quite acceptable and in this case there is no lack of fit and both the variables are significant that is observed over here. Categorical as well as RPM over here.

(Refer Slide Time: 21:39)

		c Stat G			sistent Additional To											
			c Statistics		Display Descrip											
П	10 II 16 II I		ression		Store Descripti		<★券圈 (5" 🐻 🗗 LY 🦄	1							
		DOE			Graphical Sum	smary										
P.	egression Analysis: J	-	trol Charts		1-Sample Z											
			lity Tools		1-Sample t											
_	MULTIPLE LINEAR RE	UK	bility/Surviv	al	A 2-Sample t		T									
K	egression Ana	ar	lictive Analyt		Paired t		Tool									
	Constant		tivariate		1 Proportion											
	RPM	Tim	e Series	1	2 Proportions.											
	Type of Cutting Too	al Tabl	es		1-Sample Pois											
	416	Non	parametrics		2-Sample Pois	son Rate										
Ē		Equi	valence Tests	5	🐧 1 Variance											
		Pour	er and Samp	le Size	All 2 Variances											
	Model Summar	y row	er and serie		(A)											
					k -1:1 Correlation											
		R-sq(ac	j) R-sq(pr	red) 10-fc												
	S R-s	R-sq(ac	j) R-sq(pr	red) 10-fc	k 11 Correlation α ² Covariance											
	S R-s	iq R-sq(ac % 91.19	j) R-sq(pr	red) 10-fc	k .1:1 Correlation	fr.										
	S R-s	iq R-sq(ac % 91.19	j) R-sq(pr	red) 10-fc	 A 1:1 Correlation ¹⁸ ⁰ ² Covariance <u>Δ</u> Normality Teg •• Outlier Test 	Normality Test		C30 1	C31 g	C32 g	C33	C34	C35	C36	C37	c
	S R-s 0.271870 92.12 Analysis of Vari	iq R-sq(ac % 91.19 iance C23	ij) R∙sq(pr % 87.0	red) 10-fc 59% 0.302 C25	 ¹¹ Correlation ¹² σ² Covariance <u>A</u> Normality Text 	Normality Test	data foliow a normal		C31 Zinter C31	C32 sqrt(Y)	C33 SRES	C34	C35	C36	C37	
•	S R-s 0.271870 92.12 Analysis of Vari C22	iance C23 Dose (X2)	(j) R-sq(pt % 87.0 C24	red) 10-fc 59% 0.303 C25 x2_STD -1.0000	dk 1:1 Correlation 2 G ² Covariance Δ Normality Test •• Outlier Test γ A Goodness-of- 1004	Normality Test Determine whether your distribution. Use when yo measurements, such as le	ou have continuous	d Surface Finish 2 42.00	Johnson Trans (Y) 0.15364	Sqrt(Y) 6,48074		C34	C35	C36	C37	
•	S R-s 0.271870 92.12' Analysis of Vari 22 Drive in time (XI) 195 255 255	a R-sq(ac % 91.19 ance C23 Dose (X2) 4.00 4.00	(j) R-sq(pr % 87.6 C24 X1_STD	red) 10-fc 59% 0.302 C25 x2_STD -1.0000 -1.0000	k 1:1 Correlation 3 0 ² Covariance ▲ Normality Test → Outher Test ↓ Goodness-of 1004 1636	Normality Test Determine whether your distribution. Use when yo measurements, such as ie 200	ou have continuous ngth or weight.	d Surface Finish 2 42.00 2 42.03	Johnson Trans (Y) 0.15364 0.15592	Sqrt(Y) 6.48074 6.48305	SRES	C34	C35	C36	C37	
* 1 2	S R-s 0.271870 92.12 Analysis of Vari C22 Drive in time (Xt) 195 255 195	ance C23 Dose (X2) 4.00 4.00 4.60	(j) R-sq(pa % 87.4 % 87	red) 10-fc 59% 0.307 c25 x2_STD -1.0000 0.6667	 4 11 Correlation 7 Covariance Normality Teg Outlier Test Y Goodness-of 1004 1636 852 	Normality Test Determine whether your distribution. Use when yo measurements, such as le 200 250	su have continuous ngth or weight. 30	d Surface Finish 2 42.00 2 42.03 2 50.10	Johnson Trans (Y) 0.15364 0.15592 0.98224	Sqrt(Y) 6.48074 6.48305 7.07814	SRES -1.19021 1.48612 -0.43980	C34	C35	C36	C37	
* 1 2 3 4	S R-s 0.271870 92.12 Analysis of Vari C22 Drive in time (Xt) 195 255 195 255	ance C23 Dose (X2) 4.00 4.60 4.60	(j) R-sq(pa % 87.4 (c24 (x1_STD) -1.0000 1.0000 1.0000	red) 10-fc 59% 0.307 C25 x2_STD -1.0000 -1.0000 0.6667 0.6667	K 11 Correlation 0 ² Covariance Normality leg 0 ³ Outlier Test A Goodness of 1004 1636 852 1506	Normality Test Determine whether your distribution. Use when yo measurements, such as le	ou have continuous ngth or weight. 30 30	I Surface Finish 2 42.00 2 42.03 2 50.10 2 48.75	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212	SRES -1.19021 1.48612 -0.43980 -0.76768	C34	C35	C36	C37	
