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Hello and welcome to session 25 in the course Quality Control and Improvement with 

MINITAB. I am Professor Indrajit Mukherjee from Shailesh J. Mehta School of 

Management IIT Bombay. So, previously we what we are doing is that last session, what 

we have done is that we are trying to understand regression simple regression and a 

model adequacy test like that. 

So, there can be scenarios where model adequacy can fail and in that case what is to be 

done there also we want to see in regression. So, I will take one more examples to 

understanding simple regression, what are the complexities that can arise ok. 
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So, this is one of the examples that we are taking over here, where we have two variables 

Demand and one is Energy Usage, one is Y and one is X over here and this is the 

scatterplot that you see over here. And this scatterplot says that there is a linear 

relationship that exists between X and Y over here; and this is the X variable and this is a 

Y variable over here. 
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And what we are seeing is that, normal probability plot also says that there may not be 

any problem and Anderson-Darling test also says there is no problem, but when the 

residual what we are doing is the residual with fit for what we are seeing is that, there is 

certainly increase in variability of the residuals as we move ahead with the fits fit values 

over here. So, it indicates that although we have fitted a regression model over here 

scatterplot is finely prominent over here. 

And we have done model adequacy checks and one of the model adequacy checks is 

normality distribution normal distributions of the residual, and it is not violating that the 

Anderson-Darling test shows that Durbin-Watson test also shows that the p-value is quite 

not significant. 

So, in that case there is no problem in autocorrelation of the residual, but Breusch-Pagan 

test when I am doing this in R what I am saying is that p-value is quite significant that 

means, 0.0007 and that means, heteroscedasticity is an issue over here. So that means, 

the model cannot be generalized and we need to correct we need to correct this model. 

(Refer Slide Time: 02:15) 

 

And how do we do that? Then what can be done is that we already know that there is a 

transformation which can be used and we have used a Box-Cox transformation over 

here, which indicates a value of 0.05 approximately 0.5. So, lambda rounded value is 0.5 

so, lambda equals to 0.5 and this indicates that there is a if there is y values, y to the 

power lambda we have to do and this will be 0.5 on this power over here. 
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So, this is nothing but square root of y and this will be a function of x we which we have 

to generate like that ok. So, we have done that correction and after doing the correction 

what happens regression equation is square root of y and this is the 0β , that was 

generated and this is the 1β  or slope multiplied by x. 

Analysis of variance also shows that the x variable is quite significant and the p-value is 

less than 0.05 and also when we plotted the residual versus fit over here, we do not see 

any abnormalities now over here.  

And the Breusch-Pagan test was again reconducted with this data set of residuals that 

was saved after we have generated the equation with square root of y and the value of p 

is 0.89, which is showing that the heteroscedasticity problem is not there. 

So, this equation that we are generated can be used for a any unknown observation of x 

to predict what will be the y like that. We will generate square root of y so, that can be 

converted into y basically ok. So, this is one of the example. So, let us try to see how we 

have done this in minute I have so just to for you to facilitate. 

(Refer Slide Time: 03:39) 
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And so, here is the C15 and C16 column is given over here and what we will do is that, 

we will apply first we will see the scatter plot. So, graphically we can do the scatter plot 

over here and we can take let us say this is demand information and it is already taken 

over energy research over here. 

788



(Refer Slide Time: 03:58) 

 

So, if you click ok Y and X variables, the same graph that I have shown in the excel 

sheets in the PPT this is the same graph what we see. So, strong positive relationship is 

exist over here that is shown in the scatterplot. 

(Refer Slide Time: 04:11) 
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Then what we will do is that I will go to regression and then fit regression over here. So, 

fit regression model and then, we will do the demand and then we will take the energy 

usage over here and then in models what we do is that we include the constant term this 

is important. So, 0β  will be included in the term. 
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And in options at present no transformation is required. So, I have click to no 

transformation over here and other things we do not; we do not do anything over here, 

one more thing that can be done when whenever we are doing a regression over here. So, 

maybe validation so, this part can be done in many situation we do that in regression 

validating the models like that. 

