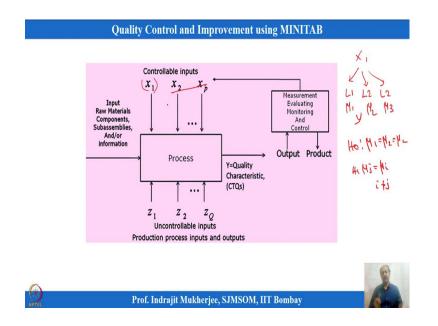
Quality Control and Improvement with MINITAB Prof. Indrajit Mukherjee Shailesh J. Mehta School of Management Indian Institute of Technology, Bombay

Lecture - 21 One-way ANOVA


Hello and welcome to Session 21 of our course on Quality Control and Improvement with MINITAB. I am Professor Indrajit Mukherjee from Shailesh J. Mehta School of Management, IIT Bombay. So, in this session we will see some examples of doing Oneway analysis of variance.

(Refer Slide Time: 00:39)

Quality Control and Improvement using MINITAB	
One-way ANOVA	
Suppose, there are more than two groups that need to be compared	
$\mathbf{H}_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 = \boldsymbol{\mu}_3 = \cdots$	•
Number of paired t-tests increases with number of groups and also increase probability or committing Type-I error .	f
ANOVA is just an extension of the t-test with same Type-I error. ANOVA with only two groups is equivalent to 2-sample t-test	0
Prof. Indrajit Mukherjee, SJMSOM, IIT Bombay	

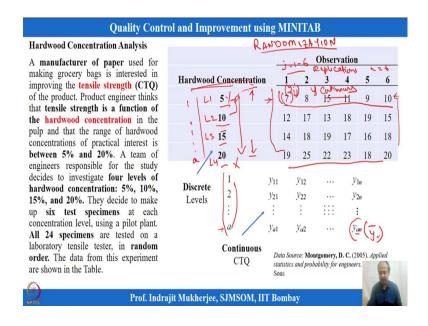
So, last time in our course we were are trying to understand what is analysis of variance and why we are using that?

(Refer Slide Time: 00:52)

So, let us assume that there is one factor and this diagrammatically explains what we are trying to do. So, there is only one factor. I can ignore the other factors over here. And there is one factor X_1 and I want to check whether at different conditions of X_1 , whether that mean response (y) is changing over here or not. So, here the average response we can think of μ_1, μ_2 , and μ_3 .

So, we want to check whether everywhere this average value that we are getting is same or not or whether there are any 2 levels such that $\mu_i = \mu_j$. Alternate hypothesis is $\mu_i \neq \mu_j$. So, there are at least 2 levels where the average is quite significantly different.

So, this is developed when we have one factor. So, this is not the scenario in most of the design of experiments, but this is a most favorable scenario we can expect when I have one factor and I want to check the optimal levels and find out what is the optimal levels which will optimize basically Y or CTQs.


And when there is only 2 levels like that, we have suggested 2 sample t-test for that or paired t-test in certain scenarios like that ok. So, if you have a factor controllable factor which is in your control as an experimenter, and you have more than 2 levels then type 1 error can be controlled. So, the type 1 error will not increase if I apply analysis of variance instead of 2 sample t test. So, t-test for more than two levels is not

recommended, what is recommended is analysis of variance proposed by Ronald Fisher approximately around 1921.

This was very popular when it was proposed and people accepted this one and still people are using analysis of variance in design of experiments. So, we are at the improvement phase what we are discussing now, analysis of variance, 2 sample t-test all are in improvement phase.

We want to check when we have done improvements whether it is effective or not so, statistically whether they are different or not. Here also we are trying to check whether the factor is significant or not which influences y or not and what should be the level of x that will optimize the y over here. For this analysis of variance is suggested. So, here you can see that we are comparing different means and the variance information is used over here. Variance information is used over here to see the mean difference basically. So, that is why it is known as analysis of variance.

