Quality Control and Improvement with MINITAB
Prof. Indrajit Mukherjee
Shailesh J. Mehta School of Management
Indian Institute of Technology, Bombay

Lecture - 26
Best Subset Regression, Multicollinearity

Hello and welcome everyone to this course on Quality Control and Improvement with
MINITAB. We are in session 26, and [ am Professor Indrajit Mukherjee from Shailesh J
Mehta School of Management, IIT Bombay.

So, in last session, we are discussing about multiple regression and how to select the
variables. You see there are confusions which arises when we have multiple x which is
regressed with a y, single y. So, we are not sure which variable should be considered,
which is not to be considered. So, some examples we have taken last time. So, let us try

to see whether we can resolve that problem and dilemmas that we are facing.
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Example
The electric power consumed each Y Xl X; X3 X4

month by a chemical plantis thought 240 25 24 91 100
to be related to the average ambient 236 31 21 90 95

temperature (x1), the number of
days in the month (x2), the average 270 45 24 88 110

product purity (x3), and thetonsof 974 g0 25 87 88
roduct produced (xd).
e t(', )ld l 01 65 25 91 9%
he past year's historical data are
available and are presented in the 316 72 26 94 99
aiven table. Obtain a least square 300 80 25 87 97
regression model. 296 8 25 8 96
267 75 24 88 110
276 NEONRZ5NEO 1N 05
288 50 25 90 100

261 38 23 89 98 Data Source: Montgomery, D. C. (2005).

Applied statistics and probat
engineers. John Wiley & Son

Prof. Indrajit Mukherjee, STMSOM, IIT Bombay

So, this was one of the problem that we are dealing with at the time point, that electrical
power consumption is monitored over here. And this may be related to variable X1, X2,
X3, and X4 and the details are given on the left hand side of your screen in this power
point. And we want to see which is the best model that explains y with respect to given

x, set of x like that.
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So, what we have done is that we have gone to MINITAB, and then what we have seen
is that these are the variables this from C5 to C9, C5 is the y and C6 to C9 is the 4
variables. So, what we have done is that stat we have gone to regression, and we have

gone to regression, and then we have used fit regression models.
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And then what we have done is that we have selected y and the set of x conditions that is
X1, X2, X3, and X4. And in models what we have done is that all the variables we have

considered include a constant term. And options we have not given any transformation

over here.
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And in this case first we have not done not given any let us say stepwise regression over
here. And we may see graphs over here, normal probability plot, residual plots and order
plots like that. So, this is possible. And validation tenfold cross-validation that we have

discussed last time also we can put over here.
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And then storage I want to store that the standardized residual let us say and click ok. So,
let us try to see what are the results that we are getting. So, MINITAB gives you
automatically a regression equation over here, but what is surprising over here you see
that although X1 is the only variable which is significant over here; that means, less than

0.05 and others are not significant terms over here.

So, only X1 is showing significance, others are not showing significance over here. And

also you see the R square value adjusted R square is about 76 and tenfold R square this
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cross-validation is around 48. So, when there is a difference between these two,
significant difference that exist over here there must be something going wrong over

here. And maybe model fitting is not correct or we have over-fitted the model basically,

ok.
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So, in this scenario when we are not sure which variable will go in which variable will
go out. And analysis of variance also confirm that one of the variable X1 is significant

others are not significant what we can do is that, we can remove all the variables all the
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X2, X3, X4s like that and retain only X1 like that only retain X1 and then we can see. So
what will happen? So, this is trial and error methods that I am showing over here without

going into our stepwise regression like that.
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So, I can remove this X1 which

regressed this one and a stepwise regression we have done none over here. So, in this
case I can click ok and see what is the performance of that model. And what we are
seeing is that, ok, X1 is significant that is shown over here regression coefficient and the

equation is also given and, but the explained variability is very less R square adjusted is