So, there are two methods over here, validating with proportional test sets and k fold 

cross-validations like that. So, people prefers to do K fold cross-validations so, and 

791



generally number of folds that is taken is 10. So, you can see cross-validation, how 

people are doing 10 fold cross-validation.  

The theory behind this is simple very simple, I divide into 10 datasets like that one of the 

data set will be used as a test data set on which the r square value will be generated and 

that is the way we do cross-validation. So, that is one option we can keep in mind, when 

we are generating. So, that we can generalize so, but model adequacy test is required and 

that will show whether everything is fine. 

(Refer Slide Time: 05:29) 

 

So, normal probability plot in and also what we can do is that there is a Pareto plot which 

can be done and residual what we want is standardized residual; because, we are talking 

about using standardized residual for normal plots and also for residual versus fit plot, 

and residual versus order plots can also be seen which says whether there is any 

dependency between the errors like that. 
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So, this can be seen and storage at finally, we can store the standardized residual and 

click ok and when you click ok over here what will happen is that you will generate 

equations also. 
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Then, you will generate these Pareto effects shows that anything beyond this red line 

indicates that that variable is significant that means, energy is said significant over here. 

So, it depends on the alpha value that we have taken. So, formula is there to find out this 

cut-off over here anything beyond the cut-off indicates that that variable is important. So, 

this is a standardized effect plot over here. 
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Normal probability pot that you see indicates that not much deviation is there, we have 

also save the residual. So, residual is saved over here so, we can check whether the basic 

assumptions of normality for the residual is ok. 

(Refer Slide Time: 06:36) 

 

So, we can take the residual and check the Anderson-Darling test we can do that and 

what we see is that Anderson-Darling test is not showing any adversities over here. 
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And then, here in the previous diagram what we have not seen is this one is that funnel 

shape what we told heteroscedasticity is prominent that we can see from this graph of 

residual versus fit. 

(Refer Slide Time: 06:56) 

 

And however, the autocorrelation aspects we do not see like there any trends we would 

would not see over here. So, in this case also we have done Durbin-Watson stat that I 

told that in this was done earlier, and that was not the problem that was not the issue that 

we have identified over. 
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So, the Durbin-Watson autocorrelation is not an issue over here because, p-value is 

coming out to be, but Breusch-Pagan test showed that there is significant 

heteroscedasticity that is that we are getting. So, in that case model cannot be 

generalized. 

So, we need to do something on this. So, what we can do is that? We can go for 

transformation, we can go for transformation over here and using the Box-Cox 

transformation this was done, and what we can do is that this is the then we have to 

convert the Y variable over here. So, that the residuals we will not have a model 

adequacy problem over here. 
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So, what we have done is that? We have gone for the first option may be that Box-Cox 

transformation. So, how do you do Box-Cox transformation? Box-Cox transformation of 

which variable demand over here subgroup size is this. 
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Where we want to save that one optimal or rounded value so, let us try to see first then 

we will save. So, in this case if we click ok what will happen is that Box-Cox will 

recommend you what is a transformation that is required. So, over here you see the 

estimated values 0.35, but you can round it off because lower and upper confidence level 

will include this.  

So, 0.5 we can consider as rounded value,  because lambda, Y to the power 0.5 is 

understood by many people that is square root transformation. So, the square root of Y is 

801



required so, we can use that. So, what I have done is that I have taken square root of Y 

over here, that is in C17 and then I have regressed C17 with C16 like that. 

(Refer Slide Time: 08:38) 
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So, then what I have done is that regressed regression models over here fit regression 

model. So, everything remains same only instead of this I have taken square root of Y 

over here. 
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Everything remains same and I click ok and then what is generated is that, now energy 

usage is going to be significant p-values over here, even after transformation and 10 fold 

cross-validations these values is around 61 that means, cross-validation values that we 

are getting around 61 percent ok. 
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So, that is on the lower side, but still we may be satisfied with this energy but, there is a 

significant relationship that exists between this data set and here also this effect plot also 

shows that this is significant over here. Energy usage is prominent and this variable 

needs to be considered and there is no problem with the normal probability plot also. 