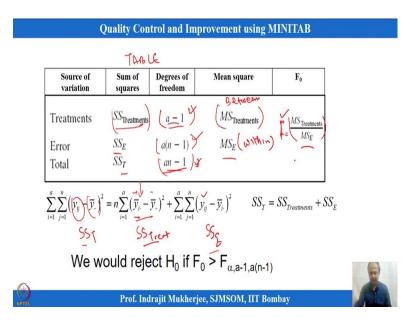
(Refer Slide Time: 03:42)

Then we I explained how people are doing experimentation with one single factor. So, here the factor is hardwood concentration and it has different levels 1, 2 and this is 3 and this is 4 like that and this are known as replicates. So n equals to 6 over here; that means, at 5 percent hardwood concentration experiment was done with different samples and 6 different samples over here and the 6 observation with 5 percent concentration is given over here. Similarly, at 10 percent. But this experiment was done randomly.

So, randomization was another important concept that was introduced. And why it is required we will understand afterwards, but at present we should know that randomization is basically the concept that you have to implement when we are going for experimentation. Every experiment has to be randomized, and how do we randomize? We select any of these levels over here and we select any of the samples and combination of that the results what tensile strength that is generated over here this is known as y_{ij} let us say observation number i over here and j varies from number of levels over here is what we have defined. j varies from 1 to 6 like that. So, this is the j variation over. So, we have to understand which is a factor, how many levels we want to experiment. This you have to freeze before doing experimentation. How this range of the factor or how this level of the factors is selected? It is based on engineering judgment that this is the variation or the process can go up to these extremes. So, factor's range feasibility we have to check and based on which we have to select the levels and also there should be gap between the levels, it should not be very close.

You can see books how the levels are selected. So, this is one example where I want to maximize tensile strength and hardwood concentration experiment was done, randomization was implemented over here, 6 replicates are taken over here and first experiment maybe with 5 percent, second maybe with 10 percent, then 20 percent, then 15 percent like this and we get total 24 observations. So, 6 multiplied by 4 levels over here, 24 observations reading we have got.

And we want to analyze this data and try to figure out at what level we should freeze the hardwood concentration if this is the only factor and then we can also see that when I change the levels whether it is impacting the mean value of the response.


Assumptions over here, is that in analysis of variance the factors have discrete levels. These are the discrete levels that we are experimenting over here and the y that we are getting over here is basically continuous variable.

One way means one factor at different levels which is more than 2.So, I am changing the levels and this is in my control basically. The statistical model that is used here is known as fixed effect model. So, for that model we cannot generalize. We can say for 5, 10, 15, 20 like that these are the levels based on which we are making a judgment and we cannot

generalize it for any values between 5 to 20. So, that is when we want to do that that is random effect model basically.

So, here what we are doing is that fixed effect model that is these are the levels discrete levels, and this is the outcomes of the experimentation and from here we want to determine which is the best level.

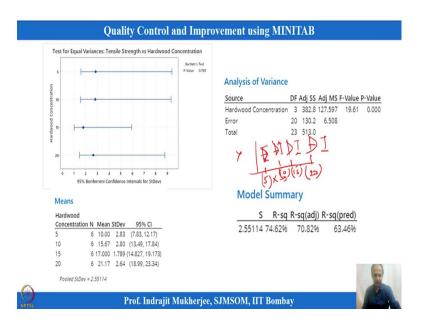
(Refer Slide Time: 08:25)

Then what I told is that, there is a ANOVA table. So, this is the table that we will get and in this case what we observe is that some $SS_{Treatment}$ calculation is done. $SS_{Treatment}$ is basically the variation of each individual observation average. So, we will get some average over here at a particular level, and the from the overall average that is the grand average that we will get \overline{y} .