arc

not significant over here and we could have

around 60.85 and tenfold cross-validation is about 50 percent.
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Although, now, there is somewhat match between cross-validation and also R square
adjusted somewhat close we can we can assume over here. But still I feel that there could

be something more which can be done on this, ok.
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So, lack of fit test also shows that we are above 0.05, so in this case there is no sign of
lack of fit. So, then and to avoid all this confusion what we can do is that directly we can
use that stepwise regression over here. So, what you have to do is that fit regression

model and go to instead of this variable you select all the variables that is X1, X2, X3,

and X4 over here.
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And in stepwise options what you do is that right stepwise over here, and there will be
alpha to enter alpha to remove this to you can keep, so this methodology works, this
stepwise regression works like adding variables and removing variables like that
simultaneously. It will work in adding and removing variables which is significant which

is not significant like that.

So, that way it works and the theories can be seen in any books on stepwise regression,
you have details about this stepwise regression. There are other methods of stepwise
regression which is also forward selection and backward elimination these are the other
two methods. But stepwise include forward selection and backward elimination both of

them. So, we prefer to use stepwise regression over here. So, in this case I click ok.
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And then if you click ok over here what will happen is that you will you will find a
scenario over here which is two variables are entered into the model that is X1. And you

can see that X1 is also prominent over here 0.048.

And the other one is X2 is more prominent which is P value is 0.026 both are significant
and less than 0.05 over here. And also R square adjusted has improved significantly from
60 to 75 over here and this tenfold cross-validation from 50 to 57 it has improved over

here.
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So, in this case, we can say that this may be the best model that we have considered over

here and we should go we should go about go in implementing this one.

(Refer Slide Time: 06:14)

T Minitab - Unitled

Fle Edt Data Cale St Graph View Hep Assistant Aditioml Tool

SH 6 K0 B [ Disly Descitive Stoitics.
M Mo » T§ Sote DesciptveStatts FAFY
g 'ﬂ\ " ow V&5 Craphical Summary,
— Ly P bsomple
Regresslon Analysis:yve  Control Charts ’ 90 Vsmplet,
[ VULTIRLEUNEARREGR  Qualty Tools Y 2sample
" S by €
Regression Anal "0/ [\ Pared
o Pedeednytic
g o* 3940513K  Mulvarate » " 1Propotic N
TmeSeies s & 2Propotins..
p— Tibles A ‘||,‘ -Sarnle Poisson Rite.
Nenpanimetics 3 ! 2:Sample Poisson Rete.
Term Coef
== Equivaence Tests P 1 Vaance
Y 0573 PowerandSampleSe b 1 2Varances
) 938 3! 266 06 17
11 Comelatior.
o' Covariance,..
Model Summar
Y & Normaity Test.. N
5 Rsq Resgad) Rsqlpred) 1090d o oo,
12074 @00 e Sk 1512
) Goodnessof-it Tstfo eison..
+oa Q @ | o | ioigl oo |7 [ o WMGEM 0 | cig e o | o | o5 [ ce | o7 [ cu ] Q@*
pullstrength Wire ength De helght y " T T Hat 1 o1 W1 W Time  Velody Temperature Yeld
1 995 2 50 5 a9 75 7% 6 60 30 002 75
2 245 8 0 3 o W "3 1w on w 130 0012 9
3 s n oo s u w1 Wi on % DD 130 0015 10
4 10 o %0 ® 3w (LI T 8@ 130 001 135
5 80 8 s 06 8 0w 99 1% 5§ n [E 2
Q3 1686 4 00 Rl 4 26 L Ll 9.2 n 55 9 2 13000 00 |
H4b M+ Maipl Unest Regressionmwy ‘
[F1 - Multiple Linesr Regy = # 0
: i
] hp Type here to search A Gwp ol
@
Fle Bt Ota Cole St Guph View Hep Assitant AdditomlToos
GEH® XABOID|MNQ0 A& il e
OBERIOGEY 1] LR R R ARE 1 o] | P Ry ¥y
£ Ly =N 4 5
Regression Avalss yvers.. * X
[ MULTIPLE LINEAR REGRESSION MWX
Regression Analysis: y versus x1, x2, x3, x4
y ¢ 3940574140380 Normalky et X .
voade: [5E5 7
Coefficients
Percentie Lines
Tem  Coef SECoel Tvalue PVaue VIF  tone
Cons 19 9 005 0963 ALY vakes:
" 0573 0250 229 004 177 A e [——
) o3 M 266 006 L7 i
Tt fosNormaty
 MndersonDieg
Model Summary € Rysnloner (St o hapro
S Rsq Resqlad) Resqipred) 10-4old s 10-fod Resq  Koimogorov o
207 Bod B Shese 133 5700k
T
vooa Q a o | g | Lo ] o [[an s a6 o o a Q*
pullstrength Wire ength De helght y EOI | LK R LY Tine  Velodty Temperature Yeld
1 995 2 50 w s 4w 5 7 6 60 30 002 75
2 2445 s 0 2 0N a0 % "3 [ 5oR 130 0012 9
3 s N M 4w w1 Wi on % D 130 0015 19
4 10 0 50 w0 8w o N » D 30 0013) 135
5 80 8 8 06 8 0w 959 1% 5§ n 130 0k 2
A 1686 4 00 Rl n» 2 L 99 109.2° n 55 9 2 13000 00
4P M b Mulipl Unesr Regressonmwy ‘