And we want to check whether the final one is heteroscedasticity is problem is 

eliminated here also we do not see much problem in the behavior of the residuals with 
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respect to X or with respect to fitted values like that. So, and we have done the testing, 

we have done the Durbin-Watson test for autocorrelation. 

We have also done with the transform data, with the transform data and the residual that 

we have generated and we have also seen that the Breusch-Pagan test also does not show 

significance, that we that observation we have done when I have converted the data so 

over here. 

What you see is that? After square root transformation Breusch- Pagan test that this is 

0.8985 and that is more than 0.05 and that indicates that the problem of 

heteroscedasticity is removed by using a box cox transformation over here, using a Box-

Cox transformation over here. And MINITAB gives you an option that means so 

whenever I am doing regression over here. So, if I close this one and you can do the 

transformation. 

(Refer Slide Time: 10:26) 

 

So, here regression what you can do is that regression fit regression model over here, and 

in options what you can do is that you can say transformation lambda equals to 0.5 

transformation I want. 
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And after doing that you click ok. So, MINITAB will automatically generate a Box-Cox 

transformation with lambda equals to 0.5 cross-validation 10-fold cross-validation we are 

doing. 

(Refer Slide Time: 10:40) 
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And in that case, what is a corresponding p-values, what is the final equation also it will 

show. So, this is the final equation it is showing. So, copy as picture we can just paste 

this one over here and you can see what is the equation final equation that is generated 

over here. 

And the residual that will be generated that is a actual versus minus predicted values for 

a given value of X and all the residuals when we plot that one and we do the model 

adequacy check of heteroscedasticity and other things what we observe is that it will it is 

satisfying basic all conditions, all conditions it is satisfying. So, this regression equation 

can be used for generalization.  

So, within the range of X so, we will not extra pull it, but within the domain of X where 

the equation is generated within that, any value of X you give I can predict what will be 

Y over here. So, in this case how do you do that? So, in this case let us assume that this I 

want to predict something that energy level 676, what will be around 700. Let us say 700 

what will be the value of demand. So, what will be the value of demand? 
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So, in this case what we will do is that regression and regression what you have is 

predict. So, you can do prediction over here. So, energy uses let us say 700 what will be 

the predictor square root of Y over here ok. So, we can also see this square root of Y 

over here. 
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So, in this case options confidence interval that can be generated. 

(Refer Slide Time: 12:01) 
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So, results over here, regression and predicted tables over here. So, in this case storage if 

you want to store that one that is also possible, new model is not required. So, in this 

case what will happen is that this predicted value will be given over here. So, if I copy 

this one and I paste it over here and I can paste it over here and to show you the values 

what is being generated over here from the regression equation. 

So, fit value is around 1.97. So, this is approximately. So, this generate a square root of 

Y, this is square root if you make square of this you will get the actual value of Y over 
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here. So, it will give you a confidence interval, it will give you also a prediction interval. 

So, this can be we can generate the confidence interval based on certain formulations 

over here. 

So, this is the expected value, but it will have a range it will not be exactly values that 

you that will come out, but the range of this confidence interval of the values that is 

predicted is approximately 1.05 to 1.34 and prediction interval is around 0.04 to 2.25 

0.04 to 2.25. So, this is this can be also done in MINITAB software.  

So, what is the prediction interval, what is the confidence interval for a given value of X? 

So, given value of X is given as 700 for this I want to predict like that.  

So, 700 should be within the operating zone of that control variables that we want to 

predict, after generating the regression equation and we can do all the checks and finally, 

we will adopt the equations like that. In real life also we develop the models between Y 

as a function of X and then, try to use that to reach to the optimal solutions like that 

where should be the x so that I get the best Y like that ok.  

So, this is a simple linear regression where we have many things to understand model 

adequacy cross-validation then R square values then, beta is significant or not slope is 

significant or not ANOVA analysis all these things needs to be considered when we are 

talking about regression ok. So, we can extend this concept of regression to multiple 

regression, simple regression to multiple regression over here. 
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So, multiple regression is nothing but when we have more than one X over here, this is 

the natural scenario over to we will encounter most of the time. So, this is the matrix of 

X and there will be one single Y over here. So, this is known as multiple regression, this 

is known as multiple linear regression. 