So, that variation which we capture is known as $SS_{Treatment}$. So, this is represented over here formula which I have not told earlier. SS_{Total} is the overall variation and represented as:

$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{n} \left(y_{ij} - \overline{y}_{..} \right)^2$$

i.e. individual observations minus overall grand observation. Then what we have is that error variation SS_{Error} over here. So, because not only factor influences the overall variation of the process, there can be other X which we do not know like that. So, there will be some error in the estimation over here. So, that is known as SS_{Error} which is calculated as:


$$SS_E = \sum_{i=1}^{a} \sum_{j=1}^{n} \left(y_{ij} - \overline{y}_{i.} \right)^2$$

Then there are degrees of freedom. If I have *a* levels, then a-1 is the degree of freedom. If I have total 24 observations in experimentation with replicates then in that case an-1 is the degree of freedom for this. And when you divide $SS_{Treatment}$ by a-1, I get a mean square treatment.

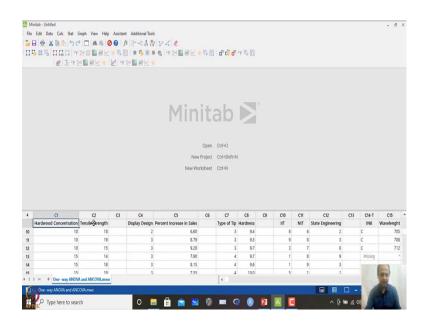
So, $MS_{Treatment}$ is between variation and MS_E is the within variation. Fischer recommended that you calculate a statistic which is $\frac{MS_{Treatment}}{MS_E}$ that give you F-value which follows F distribution basically and these F values can be compared with tabulated values.

If the F values are higher than F tabulated value then in that case we can expect p values to be less than 0.05 like that and we will go by p values in MINITAB analysis.

(Refer Slide Time: 11:54)

So, let us do the experimentation now with using MINITAB and for this what is required over here is that, some assumptions has to be verified initially. One of the assumptions which is required is that whether the variance at different level is same or not. So, if I plot X as different levels over here 5 percent, 10 percent, 15 percent and 20 percent like that versus Y. So, in these case we expect that there will be variation because the experiment if I repeat n number of observations I have over here at 5 percent that is 6 observation I have. And this can vary, this will vary. Basically we cannot get single value.

So, similarly 2nd value will also have some variation, 3rd value will also have some variations like this and we want to check whether the standard deviation over here or variance that we are estimating over here and variance that we are getting over here are all same or all different. Because based on that our analysis will change. So, in this case like two sample variance we are testing is there. Here also if there is more than two sample variations over here and we can compare that whether the all variance are same or whether any two variance are different like that.

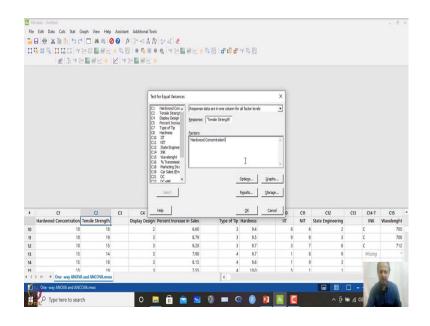

So, for that and underlying assumptions has to be made over here that is whether the values in each group over here follows normal distribution or not each of them follows normal distribution or not based on that test will also differ. So, we have to first test that group wise whether they are normally distributed or not.

Individual at 5 percent, 10 percent, 15, 20 and if they are assumed to be normal distributed in that case what we can do is that, we will assume that one and go ahead with the test and if it is not true then we will go ahead with the different test which is known as Welch's test and that is also possible in MINITAB.