• 1 2 3 4 5	S R-s 0.271870 92.12 Analysis of Vari C22 Drive in time (Xt) 195 255 195 255 225	rq R-sq(ac % 91.19 ance C23 Dose (X2) 4.00 4.60 4.60 4.20	(j) R-sq(pa % 87.6 C24 X1_STD -1.0000 1.0000 -1.0000 0.0000	c25 x2_STD -1.0000 -1.0000 0.6667 -0.4444	K 11 Correlation 0 ² Covariance Normality Test V Goodness of 1004 1636 852 1506 1272	Normality Test Determine whether your distribution. Use when yo measurements, such as le 200 250 245 245 235	ou have continuous ngth or weight. 30 30 30 30	I Surface Finish 2 42.00 2 42.03 2 50.10 2 48.75 2 47.92	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721	C34	C35	C36	C37	
• 1 2 3 4 5 6	S R-5 0.271870 92.12 Analysis of Vari C22 Drive in time (X1) 195 255 195 255 255 255 255 225 225	rq R-sq(ac % 91.19 iance C23 Dose (X2) 4.00 4.60 4.60 4.60 4.10	(j) R-sq(pa % 87.6 C24 X1_STD -1.0000 1.0000 0.0000 0.0000	c25 x2_STD -1.0000 -0.6667 -0.4444 -0.7222	k -11 Correlation a of Covariance A Normality leg - Outlier Test A Goodness-of 1004 1636 852 1506 1272 1270	Normality Test Determine whether your distribution. Use when yo measurements, such as le 250 245 245 235 235	pu have continuous ngth or weight. 30 30 30 30 30	Image: Surface Finish 2 42.00 2 42.03 2 50.10 2 48.75 2 47.92 2 47.79	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110	C34	C35	C36	C37	
• 1 2 3 4 5 6 7	S R-5 0.271870 92.12 Analysis of Vari C22 Drive in time (XI) 195 255 195 255 255 225 225 225 225	ance (23) Dose (X2) 4.00 4.60 4.60 4.20 4.10 4.60	(j) R-sq(pr % 87.4 (24 X1_STD -1.0000 1.0000 1.0000 0.0000 0.0000 0.0000	c25 x2_STD -1.0000 -0.6667 -0.4444 -0.7222 0.6667	k 11 Correlation a 0 ² Covariance A Normality less → Outlier Test y A Goodness-of 1000 1636 852 1506 1272 1270 1269	Normality Test Determine whether your distribution. Use when ya measurements, such as le 250 250 250 255 235 235 235 235 265	pu have continuous ngth or weight. 30 30 30 30 30 30 30	I Surface Finish 2 42.00 2 42.03 2 50.10 2 48.75 2 47.92 2 47.79 2 52.26	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110 2.14214	C34	C35	C36	C37	
+ 1 2 3 4 5 6 7 8	S R+5 0.271870 92.12 Analysis of Varia C22 Drive in time (XI) 195 255 195 255 225 225 225 225 225 225 225 225 2	ance C23 Dose (X2) 4.00 4.60 4.60 4.10 4.60 4.30	(j) R-sq(pr % 87.4 (c24 X1_STD -1.0000 1.0000 0.0000 0.0000 0.0000 -1.0000 -1.0000	to-fc 59% 0.302 c25 x2_STD -1.0000 -1.0000 0.6667 0.6667 -0.4444 -0.7222 0.6667 -0.4667 -0.1667 -0.1667	k -11 Correlation a of Covariance A Normality leg - Outlier Test A Goodness-of 1004 1636 852 1506 1272 1270	Normality Test Determine whether your distribution. Use when ya measurements, such as le 250 250 250 255 235 235 235 235 265	pu have continuous ngth or weight. 30 30 30 30 30 30 30 30 30 30	I Surface Finish 2 42.00 2 42.03 2 50.10 2 48.75 2 47.92 2 47.92 2 52.26 2 50.52	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110	C34	C35	C36	C37	
* 1 2 3 4 5 6 7	S R+5 0.271870 92.12 Analysis of Varia C22 Drive in time (XI) 195 255 195 255 225 225 225 225 225 225 225 225 2	ance (23) Dose (X2) 4.00 4.60 4.60 4.20 4.10 4.60	(j) R-sq(pr % 87.4 (c24 X1_STD -1.0000 1.0000 0.0000 0.0000 0.0000 -1.0000 -1.0000	to-fc 59% 0.302 c25 x2_STD -1.0000 -1.0000 0.6667 0.6667 -0.4444 -0.7222 0.6667 -0.4667 -0.1667 -0.1667	k 11 Correlation a 0 ² Covariance A Normality less → Outlier Test y A Goodness-of 1000 1636 852 1506 1272 1270 1269	Normality Test Determine whether your distribution. Use when ya measurements, such as le 250 250 250 255 235 235 235 235 265	pu have continuous ngth or weight. 30 30 30 30 30 30 30 30 30 30	I Surface Finish 2 42.00 2 42.03 2 50.10 2 48.75 2 47.92 2 47.79 2 52.26	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110 2.14214	C34	C35	C36	637	