So, simple is one Y and one X like that simple is one Y and one X, but in case of 

multiple linear regression what will happen is that there will be multiple variables that 

will influence that means, in a process when we are talking about this is the CTQ, which 

is y that can be influenced by many X over here. 

So, X p up to X p variables. So, X 1 up to X p variables can influence the process CTQ 

and all may be potential X all maybe potential X over here, then we want to generate the 

functional relationship between y and function of all X 1 to X p and I want to generate 

that function. 

So, how do we do that? We do the that by regression, we do that by regression when I 

have more than one X variable we call it as multiple linear equation and this is the 

expression that is generalized expression that you see. This is the model empirical model 

functions that is given over here, and there will be some error whenever I am generating 

a function and it will not be realistic. 
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And so, there will be some difference between actual and predicted that will be error or 

residual and that will be saved over here. So, that we can see and this is the matrix 

notation that you see in case when multiple X and multiple we have multiple X for 

predicting a single Y like that. And this is the beta coefficients that is 0β  plus 1β  like this 

up to beta p. So, this is estimated over here. So, this is a matrix that you see over here 

and this beta can be estimated from these values of Y and X. 

So, I will have y and I will have multiple observations X1 up to X p observation. So, this 

we will have some values let us say for a given value of this can be some values 2 over 

here, and this can have 1 minus 1 4 or something like that. So, there will be different 

value. So,  1 row of X will give me certain y over here. So, this is the setting condition 

that will give me the process condition output condition over here that is the given over 

here. 

So, if you have multiple y observation and multiple X observation and for any row of X 

we will have y conditions like that then, that will if that is there in that case by matrix we 

can matrix formulation, we what we can do is that matrix algebra what we can do is that, 

we can generate what is the value beta over here. 

And this is based on some least squares functions over here that is error minimization. 

Basically, it will minimize error defined partial derivative should be taken over here and 

that will give me the values of  0β  up to  pβ  ok. 

(Refer Slide Time: 16:36) 
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And MINITAB does it automatically for you. So, in this case one of the example that I 

am taking over here is known as pull strength and I want to see whether there is any 

relationship between wire length and die height over here. These are the two X variables 

and I have multiple observations over here, and this is one set of observation that you are 

seeing and this is another set of observation that you are seeing over here. 

Same variables and same Y over here so, we have placed it side by side. So, that you can 

see the complete data set like that there are two variables or predictors and one predicted 

values or CTQ’s over here, and I want to see whether the both the variables are important 

to be included or one is sufficient to model is one and which way I should develop the 

model.  

So, this is a scenario, where multiple regression is required to so, that we can model Y as 

a function of multiple X;  X1, X2 over here. 

(Refer Slide Time: 17:29) 

 

So, what we do over here is basically we again do the regression analysis here we instead 

of one variable two variable information you will get wire length and die heights over 

here, and this is P-value is showing to be significant again the same interpretation. If P is 

significant in that case, it will indicate that these variables are important and this should 

be included in the models like that ok. 
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And R square what you can see the interpretation that we have seen R square that is how 

much of the variability SS regression by SS total how much of the variability is 

explained and this is coming out to be 98 which is quite significant and, but what we do 

is in multiple regression we see R square adjusted ok. 

So, R square adjusted gives you a precise estimation over here which is formulation is 

given over here and we go by mean square, we go by mean square calculation because 

this prevents overfitting of the model. This is preventing overfitting of the model 

because, if you keep on adding X R square will increase, but it will not increase R square 

adjusted until and unless it has significant influence to reduce the mean square error like 

that ok. 

So, another is predicted value that means one observation will be dropped and what is 

the value prediction, how close is that prediction over here. So, that can be done by R 

square predicted value over here and MINITAB gives you all options to see how they are 

calculating R square predicted and you can see some resource on out books resource how 

R square predicted is.  

So, each of the observation will be removed, it will generate a equation and then predict 

the single observation that is the way we do for R square prediction over here.  