860



(Refer Slide Time: 06:22)

Edit Graph -] X

4HToON e Addlem v Seioct
Probability Plot of SRES_2
Normal
9
Mean  0.004049
Sthev 1079
N 2
9 . D 0432
@ PValue 0253
[
L3 .
70 L]
£ 6 .
Y w0 o l
a [ ]
a 4 .
E °
20 )
L]
0
5 ]
1
3 2 1 0 1 2 3
SRES_2 D
|
o 4 s
'O Type here to earch om@m~xOmo@®nleE AveEy iﬂ‘ {‘n.

So, this may be this model that we have generated over here. Now, only thing is that
residual whether it is normal distribution we can check by normality test over here. And
the residual will be saved at the end values that we see over here residual 2 that is the
final residual after we have run the models. And the residual also says that there is no
abnormality in the normality assumptions that we are considering in the residuals over

here.

0.253 is more than 0.05, so in this case residual also satisfies. So, there is no problem.
So, if I consider X1 and X2 in the model with y. We are getting X1, X2 significant and

also the model adequacy test are quite there is no significant deviation from that, ok.

So, this is one of the scenario where we can use stepwise regression method. But for the
second case if we consider this one that heat and X1, X2 again the confusion comes,
again the confusion will arise because and we can see that one. So, what we will do is
that I will take this second one where heat is the y characteristics and that has to be

regressed with other variables over here.
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So, this is the first example that we have selected and these are the values that we have

seen X1, X2, this is with X3.

omE = > m O @
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So this is now, this is the variables that we are talking about heat is with X1, X2, X3, and

X4, 4 variables we are trying to regress.
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And then what we can do is that I can go to stat, and I can go to regression and then

regression and fit regression models over here, and instead of this I give heat and then I

give X1 to X4 variables I select this one. And I do not do stepwise regression at initially.

So, I want to see what are the results.
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So, what will happen is that I have all the criteria. So, and I will store let us say the

residuals over here and I click ok.
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I want to see what model says? So, over here what you see is that X1, X2, P values, if
you observe P values none of the P values is significant, but R square adjusted is highly I
am getting a very good model fit over here, 97 over here, and the tenfold cross-validation
is also very good over here. So, something wrong is happening because none of the

variable is significant. But [ am able to predict very high predictability over here what
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we are seeing like that. So, this equations means we can say that let us adopt this one, but
we will not do that because there is another issue coming over here which is known as

variation inflation factor that is, a variation inflation factor over here.