- 8 × File Edit Data Calc Stat Graph View Help Assistant Additional Too Minitab > Open Ctrl+O w Project Ctrl+Shift+N New Worksheet Ctrl+N C2 C3 5.53 9.3 9,4 6.22 9.6 10.0 9.4 9.3 6.01 5.29 6.24 🐌 🔳 🎯 0 🥫 ÷ 💼 🖬 8 22

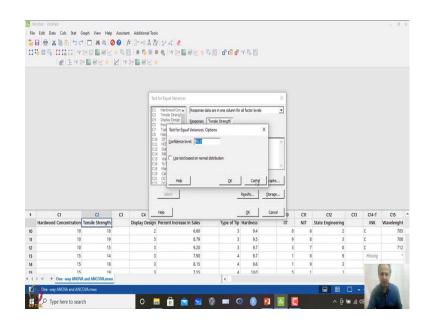
(Refer Slide Time: 13:54)

(Refer Slide Time: 14:02)

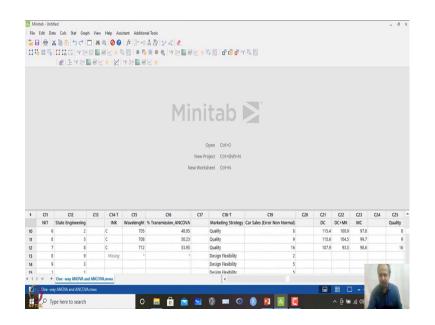


We are trying to analysis this dataset and which is the hardwood concentration and then we will see what to do and how to analyze the ANOVA and how to interpret the ANOVA analysis. So, here hardwood concentration is changed and data is given over here and tensile strength data is given over here.

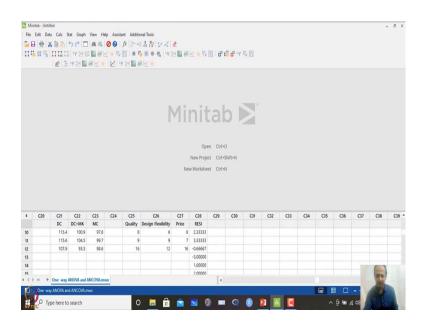
(Refer Slide Time: 14:07)