So, in this case residual we can check, whether the correction has happens some positive things has happened over here.

(Refer Slide Time: 21:42)


unear regri																		
	-5.267			() versus RPM, '	Type of Cutting	g Tool		×										
utting Tool		0.00355	7,17	0.000 1.00		Variable: SRES												
S R-sq 0 92.12%	91.199					C At data values:	er to Shapiro-Wilk)											
22	C23	C24	C25	C26	Select	Tide:			C32	C33	C34	C35	C36	C37	C			
time (X1) D	ose (X2)	X1_STD	x2_STD	Y (Transistor Gain)				(Y)	Sqrt(Y)	SRES								
195	4.00	-1.0000	-1.0000	1004	Help		OK .		6,48074	-1.19021								
	4.00				200	302	442.03											
	4.60						50.10											
	4.20	0.0000				302												
225	4.10	0.0000	-0.7222	1270	237	302		0.65409	6.91303									
	4.60					302		1.98000						6				
195	4.30	-1.0000 tegression.	-0.1667	903	259	302	50.52	1.06984	7.10774	-1.03456				100				
7	Summary <u>S</u> R-sq 70 92.12% is of Varian 222 195 225 225 225 225 225 225	-1.457 Summary S R:sq R:sq[40] S R:sq R:sq[40] S 0 92.12% 91.199 is of Variance 222 C23 195 4.00 255 4.00 255 4.60 225 4.20 225 4.20 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4.00 225 4	1.437 0.122 Summary 5 R+q R+glp40 R+gr R+glp40 R+glp40	-1,457 0.122 -11,98 Summary 8 -11,98 10-16 S R-sq.(ad) R-sq.pred) 10-96 Source	1.437 0.122 -11.98 0.000 1.00 Summary 5 R+sgladb R+sgladb <td< td=""><td>-1,437 0.122 -11,98 0.000 1.00 Summary 5 K-rg(alg) R-rg(alg) R-rg(alg</td><td>I.437 0.122 ·1.198 0.000 1.00 Summary 5 R-sq(ad) <t< td=""><td>1.437 Diazo Prevente tree Summary Summary Summary Call A region Summary Call Call Strag The form colspan="2">Call Call Strag Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call <!--</td--><td>1.457 0.122 -11.98 0.000 1.000 Summary </td><td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.120 C At values: C C At values: C C C C At values: C C At data values: C C C C C C C C C C C C C C C C C C C C C C C C C C <th c<<="" colspan="2" td=""><td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 0.122 1.437 0.122 0.122 0.122 0.122 0.122 0.122 0.123 0.124 0.124 0.124 0.124 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126</td><td>1.437 0.122 1.138 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000</td><td>Ids7 0.122 -11.38 0.000 1.00 Provedkizes Summary C 41 visue C 42 visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue</td><td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.457 0.122 CI <th colspan<="" td=""><td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 0.122 1.437 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.123 0.12 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123</td></th></td></th></td></td></t<></td></td<>	-1,437 0.122 -11,98 0.000 1.00 Summary 5 K-rg(alg) R-rg(alg) R-rg(alg	I.437 0.122 ·1.198 0.000 1.00 Summary 5 R-sq(ad) R-sq(ad) <t< td=""><td>1.437 Diazo Prevente tree Summary Summary Summary Call A region Summary Call Call Strag The form colspan="2">Call Call Strag Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call <!--</td--><td>1.457 0.122 -11.98 0.000 1.000 Summary </td><td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.120 C At values: C C At values: C C C C At values: C C At data values: C C C C C C C C C C C C C C C C C C C C C C C C C C <th c<<="" colspan="2" td=""><td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 0.122 1.437 0.122 0.122 0.122 0.122 0.122 0.122 0.123 0.124 0.124 0.124 0.124 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126</td><td>1.437 0.122 1.138 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000</td><td>Ids7 0.122 -11.38 0.000 1.00 Provedkizes Summary C 41 visue C 42 visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue</td><td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.457 0.122 CI <th colspan<="" td=""><td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 0.122 1.437 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.123 0.12 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123</td></th></td></th></td></td></t<>	1.437 Diazo