So, wvariation inflation factor indicates that whether there is a situation of
multicollinearity in the data set. So, what is multicollinearity? We will try to explain.
Multicollinearity in a sense it says that whenever the x are interrelated with each other let
us say X1 with X2 or X2 with X3, and the correlation is very high that will influence the
model and the model will not be correct and it will give you a bias judgment and the sign

that you will get coefficient sign that you will get may interchange.

That means what it should be positive it is reflecting negative like that. So, that can
happen over here. So, multicollinearity means there is a high significant relationship
between the x variables over here. And this will be reflected by a index that is known as

variation inflation factor, that is known as variation inflation factor.
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And this is what [ mean to say over multicollinearity over here. So, you see the numbers
of X1 is given over here for a particular and X2 is also simultaneously recorded. So, X1
is 1, X2 is 2 and when this is 2 this is 4 like this, this is 3 this is 6 like this. So, X2 has a

functional relationship with X1 over here.

So that means, there is a high amount of correlation between the data set that I am having
in X1 and the data set that [ am having in X2. So, I can calculate the variation inflation
factor between this data set. So, variation inflation factor for X1, I can calculate the

similarly for X2, I can calculate like that only two variables over here.

So, then I calculate the Ri index that is the coefficient of determination over here, so Ri
index can be calculated, where X1 let us say is regressed with a function of X2 like this.
And then the R values are indicated, so that is with one and two like that. So, this values
will be indicated and that will be reported over here we can put that value and I can get

the variation inflation factor.

So, variation inflation factor for the first variable X1 will be same as variation inflation
factor for because there is only two variables over here, say this one and this one like

that; so, X1 and X2 if [ am considering two variables over here.
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So, this variation inflation factor what would you see will lead to models; we will not get
the best models out of this when multicollinearity exists, and then the beta coefficient

estimation goes wrong, and in this case and the prediction will also go wrong.

So, if I consider that, if I ignore this multicollinearity what can happen is that my
prediction model will show something different and actual scenario may be something
else like that. So, in this case, I need to rectify this multicollinearity, there are different

ways of rectifying the multicollinearity problem.

So, one of the one of the approach that takes care of this may be this what we are using
as what we are using there are two methods over here. So, one of the method that is
stepwise regression we have adopted like that and that may eliminate this
multicollinearity problem that we are having. So, an another method is known as best
subset regression based on which we can select variables which will go in and which will

go out like that.

So, first is best substitute that we can talk about is stepwise regression like that. So, what
we will do is that we will go to regression. So, when we have fitted this model that this
variation inflation factor that you see over here. What; if I copy this one as image and we
can paste it in excel, and let us try to see enlarge the image and try to see what is the

results over here.
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So, variation inflation factor for each of these variables is indicative over here in the VIF,
what we are seeing and we can we can just go to a simple and we can paste this one. And
what we see over here is basically 38.5, X1 is having a variation inflation factor of 38.5,
this is 254, this is 46, there is high amount of correlation that exists between the x
variables over here. Which one is highly correlated which one we can see by the

correlation matrix plot, and we will be able to know which is related with which one.

So, whenever this relationship strong relationship exists this variation inflation factor
will be more than 5, will be more than 5 or 10 like that. So, generally statistician follows
some rule, or thumb rules like that. If it is more than 5 we will take action and we want

to eliminate multicollinearity problem in the regression equation.

So, that my prediction model becomes more accurate like that. So, anything more than 5
is we may consider a significant, we can take actions over there by using different
methods and addressing the regression equations like that, developing the best regression

equation like that.