File	initab - Untitled															- 0
	Edit Data Calc S	Stat Graph	View Help	Assistan	t Additional Tools	5										
1	8 8 X 0 6	Basic Sta	tistics		6 3: A B	211 1 1										
		Regressi	on			IN NE BEI	14. 55		W 17. 59							
1		ANOVA		• 12	One-Way		09 E	0.00	-1 -V 85							
	i 🗶 []	DOE) (d)	Analysis of Mean	S.,.										
		Control	Charts	1 18	Balanced ANOVA											
		Quality 1	lools	,	General Linear Me	odel +										
		Reliabilit	y/Survival	,	Mixed Effects Mo	del +										
		Predictio	e Analytics	. 6	Fully Nested ANC	VA										
		Multivar	iate			11.0	5.6.									
		Time Ser	ies	, 16	General MANOVA	1in	IT.	an								
		Tables		, σ ¹	Test for Equil Vari	NINCES	1.6	0110								
		Nonpara	metrics	, It+	Interval Plot	it for Equal Variances										
		Equivale														
			nd Sample Size	, ×	Interaction F dev	termine whether the variances o riations of two or more groups	er the stan differ.	dard HO								
						New Wo		Ctrl+Shift+N Ctrl+N								
	a		Q	G	C4				C8	09	C10	C11	C12	C13	CI4-T	CIS
	C1 Hardwood Concentr	ration Ten:		G		New Wo	rksheet	Ctrl+N	C8	0	C10 IIT	C11 NIT	C12 State Engineering	C13	C14-T INK	C15 Wavelenght
		ration Ten: 10		G		New Wo	rksheet	Ctrl+N C7	C8	(9			State Engineering	C13		
		_	ile Strength	G		New Wo C5 Percent Increase in Sales	rksheet	Ctrl+N C7	C8 Hardness	09	IIT	NIT	State Engineering	CI3	INK	Wavelenght
		10	ile Strength 18	G	Display Design 2	C5 Percent Increase in Sales 6.60	rksheet	Ctrl+N C7	C8 Hardness 9,4	09	IIT 8	NIT	State Engineering 2 3	C13	INK C	Wavelenght 705
		10 10	ile Strength 18 19	G	Display Design 2 3	CS Percent Increase in Sales 6.60 8.79	rksheet	Ctrl+N C7	C8 Hardness 9.4 9.5	09	ШТ 8 9	NIT	State Engineering 2 3 8	C13	INK C C	Wavelenght 705 708
		10 10 10	ile Strength 18 19 15	C3	Display Design 2 3 3	C5 Percent Increase in Sales 6.60 8.79 9.20	rksheet	Ctrl+N C7	C8 Hardness 9.4 9.5 9.7	0	ШТ 8 9	NIT 6 8	State Engineering 2 3 8 9	C13	INK C C C	Wavelenght 705 708
		10 10 10 15	ile Strength 18 19 15 14	G	Display Design 2 3 3 3 3	C5 Percent Increase in Sales 6.60 8.79 9.20 7.90	rksheet	Ctrl+N C7	C8 Hardness 9.4 9.5 9.7 9.7 9.7	09	HT 8 9 3 1	NIT (State Engineering 2 3 8 9 3	CI3	INK C C C	Wavelenght 705 708
	Hardwood Concentr	10 10 10 15 15	tile Strength 18 19 15 14 18 19	G	Display Design 2 3 3 3 3 3 3	New Wo C5 Percent Increase in Sales 6.60 8.79 9.20 7.30 0. 8.15	rksheet	Ctrl+N C7 Type of Tip 3 3 3 3 4 4	C8 Hardness 9,4 9,5 9,7 9,7 9,7 9,6	0	IIT 8 9 3 1 1	NIT 6	State Engineering 2 3 8 9 3	CI3	INK C C C	Wavelenght 705 708
	Hardwood Concentr	10 10 15 15 15 ANOVA and	ile Strength 18 19 15 14 18 19 ANCOVA.mwx	C3	Display Design 2 3 3 3 3 3 3	New Wo C5 Percent Increase in Sales 6.60 8.79 9.20 7.30 0. 8.15	rksheet	Ctrl+N C7 Type of Tip 3 3 3 3 4 4 4 4	C8 Hardness 9,4 9,5 9,7 9,7 9,7 9,6	0	IIT 8 9 3 1 1	NIT 6	State Engineering 2 3 8 9 3 1		INK C C C	Wavelenght 705 708
4 10 11 12 13 14 15 14	Hardwood Concentr	10 10 15 15 15 ANOVA and d ANCOVA.	ile Strength 18 19 15 14 18 19 ANCOVA.mwx	G	Display Design 2 3 3 3 3 3 3	New Wo C5 Percent Increase in Sales 6.60 8.79 9.20 0.30 8.15 7.55	rksheet	Ctrl+N C7 Type of Tip 3 3 3 3 4 4 4 4	C8 Hardness 9.4 9.5 9.7 9.7 9.6 10.0	0	IIT 8 9 3 1 1	NIT 6	State Engineering 2 3 8 9 3 1	C3	INK C C Missing	Wavelenght 705 708

(Refer Slide Time: 14:17)


So, what we will do is that we will go do *stat* and in ANOVA analysis there is a option of test of equal variance over here. So, what we will do? First we will test whether the variance condition that is required which is satisfied or not over here. So, then what I will do is that we will just see that each factors are in same columns.

So, in this case what is the response variable over here? The response data are in same column. We will just highlights C2 over here and factor that we have to give here is hardwood concentration over here.