Analysis of variance then analysis of variance shows that when I have two variables over 

here overall it is significant on that regression equation yes it is significant out of these 

two variable, which is important both are important because the p-value is less than 0.05. 

So, our interpretation is that we should include both of them in the model ok. 

And the overall equation that you will see is that expected value of strength is equal to 

this is 0β  over here, and equation is generated by MINITAB 1β X1 this is the equation 

and this is plus 2 2xβ over here, both are significant this coefficient are significant and this 

is plus sign this plus sign indicates that both are linearly positively related over here. X1 

increases, y increases, X2 increases, y also increases like that. 

So, these things can be interpreted out of the analysis and how we do that we want to see 

and this is the surface plot what you see over here, and this is showing you that pull 

strength that is y how it is related with X1 and the MINITAB also gives you an option to 
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make a 3D plots like that. If you have only two  X variables and one Y variables then 

plotting is also possible like that. 
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So, we will show that one also. So, in this case how this data is generated later let us go 

to the analysis part of this. And so, what we will do is that, we will go to the data set and 

we will try to see multiple regression and when we open the data set this is the data set 

that is C1 to C3 columns what you observe over here pull strength, wire length, and die 

height. 
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So, what we will do is that, stat we can see graphically first how these two variables are 

and each of them are related to the Y variable. So, what we will do is that we will say 

pull strength and wire length I want to see and again pull strength with die height I want 

to see, how the relationship is and it will plot two diagrams like that. 
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So, one of the diagrams is with wire length what you see is that, this is very strong 

relationship that we observe wire length with the strength and positive relationship 

exists. So, we expect the coefficient of beta should be positive and here it is somewhat 

not so prominent, but increasing trend we can see over here. 

So, not so strong, but there is a positive relationship that we can understand and it exist 

and so, we should include that also in the model and after doing the scatter plot we 

understand, which is to be then we can go for regression. 
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And fit regression and fit regression model what we will do is that, we will take pull 

strength as the response variable and continuous predictor it is continuous variable die 

height and wire length is placed over here. 
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And in models what we will do is that we will include constant term that means, beta it 

has to be included that we have considered other things we are not changing over here. 

So, terms so we can add, but we you are not adding terms over here. So, we want linear 

equation at this present moment not polynomial at this time point. 
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There if transformation is required we will see, if it is not required we do not need 

transformation. So, no transformation option is given ok. And coding we can avoid this 

time because; sometimes x variables are coded like that so, that helps in there is a 

theoretical advantage if we are doing coding over here ok, in design of experiment 

coding is done. So, that is an important aspect and step-wise regression we will try to 

understand afterward. 
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And model cross-validation is possible here also. I can go for K fold cross-validation, 10 

is the K that we can assume over here, and then graphically we can see is normal plot 

residual versus fit residual versus order standardized residual and pareto effects whether, 

all the significant or not I will click ok and then, I can store the residual standardized 

residual over here and I click ok and then click ok over here and let us see what we are 

observing. 
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So, first is equation that is generated over here, MINITAB displays the equation and so, 

the equation will be given and we can just paste this over here and we can see that this 

equation is coming over here. So, this is the equation that we are having and then, next 

observation our observation is this is a coefficient information that we are getting. 

So, this is the equation, second is model adequacy we want to see whether both the 

variables are important what we observe is that wire length is having a P-value, which is 

significant and also die height is having a P-value which is significant both the variables 
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are important then, what we can do is that we can go to the ANOVA analysis and try to 

see. 
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And so, this is the ANOVA analysis which we can copy and try to see this as an image 

and enlarge that and here also it will be if the coefficients are significant ANOVA will 

also show that one. So, wire length is coming out to be high value also F over here, die 

height is also high. 
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So, the P-value is significant that we are observing over here and both the variables are 

important. So, overall regression there is significant so, over all regression indicates that 

any one of the variable is significant and that that shows over here in the regression and 

individually if you have to see each of this P-value we can observe and we can see both 

are significant over here. 