So, here problem is that it is more than 10 or criteria 5 whatever you can select like that.
And generally recommended is 10, but some statistician also suggest anything more than
5 is also a concern for me, so we should yeah we should try to remove that
multicollinearity problem and then develop the regression equation like that, ok. So, this

is a problem variation inflation factor.
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And in this case the options that we are having is that we will go for a stepwise equation.
So, what we will do regression fit regression model over here. So, this is X1 to X4. So, in

this case I will use stepwise regression and let us try to see how it works in this case.
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And then I will go for let me see storage of this residual is already there and I will click
and graph. What we can do is that? We can see residual process with normal probability
plot after doing stepwise regression, validation tenfold cross-validation we are doing

over here.
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And I click ok. What we observe is that only X1 and X2 is retained over here. So,
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see the equation after doing stepwise regression what is coming out on this model.
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And we are getting a regression equation like this and heat is equal to 52.58 into 1.468.
This is a coefficient plus coefficient what we have for X1 and X2. And the results also
indicate that, now variation inflation factor if you look at this column what happened is
that copy as picture and if we have taken this as the final equation, then the variation

inflation vector is near to 1.

What you can see if we if I enhance this one that this is near to 1. When it is near to 1,
that means, it is quite perfect and no multicollinearity problem does not exist now, and
X1 and X2 are independent over here. We can assume independence in between the

variables over here.

So, we have replaced this is X3 and X4 basically. We have just removed X3 and X4 over
here. And the R square value and tenfold cross-validation more or less they are close to

each other.
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And ANOVA analysis also shows they are significant. And we can see

that residual

normal probability plot and we can also verify whether the final residual is normal or

not, it is falling normal or not.
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So, what we observe over

here is that, ok, this assumption is also validated. So, P is more

than 0.05. So, this is there is no problem in the error or residuals like that. So, we can just

remove for our benefit, so that later on we have only required information over here.
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So, what we can do is that. So, this is verified over here. So, two variable goes in and

two variable goes out over here. So, that means, this stepwise regression has taken care

of this multicollinearity problem over here, somewhat we are fortunate that this is taken

care of over here.
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So, why; and let us try to see multicollinearity issues over here. So, what we can do is
that basic stat over here and we go to correlation over here. So, correlations between
what we can do is that we can see the correlation between heat and other variables over

here from X1 to X4, and we can select this one I want to see the correlation matrix.

So, I go to options and I say Pearson correlation I want to say, I want to identify. And
then in graphs what we can do is that I in the plot I want correlation with P values like

that because I am interested in P values which is correlated with which one and which is
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significant like that. And we can see a pairwise correlation also.
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And when I click ok what will happen you will get some graphs like this. So, this graph
will indicate how what is the correlation between y variable and X1, X2 and inter

relationship between X1 and X2, how is the correlation?

So, if I see the first column over here what you see heat is having showing a P value of
0.01 with X4 variables. So, heat is highly correlated with X4, heat is highly correlated

with X3, not so much it is more than 0.05. So, we can say that this may not be significant
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so much. But X2 i C p value is less than 0.05 X1, X1, X2 and X4 there are there is highly

high amount of correlation that is existing.

Now, X1 if you see, X1 is highly if I see within the variables. So, X1 how it is related
with X4, it does not have any correlation X4. But with X3 it is having a high level of
correlation over here. So, X1 is related with X3; X1 and X3 are highly correlated over

here. So, in this case, this is the observation.

Then, similarly X2 you see perfect relationship exist between X2 and X4. So, X2 and X4
are more or less perfect and the r coefficient is negative coefficient is 0.973. So, negative
correlation exists between this variable X1, X2 and X4. So that means, these two

variables are highly correlated. Similarly, X1 and X3 is highly correlated.

So, whenever high correlation exists and I want to do regression in that case what is
required is that one of the variable has to go, one of the variable has to go out of this X1
and X3. We can think of an X2 and X4 basically has to go, one of the variables has to go.
And the stepwise regression has correctly identified two variables instead of 4 and it has

identified X1 and X2.