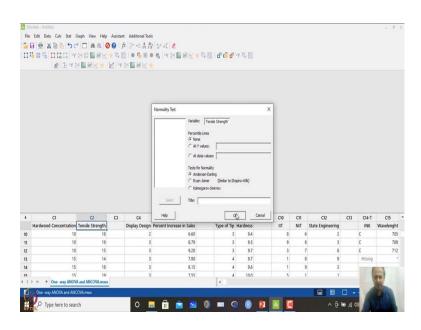


(Refer Slide Time: 14:45)

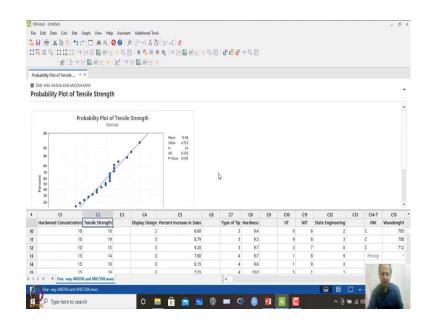
(Refer Slide Time: 14:56)

(Refer Slide Time: 14:58).

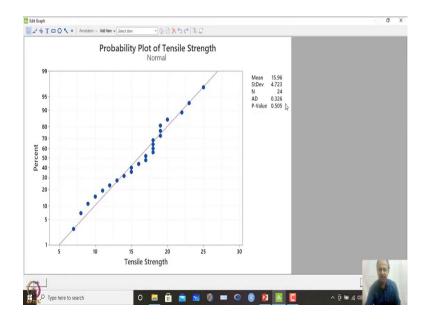
Then you go to options over here and you test for normality. So, this check has to be done over here. So, what do you have to do is that, you have to just separate the values for 10 percent and 15 percent, 20 percent, 5 percent like that. And if you can differentiate that one and then check. So, I have to segregate that one.


(Refer Slide Time: 15:09)

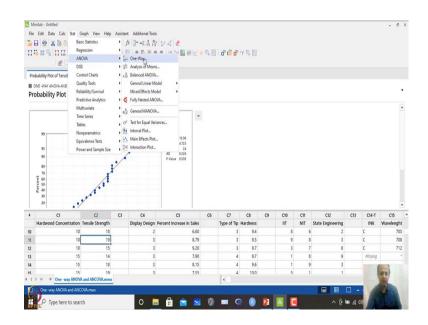
File	nitab - Untitled Edit Data Calc St	at Graph View Help	Assistan	t Additional Tool	5											- 8
		Basic Statistics Regression ANOVA	• 📆	Display Descripti Store Descriptive Graphical Summ	Statistics	k *	4 El i	d" (<mark>"</mark> d"	ч ч 10							
	* B3) +	DOE Control Charts Quality Tools Reliability/Survival Predictive Analytics	11. 12. 12. 12. 12. 12. 12. 12. 12. 12.	2-Sample t												
		Multivariate Time Series Tables Nonparametrics		2 Proportions		ni	ta	ab	\geq							
		Equivalence Tests Power and Sample Size	• 🛝	1 Variance 2 Variances			Open i	Ctrl+O Ctrl+Shift+N								
				Correlation Covariance		<i>w</i> Work	sheet	Ctrl+N								
				Normality Test Outlier Test												
			λ	Goodness-of-Fit	Test for Poisson											
	CI	C2	C3	C4	CS		C6	C7	C8	C9	C10	C11	C12	C13	C14-T	C15
+									Hardnore		IIT	NIT	State Engineering		INK	Wavelenght
	Hardwood Concentra				Percent Increase in			Type of Tip								
10		10 18		2	Percent Increase in	6.60		3	9.4		8			0		705
10 11		10 18 10 19		2	Percent Increase in	6.60 8.79		3	9.4 9.5		9		3 3	0		705 708
10 11 12		10 18 10 19 10 15		233		6.60 8.79 9.20		3	9.4 9.5 9.7		9 3		3 3	0	:	705
10 11 12 13		10 18 10 19		2		6.60 8.79		3	9.4 9.5		9		3 3 7 8 3 9	0		705 708
10 11 12		10 18 10 19 10 15 15 14		2 3 3 3 3		6.60 8.79 9.20 7.90		3	9.4 9.5 9.7 9.7		9 3 1		3 3 7 8 3 9	0	:	705 708
10 11 12 13 14 15	Hardwood Concentra	10 18 10 19 10 15 15 14 15 18		2 3 3 3		6.60 8.79 9.20 7.90 8.15		3 3 3 4 4	9.4 9.5 9.7 9.7 9.6		9 3 1 1		3 3 7 8 8 9 9 3	0	:	705 708
10 11 12 13 14	Hardwood Concentra	10 18 10 19 10 15 15 14 15 18 15 19 NOVA and ANCOVA.mws		2 3 3 3		6.60 8.79 9.20 7.90 8.15		3 3 3 4 4 4	9.4 9.5 9.7 9.7 9.6		9 3 1 1		3 3 7 8 8 9 9 3 1 1	0	:	705 708