Prevente tree Summary Summary Summary Call A region Summary Call Call Strag The form colspan="2">Call Call Strag Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call Call </td <td>1.457 0.122 -11.98 0.000 1.000 Summary </td> <td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.120 C At values: C C At values: C C C C At values: C C At data values: C C C C C C C C C C C C C C C C C C C C C C C C C C <th c<<="" colspan="2" td=""><td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 0.122 1.437 0.122 0.122 0.122 0.122 0.122 0.122 0.123 0.124 0.124 0.124 0.124 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126</td><td>1.437 0.122 1.138 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000</td><td>Ids7 0.122 -11.38 0.000 1.00 Provedkizes Summary C 41 visue C 42 visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue</td><td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.457 0.122 CI <th colspan<="" td=""><td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 0.122 1.437 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.123 0.12 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123</td></th></td></th></td>	1.457 0.122 -11.98 0.000 1.000 Summary	1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.120 C At values: C C At values: C C C C At values: C C At data values: C C C C C C C C C C C C C C C C C C C C C C C C C C <th c<<="" colspan="2" td=""><td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 0.122 1.437 0.122 0.122 0.122 0.122 0.122 0.122 0.123 0.124 0.124 0.124 0.124 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126</td><td>1.437 0.122 1.138 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000</td><td>Ids7 0.122 -11.38 0.000 1.00 Provedkizes Summary C 41 visue C 42 visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue</td><td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.457 0.122 CI <th colspan<="" td=""><td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 0.122 1.437 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.123 0.12 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123</td></th></td></th>	<td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 0.122 1.437 0.122 0.122 0.122 0.122 0.122 0.122 0.123 0.124 0.124 0.124 0.124 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126</td> <td>1.437 0.122 1.138 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000</td> <td>Ids7 0.122 -11.38 0.000 1.00 Provedkizes Summary C 41 visue C 42 visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue</td> <td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.457 0.122 CI <th colspan<="" td=""><td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 0.122 1.437 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.123 0.12 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123</td></th></td>		1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 0.122 1.437 0.122 0.122 0.122 0.122 0.122 0.122 0.123 0.124 0.124 0.124 0.124 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126	1.437 0.122 1.138 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Ids7 0.122 -11.38 0.000 1.00 Provedkizes Summary C 41 visue C 42 visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue Visue	1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.457 0.122 CI CI <th colspan<="" td=""><td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 0.122 1.437 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.123 0.12 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123</td></th>	<td>1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 0.122 1.437 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.123 0.12 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123</td>	1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 1.437 0.122 0.122 1.437 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.123 0.12 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123

So, I am going to normality test over here, and what I do is that I go to the last residual values and I click ok.