It has retained those two variables and remove the other two variables because there is a
multicollinearity problem. So, some part of multicollinearity problem can be addressed
by when I use stepwise regression. But that can always be verified by seeing the
variation inflation factor and seeing the model adequacy and other checks. And finally,

we select the models over here.

So, this correlation matrix helps you to understand that which variable is highly
correlated to which one which variable is removed like that which variable is added by.
So, this is one way of selecting the variables which is known as stepwise regression

when there is a multicollinearity problem that is existing over here, ok.

So, this and there is another option which can be explored over here which is known as
best subset regression which is another option. This stepwise regression what the
limitation of this approach is that it will select the final variables X1 and X2 which is
selected like that, but it will it has dropped X3 and X4.
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But scenario can be that I want to explore what happens if I include X3 instead of X1;
what happens if | include X4 in instead of X2 because those variables are easy to control
maybe because I want a regression equation where variables can be easily controlled like
that maybe X1 and X2 is too difficult, but regression equation by significance and best

subset methodology we are getting X1 and X2.

But I want to see the complexity if I use different combination like that. If T use X3 X4
combination what is happening and like that; so what will happen. So, there is option
which is known as best subset regression. So, if you go to regression, regression in

MINITAB you will see an option of best subset over here.
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So, if you click best subset regression for this then you identify which is the variable. So,
I give heat as the response over here and then X1 to X4, these are the variables I want to
include in the model which is free predicted over here. So, if you want some predicted to

be always there in the model, so predicted in all models. So, in that case you can just

write X1 to be there.

So, I am not identifying that one. So, I said every variable is free. So, show me all

combinations and best combinations like that.
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So, I click ok over here, then you will get a information over here which I am copying

and I will just paste this information over here. So, that it is easier to see also.
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So, in this case, what you observe is that there is an indicator which is known as Mallow

O M@ m~ O mo@®n

Cp over here which is known as Mallow Cp over here. So, this Mallow Cp is generally
used to select the best model and combination. So, with one variable combination; so,

over here what you see is that there are X1, X2, X3, X4 variables over here.
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And there are with one variable that was selected the best model with one variable that is
given over here. So, first two is giving you the best model. So, if I include X4 that is
giving me a high value of R square adjusted over here and high value of R square also
over here and this is the best model with one variable that is selected and that is the

summary of that is given over here.

Similarly, with second best model that is with R square value 66.6 and I am getting a
variable that should be that should be retained only X2. So, if you model with X4 what is

happening; when model with X2 what is happening; best two models are given.

So, with single variable we have 4, so 4 models can be developed like that, 4 models can
be developed like that. So, if you have k number of variables two to the power k is the
total combinations of the permutation combination we can think of, all possible models,

all possible models that can happen like that.

So, MINITAB only reports that best model with 1 variable, best model with 2 variable,
best model with 3 variable. And finally, with all variables like that. So, we will ignore
the last one because we want to reduce the number of variables and we will go by the
lower combination which is giving you better options because I want to reduce the
number of variables. Because I want to control less number of variables like that, and

also I want to take care of multicollinearity that is an issue, ok.

So, in this case what we do is that there are 3 values that we see R square adjusted to
make a compromise over here, R square adjusted, R square predicted and Mallow Cp.
First we go by Mallow Cp in the indicator over here which indicates the variance is less.
And in this case the error that is that is the sum of square error that we are committing
over here that is that we are getting over here is much less as compared. So, how do you

how do we compare that one?

There is an indicator that is known as Mallow Cp which says that the thumb rule over
here is that the Mallow Cp value should be less than the number of variables considered
for modeling plus 1. So, that is if you are going for let us say for first one over here, so

this is number of variable considered is 1, X4 is considered over here in the model.

So, X4 plus 1 that is that is one variable that is 1 plus 1 is 2, and the Mallow Cp should

be less than the 2 less than the value 2 over here and that is not the case over here 138.7
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is the Mallow Cp indicator that we are getting over here. So, this criteria until and unless

this criteria is fulfilled. So, this is not the best model that we should select.