And degrees of freedom regressions what you see over here is that, there are 2 variables 

so, we have 2 degrees of freedom for these two  x variables so, 2 degrees of freedom and 

each is consuming 1 degree of freedom over here, total number of observations is total 

degree of freedom 25th or 25 observations we have so, (25-1). And error is the remaining 

degree of freedom that we can calculate ok. 
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And then, it indicates that both are important for us and there are some unusual 

observation that you there you can see and K fold cross-validation, if you want to see this 

one copy as image and you can paste this one. 
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And you can see that, after cross-validation also model giving good results. So, overall R 

square adjusted is around 97 that is very good, we will see R square adjusted value over 

here I told. R square predicted should be closed close to R square adjusted, if the model 

is correct and can be generalized and 10-fold cross-validation and R square values of 

that. 

Cross-validation means, we are taking one 10, we have divided the data in 10-folds 10 

different data sets randomly and one of the dataset is used as testing and the other data 

set will generate the training data set which is the training data set and based on that we 

will generate the equation and then, test what is the R square values for the test data set 

like that.  

So, that will be calculated for this and then what is reported is 10-fold R square values 

that is 97 that is quite good that is quite good over here, what we are observing. 
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And then what we see is that, we have the plots also and plots if you see the effect plots 

what you see is that this at level of alpha 0.05 and this is the cut off over here that you 

see; and this calculations you can just check formula to do this calculation 2.07 how it 

and this is given in MINITAB.  

So in this case, and also any general books on how they are how they are calculating 

these values of cut off over here. So, A is significant which is beyond this cut-off, B is 

also significant which is beyond is both are important and can be included in the 

regression equation. 
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Also normal probability plot you see not much deviation, which most of the observations 

are middle part. 
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So, there is not much deviation, but we have save the residual and we can just check 

whether the basic residuals follow normality assumptions at the end you will find the 

residual and this is saved already and you go to Anderson-Darling test and Anderson-

Darling test on this dataset indicates that the P-value is not significant. 

So, in this case the error residuals is more or less, we can assume that that is ok. And 

what we can do is that we have not generated the heteroscedastic plots. So, in graph what 

we can do is that residual versus order residual versus order. 
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So, we have not done it. So, we can just check that on graphically. So, this is the graph 

that we are generating based on this data set, not much unusual observation. So, Breusch 

Pagan test can be done over here and try to confirm whether there is any 

heteroscedasticity behavior of the residuals that can be observed, but I do not think it is 

there and also there is no as such strength that we observe in the standardized residual 

with observed order over here. 

(Refer Slide Time: 27:06) 

 

832



So, in this case also not so prominent, but we can do that individual testing like that. So, 

in this case and also we can do the surface plot that I have not shown. 
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So, surface plot can also be done, graph over here 3D scatterplot 3D surface plot is 

option is there. So, I can do a wire diagram or I can do surface plot over here, if you click 

ok it will tell which is the Z direction which is a variable. So, this is x 1 and x2 variables 

like that, and you can change the shapes you can change the plots types of plots like this. 

So, this is the plot that will be generated surface plot and you can just rotate this one 

also. So, you can rotate the axis like that. So, that is also possible over here. 
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So, I can rotate that is possible over here. So, this is if you want to rotate and see what is 

happening over here. So, this is also possible in MINITAB and that gives you an idea, 

how the surface is over here ok.  

So, this is also possible in MINITAB this is also possible in MINITAB. So, that we can 

see all aspects of the regressions all aspects of the regression over here. Similarly there is 

another data set like this heat and with some variable x 1 to x 4 and we want to see the 

relationship between this. 
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So, we can close this one and we can see another examples of heat and this. So, if you 

want to generate this one regression equation regression fit regression. So, in this case 

variables will only change so, heat is the outcome that is measured over here and these 

are the x1 to x4 variables that you want to include in the model select that one. And then 

in model include the constant terms that is there and we do not want to increase any other 

terms over here. 

So, this is ok and in options no transformation because everything is let us assume that 

everything is ok. So, then validation and everything store residuals over here. So, you 

can store the residuals and you click ok finally, when you click ok. 
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So, then what happens? The equation is given at the first stage coefficient, which is 

significant which is not over here. So, you see x1 is significant over x1 is also not 

significant none of the variable is coming out to be significant over here. So in this case, 

what is happening is that all the P-values, but in this case ok.  