(Refer Slide Time: 21:48)

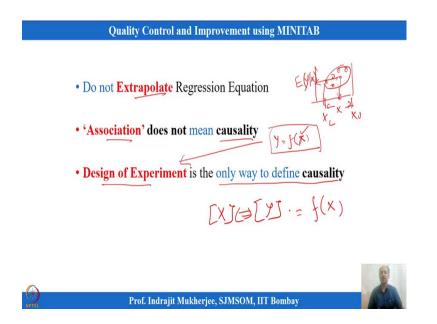
		6 日 日 平 王 平 区		4 0 C	sistant Additional Too fx 20 ↓ 5 ↓ 10 + 10 + 10 ↓ 1	9 12 4 1 2 ● 卷 Y 区 ■	8⊻≭≎⊠∣₫	t 🖥 🗗 🖓 🏷	8							
	obability Plot of SRE															
_	multiple linear reprobability Ploy															
	99 93 90 80		Probab	ility Plot Normal	of SRES	Mean 0.009318 51Dev 1.056 N 20 AD 0.231 P-Value 0.7										
	ercent : 55 55 62		,	Ň					e14						417	
	C22	C23 Dose (X2)	C24	C25	C26 Y (Transistor Gain)	C27 C28	C29 Type of Cutting Tool	C30 g			C33 SRES	C34	C35	C36	C37	C
	ercent : 5 8		C24 X1_STD -1.0000		C26 Y (Transistor Gain) 1004	C27 C28 RPM 225	C29 Type of Cutting Tool 302			C32 5 Sqrt(Y) 6.48074	C33 SRES -1.19021	C34	C35	C36	C37	(
	C22 Drive in time (X1)	Dose (X2)	X1_STD	x2_STD	Y (Transistor Gain)	RPM	Type of Cutting Tool	Surface Finish	Johnson Trans (Y)	Sqrt(Y)	SRES	C34	C35	C36	C37	•
	C22 Drive in time (X1) 195	Dose (X2) 4.00	X1_STD -1.0000	x2_STD -1.0000	Y (Transistor Gain) 1004	RPM 225	Type of Cutting Tool 302 302	Surface Finish 42.00	Johnson Trans (Y) 0.15364	Sqrt(Y) 6.48074	SRES -1.19021	C34	C35	C36	C37	(
	C22 Drive in time (X1) 195 255	Dose (X2) 4.00 4.00	X1_STD -1.0000 1.0000	x2_STD -1.0000 -1.0000	Y (Transistor Gain) 1004 1636	RPM 225 200	Type of Cutting Tool 302 302	Surface Finish 42.00 42.03	Johnson Trans (Y) 0.15364 0.15592	Sqrt(Y) 6,48074 6,48305	SRES -1.19021 1.48612	C34	C35	C36	C37	(
1	5 60 C22 Drive in time (X1) 195 255 195 255 255 255 255 225	Dose (X2) 4.00 4.00 4.60	X1_STD -1.0000 1.0000 -1.0000	x2_STD -1.0000 -1.0000 0.6667	Y (Transistor Gain) 1004 1636 852 1506 1272	RPM 225 200 250 245 235	Type of Cutting Tool 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721	C34	C35	C36	C37	(
1 2 3 4 5 5 5 5	E 60- 52- 07- 07- 07- 07- 07- 07- 07- 07- 07- 07	Dose (X2) 4.00 4.00 4.60 4.60 4.20 4.10	X1_STD -1.0000 1.0000 -1.0000 1.0000 0.0000 0.0000	x2_STD -1.0000 -1.0000 0.6667 0.6667 -0.4444 -0.7222	Y (Transistor Gain) 1004 1636 852 1506 1272 1270	RPM 225 200 250 245 245 235 237	Type of Cutting Tool 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110	C34	C35	C36	C37	(
1 2 3 3 5 5 7	Egg 60- 50- C22 Drive in time (X1) 195 255 195 255 255 225 225 225 225 225 225 225 225 225 225	Dose (X2) 4.00 4.60 4.60 4.20 4.10 4.10	X1_STD -1.0000 1.0000 -1.0000 1.0000 0.0000 0.0000 0.0000	x2_STD -1.0000 -1.0000 0.6667 0.6667 -0.4444 -0.7222 0.6667	Y (Transistor Gain) 1004 1636 852 1506 1272 1270 1269	RPM 225 200 250 245 235 235 237 265	Type of Cutting Tool 302 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110 2.14214	C34	C35	C36	C37	(
1 2 3 4 5 6 7 8	Egg 60- C22 Drive in time (X1) 195 255 195 255 255 225 225 225 225 225 225 225 225 225 225 225 225 225	Dose (X2) 4.00 4.00 4.60 4.60 4.20 4.10 4.60 4.30	X1_STD -1.0000 -1.0000 -1.0000 1.0000 0.0000 0.0000 -1.0000 -1.0000	x2_STD -1.0000 -1.0000 0.6667 0.6667 -0.4444 -0.7222 0.6667 -0.1667	Y (Transistor Gain) 1004 1636 852 1506 1272 1270	RPM 225 200 250 245 245 235 237	Type of Cutting Tool 302 302 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26 50.52	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110	C34	C35	C36	C37	
+ 1 2 3 4 5 6 7 8	Egg 60- C22 Drive in time (X1) 195 255 195 255 255 225 225 225 225 225 225 225 225 225 225 225 225 225	Dose (X2) 4.00 4.60 4.60 4.60 4.10 4.60 4.30 4.30 tiple Linear	X1_STD -1.0000 1.0000 -1.0000 0.0000 0.0000 -1.0000 -1.0000 Regression.	x2_STD -1.0000 -1.0000 0.6667 0.6667 -0.4444 -0.7222 0.6667 -0.1667	Y (Transistor Gain) 1004 1636 852 1506 1272 1270 1269	RPM 225 200 250 245 235 235 237 265	Type of Cutting Tool 302 302 302 302 302 302 302 302 302	Surface Finish 42.00 42.03 50.10 48.75 47.92 47.79 52.26 50.52	Johnson Trans (Y) 0.15364 0.15592 0.98224 0.76990 0.66868 0.65409 1.98000	Sqrt(Y) 6.48074 6.48305 7.07814 6.98212 6.92243 6.91303 7.22911	SRES -1.19021 1.48612 -0.43980 -0.76768 -0.16721 -0.42110 2.14214 -1.03456	C34		C36	C37	