Secondly, second one also you see that 142.5 which is very very higher than 2, that also
can be eliminated over here. But in the third case what you see is that two variable model
when X1 and X2 is considered Mallow Cp value is approximately 2.7. So, in these case
this calculation of Mallow Cp any books will give you what is the calculation values of

Mallow Cp considering, sum of square errors over here.

So, the formulation is given. So, I am not mentioning the formulation over here. That
you can see in any standard textbook. So, what I am recommending is that this value you

see two number of variables, so total number of 2.7 is less than 3.

So, this can be a possible combination. And also stepwise regression has also shown that
this is the combination X1 and X2 is the best combination and that is the best model that
stepwise regression has identified like that. Here also the suggestion is Mallow Cp is less
than and very close to the number of variables plus 1. So, this value should be very close
to number of variables plus 1. So, 2.7 is close to 3, so that means, this is one of the

competitor models over here, ok.

And this is 5.5 it is more than, so this also goes, and this 3 is also less than 4 over here,
so this can be one of the possibilities and this is another one possibilities over here. Now,
you have to check that whether this model is with two variables is good with 3 variables

what is happening with other 3 variables what is happening like that.

Because of correlation that exists between these two you will find that variation
nucleation factor will be high, whenever I consider X1 and X3 together or X2 and X4

together like that there will be problems like that.

So, over here the closest model; that means based on Mallow Cp criteria also we are
seeing that X1 and X2 is the best one. Mallow Cp is 2.7 R square predicted is 96 that is
quite good enough, R square adjusted is 97.4. So, and this seems to be the closest one

and we should select this one.

So, based on Mallow Cp criteria and based on our stepwise regression we are converging

to the same models which can be suggested over here, which is the best model over here.
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So, X1, X2 variables regressed with y that is the best model over here. So, if you have if
we have considered any other combination of that. So maybe we will not get the best
models or maybe the assumptions will be violated, assumptions of normality and other

assumptions that is there that can be violated head to schedule so, all these things.

So, whenever I have selected the best models there is always a requirement for checking
the model adequacies. So, all the error terms and the assumptions of the errors are to be
verified like that. So, in this case, what we see; and we see that X1 and X2 is the best
selection over here, ok. We can check what is happening what is happening if I select
X1, X2, and X4 over here? But X2 is highly related with X4. So, if you have selected

that one variation inflation factor that problem will come.
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So, if I assume this one. So, in this case regression, if I assume X1, X2 and X4. So, in
this case, if I remove this one X1, X2 and X4 and X2 and X4. We have seen highly

correlated and I remove stepwise regression over here.
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And then, I do the calculation over here. What is being observed you see that the
variation inflation factor that you observe over here is very high; variation inflation

factor is very high over here.
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If I paste this one over here, and you will find that variation inflation factor is 18.78, X2

and X4, there is high correlation that exists between X2 and X4 that was prominent in
correlation coefficient also. So, this whenever it is high this type of regression equation

cannot be used that is the overall suggestion that we have, ok.
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So, and in this case what happens is that y. So, let us take this example to finish off with
this y equals 2. And we will continue with another examples and another situation in
multi multiple regression when the error assumption fails in that case what we can do

like that. And then we go into the design of experiment part of that.

So, why I am explaining this because when we develop a design of experiments
regression equation we will we should be concerned about the variable interrelations
between the variables, and how to select the best models out of many variables like that,

how to eliminate variables like that, ok.

If this is the scenario y and X1 and X4, so we can eliminate this one and we go by this

regression analysis, regression over here, fit regression models.
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So, in this case, what happens is that I selected y variables over here and then I select X1

to X4 and select this sorry this has to be coming over here continuous predictor X1 to X4

and I select this one and stepwise regression what we have done is that we use stepwise

regression over here and use this one.