So, but there is a clear relationship R square adjusted value is 97.36 and K fold cross-

validation is also high ok. So, in this scenario what we are getting is that x1 is quite 

prominent, x1 is values is quite prominent over here. 
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And the variables what we are seeing is that, there is some issues over here in this case 

and there is no issues other than that. So, if we have included only one variable over here 

x1 what happens, that we can see x1 over here only x1, if we consider only x1 over here, 

what is the scenario? 
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Fit regression in case of all variables, we can only consider x1 variables over here. And I 

click ok, and what I will observe is that not much variable it is explain R square adjusted 

is low. So, we keep on adding the variables and there is no lack of fit also in this, but 

overall explanation of the total variability. So, we keep on adding the variables x1 is 

added, that explains some part of the variability when I add x2 that add some part 

variability x3 and x4 like that. 
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So, this kind of analysis simple analysis can be done let us also assume these C5 to C9 

variables over here, and in this case also we can see the regression equation how we 

which what is the equation that is generates over here. 

(Refer Slide Time: 30:37) 

 

(Refer Slide Time: 30:50) 

 

842



(Refer Slide Time: 30:50) 

 

So, this what we can do is that, we can just go for this Y variable that is over here and 

these are the x1 to x4 over here and this is selected sorry this is selected over here in the 

continuous predictor x1 to x4. So, this is selected over here and if I go for this what 

happens is that, here only one variable comes out x1 to be prominent over here P-value is 

not significant over here, but we are retaining those variables because that gives me R 

square adjusted value. 

And we can do it automatically also. So, let us try to also discuss this one, how do we 

select which is the variable to be included which is excluded. So, regression analysis also 

gives you a fit regression model. 
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There is a option of step-wise regression over here. So, if I go for step-wise regression 

over here, it will automatically suggest which variables to keep and which variables not 

to keep like that. 
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So, if I change these variables over here let us say heat is the first variable and we are 

going for x1 to x4 over here, and I click ok and in this case if I click ok it will suggest 

which of the variables to be taken and you see that it has only considered one variable 

that is first variable x sorry second variable it is considered to be placed over here. 

So, there is certainly some other problems that is existing and x1 and x2. So, x1 and xs2 

is prominent. So, these two variables are included over here. So, these are the two 

variables to be included, we do not want to include all variables. 

845



(Refer Slide Time: 31:55) 

 

So, we will discuss more about this stepwise regression and you see whenever there is a 

like previously what we were facing is that which variable we should take because they 

are not prominent. So, which one will go in which one will go out like that we are not 

certain like that. 

So, what we do is that, we have a method which is known as stepwise regression and 

best subset regression, which will allow us to identify which variables to include in the 

model, which variables to in exclude in the model. Because, I was not sure that it is not 

significant all are not significant. 

So, in this case which one will go in and which will give me the best fit like that. So, 

MINITAB this technique which is known as stepwise automatically identifies, which 

two variable basically maximizes the R square predicted and R square adjusted value 

over here. So, this is around 97 percent. 
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And this is the best model that you can get out of this dataset that you have generated. 

So, include x1 this one column C12 and C13 and that gives me an option that, which 

variables should go in and which variable which should not be included. So, we will 

continue with this discussion of best subset regression in scenarios when we are in 

dilemma which will go in and which will go out. 

And then, extend that one and discuss about one topic which is known as multi co 

linearity in regression and that is a one I wanted to discuss. Because, that is that would 

significantly affects the model generalization basically. So, we will discuss about that in 

your next class ok.  

So, we will start from here where we left we will take some example and how to include 

x variables like there should not be any dilemma this will go in this will go out, and no 

confusion in selecting of the variables. So, I have a easy way by going through the 

stepwise regression and using best subset regression like that, best subset methods to 

select the variables that will lead to the final generalized model like that.  

So, we will stop here and we will continue in our next session. 

Thank you. 
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