(Refer Slide Time: 21:50)

And, what I observe is that, when I have done this transformation suddenly this problem has gone so; that means the normality problem of the error residual has gone. So, when I am using Johnson's transformation this has happened. When I have used Johnson's transformation this is giving results like that.

So, which one Box-Cox or Johnson you have to try out and figure out that whichever gives you error as white noise, so that has to be adopted like that. So, this is one of the

example, when categorical variable is also considered in the model and we are able to address that one.


(Refer Slide Time: 22:22)

	coci	SE COEL	T-Value P	-value	VIF	Analysis of	vai	lance			
Constant	-121.3	55.4	-2.19	0.049		Source	DF	Adj SS	Adj MS	F-Value	P-Value
Time	0.1269	0.0422	3.01	0.011	12.23	Regression	3	1953.42	651.140	45.88	0.000
Velocity	-19	108	-0.18	0.863	12.32	Time	1	128.34	128.340	9.04	0.011
Temperature	0.348	0.177	1.97	0.073	1.06	Velocity	1	0.44	0.441	0.03	0.863
	0.0.10	•••••		0.072		Temperature	1	54.89	54.895	3.87	0.073
						Error	12	170.29	14.191		
						Total	15	2123.71			
Model S	umma	ry									
S	R-sq R-	sq(adj) R	-sq(pred)								
3.76707 91	1.98%	89.98%	84.16%								
				-							

So, categorical variable and how to address in case there is a non normal situation in multiple regression, how it is to be addressed that we can see ok.

And, how to select the variables in case we are in dilemma which variable. So we have talked about stepwise regression. So, this regression is an important aspects which can suggest that which are the variables or potential variables can be considered in experimentation.

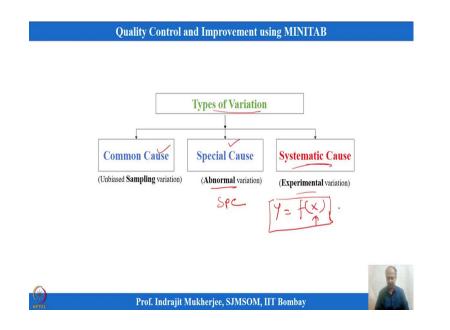
(Refer Slide Time: 22:46)

So, but we have to understand that regression does not say we cannot extrapolate regression equation. So, whatever regression that experiment is happening; that means, this is y and this is the range of x domain within which we have got the information; that means, data are collected over here and these are the observations over here.