So, suggested model is X1 and X2. These are the variables. And variation inflation factor

is less, so this can be the best model. Only thing is that R square adjusted is around 74,
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75.61 and this is 57. So, there is some gap that we are observing over here 75 and 57

over here. So, whether we can improve this tenfold cross-validation over here.
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So, again what we can do is that we can see this regression by best subset values. And
the best subset regression we can do with y and X1 to X4 and try to see what the model

recommendation like that.
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So, in this case what you see is that X1 and X2 which is best subset is giving me a value

of 3.4. So, this is about 3 over here this is about. So, this is more than 3 basically. So,
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number of variables plus 1 and this is more than 3 over here. So, and this is 3.8 which is

very close you see 1, 2, 3, 4.

So, X1, X2 and X3 variables if I consider and that is coming out to be very close. So,
Mallow Cp, based on Mallow Cp index what we are seeing is that if I consider X1 and
X2 and X3 variables over here that is giving me a Mallow Cp which is is approximately

3.8, which is very close to 4 and in that case 3 variables can be considered.
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So, if I go over to 3 variables over here fit 3 variables; so, let us reduce this one, let us
incorporate X1, X2 and X3. Stepwise says X1 and X2 only. So, we will remove stepwise

over here and try to see what the model gives.
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So, if you click ok over here what happens is that it gives a 3 model 3 variable models
over here. So, over here what you see is that only X1 is coming prominent and others
two are not coming prominent because the P value is more than 0.05 over here. Although
the variation inflation factor is not significant over here, but R square predicted R square
adjusted value somewhat improved and the tenfold cross-validation is also somewhat

improved over here 62.98, ok.
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But the residuals that I have saved over here. So, this is the residual plot that you see. So,
when I have used 3 3 variable models over here what happens is that; if I go to basic stat
normality test what will happen is that. So if I go to the last variables and try to test this
one what happens is that you see that there is a violation in the error distribution over

here.
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So, whenever I have added this one. So, if I have restricted this to 2 variable models like
that. So I go to basic regression analysis regression fit regression model instead of X3, I

go to X1 and X2 only which is suggested by stepwise regression.
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And I save the residual over here and I go the I do the normality test over here with the
residuals residual 3 which is saved over here. And I do this and what I see is that the

residuals are perfectly following normal distributions like that 0.253 like that.
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So, we will always go by suggestions that is what statistician has suggested. So, we go

by stepwise regression. We do not add unnecessary variables which are not non-
significant terms, but whenever I am removing a non-significant terms please remember

that we are losing some amount of information.

So, sometimes people can suggest why we should remove that one. So, there is a we can
we can debate on that that which want to detain which one to remove like that. So, this is
an art and this is not perfectly black and white scenarios like that in regression, at least
multiple regression like that. But there are suggestions which can be incorporated like

that. So, based on which we can select the variables..

So, one I have shown is that best subset regression is one of the option when we have
different combinations of the variables and we can select one or two of them and then try

to figure out which model is basically good.

Or we use stepwise regression and forget about everything of combinations like that, so
whichever is the best will be the veiled and that model we will recommend like that, ok.

But you should be careful about the model adequacy checks and all these things, ok.

Even if you have done stepwise regression also finally, you have to make a check of
model adequacy over there, ok. So, that is the suggestions and there are other ways of

dealing with multicollinearity coordinating which is more statistically sound like that.
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So, one is partially square regression and one is principle component analysis based

regression like that, ok. So, these things can be adopted.

So, we will stop here and we will we will try to discuss about another example where the
multiple regression fails like that and error assumption fails and in that case how we have
to deal with that. That is not discussed. It is discussed in simple regression. So, we will
start from here. And another example I have on this time velocity temperature and yield

and selection of the variables over here also we will discuss..

And then, we will move into the core concept which is the improvement phase and that is
design of experiment. We will try to emphasize now on design of experiments and how
do we how do you do design of experiments what are the things. So, basic idea of design

of experiments in our next session basically.

Thank you for listening.
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