So, I can only restrict to this region and predict. So, for a given value of x, at a given value of x what is the predicted value of expected value of y. So, expectation of y for a given x can be only calculated within the domain or within the range of x over here. So, x we can say upper bound and x lower bound within this, so no extrapolation is generally preferred in regression equation ok.

And, association does not mean, that means, y is related with x function of x, does not mean that it is a real variable that impacts y. So, certain scenarios can be, there is a relationship between two variables which are not physically any way connected but there can be high correlation.

So, many examples can be cited like that. So, it does not mean that there is a causality. So regression does not prove causality. So, design of experiment is the only way to define causalities like that. So, to understand causalities between the variables we have to intentionally induce variation by changing, the factors changing the factors or variables that we are interested into and try to understand what is the functional relationship. So, the best appropriate way to develop the functional relationship is by design of experiments. So, there is no other alternative. So, regression with historical data does not give you proper association or causality cannot be proved based on that ok.

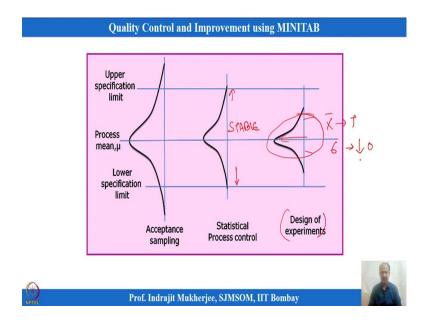

So, then what is the option, then what is the option for quality improvements. Then the options we have identified, few variables based on regressions. So there are variables X, X matrix over here, and I have collected also y variable information. So, how do I connect these two and this connection and develop the function. So, I need a function over here, that will explain the variability of y over here. So, what is required is that systematic way of variation is required, systematic way.

(Refer Slide Time: 24:40)

		and Improvement us		
	Im	provement Phase:	1	
	Design	of Experiments (I	OOE)	
6				F

And then what comes is statistical experimentation which is the improvement phase. Until and unless I have a right function I cannot improve. I cannot reach to the global optimal point like that or setting points like that ok. So, design of experiment is the stepping stone for improvement phase like that.

(Refer Slide Time: 25:01)



So, basic things that our understanding over here is that, there are types of variability types of variation we have already spoken about it and some basic information I am providing over here which we can think of as recap. So, there are common cause variability in the process, there are special cause abnormal variability which are easy to detect based on SPCprocess control chart.

And, then what we do is that, to understand the functional relationship between y and x, we have to do it a systematic change in we have to induce variability we have to induce variability by changing the factor, by changing the factor x over here. And, if we can do that systematically what happens is that we can generate a function and the function can be optimized.

That function, we know this is the real equation between the in the process. This is the empirical relationship that exists and this is based on systematic theoretically strong models that we have developed over here. Then we can use optimization technique just to reach to the global optimal point like that. So, we are interested into and for that design of experiment is most preferred like that ok.

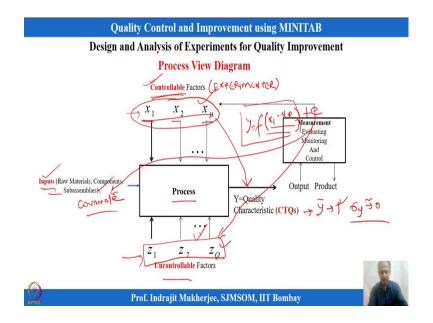
(Refer Slide Time: 26:05)

So, design of experiment what we are seeing over here is basically reducing the common cause variability. So, this can be applied when the process is in statistical control. So, when the process is in stable process, so whenever it is stable process we say and it is in statistical control then only we can go for design of experiment, because we want to reduce the common cause variability further, because more and more I reduce the variability, so accuracy and precision both improves over here.

So, we are interested in being and variance both aspects like that, what we have seen in capability analysis also. So, for that what is required reduced for the variability requires design of experiments. So, for that we need to, so that helps, statistical design of experiment helps us to bring the mean to target value and also the reduced variability near to 0.

So, we want minimum variability over here. So, various design of experiment techniques are proposed and huge amount of resource is available for design of experiments. So you can see. But, preliminary book that you can see is Montgomery's book which is which can be a good resource of learning initial steps like that, but there are other books also you can see, so there are many other books which you can see like that. Amitava Mitra is one of the books where design of experiment is detailed ok.

(Refer Slide Time: 27:22)


And, so this is one of the techniques. And also, I want to recap that one of the concepts that if you have variability, that means, causes and this is impacting my y and causes are interlinked also somewhat they are interlinked with each other and they together can impact the y like this. So this is the scenario like this.

This is one of the variable X1 this is one of the variable X2, X3 and this is X4 over here, and they are interrelated with their in this what you are seeing and they are not completely independent over here what is observed over here.

So, if they are completely independent in that case, we can understand that what is the level of X that will deliver the optimal y over here. So, this is possible, but this is not possible when we are having a complex relationship between multiple X's over here and together they can impact the y, that can be scenario.

So, it can be scenarios which is not possible to identify. So, by simple other analysis like, design failure mode and effect analysis or process failure mode and effect analysis that is not possible by that ok. So, complex relationship and developing the function, when we are developing the functions over here only design of experiments can help.

(Refer Slide Time: 28:33)

So, design of experiments can help. And, before we go into details of design of experiment this process p information is again I am recapping over here. There will be certain control variables which is in the hand of experimenters. So, experimenter will change this control variable basically.

So when you go to a process what you observe is that, you will see the operator is changing some of the variables, not all variables, some of the key variables which is possible to control. So, these are the variables X1 to Xp which is known as controllable variables.

Design of experiment is all about controllable variable, most of the time we deal with controllable variables. There will be some inputs and I also talked about covariates which can influence the outcomes over here, and that can also be considered in the model when we are doing experimentation we can also consider the covariates as a variable which will vary.

We cannot control that one, but influence of that has to be considered when we are developing the mathematical models or something like that. Or we can deal with that, so covariates also we can see ok. And, there will be some uncontrollable factor; that means, it is uneconomical to control. And sometimes we do not have any information enough information about the some of the variables, because you cannot build a perfect model like that y is a function of all Xp variables X1 to Xps like that. There will be some amount of error in the model because of this noise variables over here, because of this noise variable. So, we do not get a perfect function.

Because all the variables that is impacting the process is some of the variables are unknown to us. So, in that case, these unknown as noise variables or and the influence of that is very less because we have identified most of this. So, these are the variables and some of them are controllable, some of them are covariates over here, so we have knowledge about that.

So, and there will be some noise variable which we do not have any control or we do not have enough information about these variables like that ok. So, we want to; we want to get a setting so in design of experiment, what we are trying to do is that this is control variable, so it is in our hand to control. So, we want to get a combination of this combination of this that will optimize my Y CTQ.

And y will be the average value of y should be close to the target value, and the variability of y that is that we will generate is very close to 0 values like that. That means there is no as such variability we want to develop. So, our objective of design of experiment is twofold objective; one is which are the variables impacting y, and then if these are the variables which is significantly impacting y, what can be the combination or setting conditions of this Xp variables that is impacting over here, which I can control.

So that I get the y exactly to the target value defined by the designer and also the variability near the target value is near to 0 like that. So, that is the overall objective of design of experiments. So, and another objective is to develop the functional relationship so that we can optimize like that.

So, whenever I have a function, I can optimize. So, I need a function. So, function to need a function I need what are the Xp variables which is controllable which is significantly contributing to the variability in y; that means, this is and there will be some error that can be because of this noise variables which are not considered and which is difficult to control and uneconomical to control.

This can also be impact with these errors may also be impacted by these covariates which are influencing the , but we do not have any control on that. So, I can only control this Xp variables, I do not have any control on the inputs over here and the uncontrollable variables over here. So, most of the time we try to get the best combination of X1 to Xp that in presence of this noise and in presence of covariates or inputs variability that we are experiencing in the process like that ok.

So this is all about what we will try to understand in design of experiments and how to do the experiments that we will try to understand over here. There are different ways of doing experimentation, different designs are available, and we will see some very few of them. So that that is our objective in experimentation, so that we will cover in our next session ok.

Thank you for listening.