So, I am doing a rough approximation over here and trying to check whether the overall values is normal. So, I will do the basic statistics, but what do you have to do is that, 5 percent you have to segregate, the dataset 5 percent, 10 percent and individually you

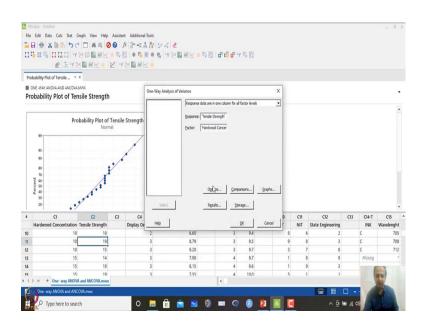
have to see whether it follows normal or not. I am taking a overall test of tensile strength over here which I am doing normality test. So, I will take the tensile strength and want to check Anderson Darling test.


(Refer Slide Time: 15:22)

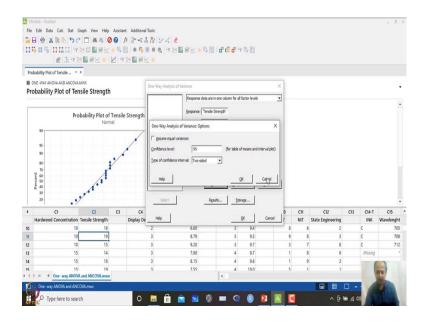
(Refer Slide Time: 15:27)



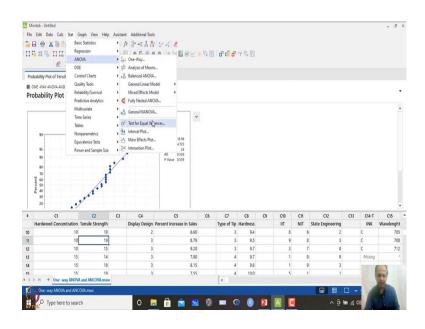
(Refer Slide Time: 15:33)



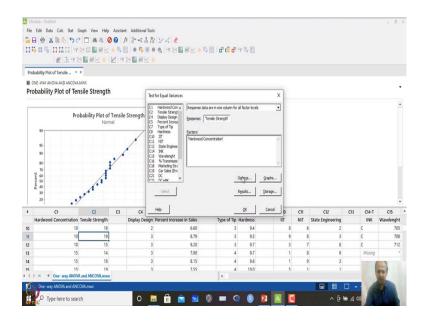
So, if you click this one what you get is that, you get values approximately like this P value is 0.5, but group wise we have to do like that, but I am doing a overall analysis over here and in this case it shows that mostly we expect that this is a normal distribution data because p value is more than 0.05.


(Refer Slide Time: 15:51)

(Refer Slide Time: 16:00)

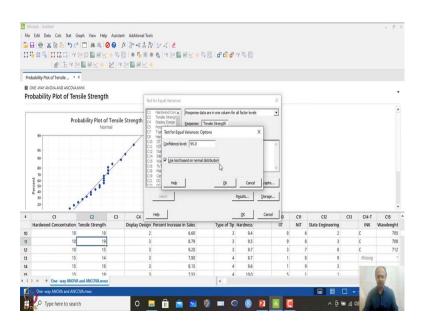


(Refer Slide Time: 16:02)

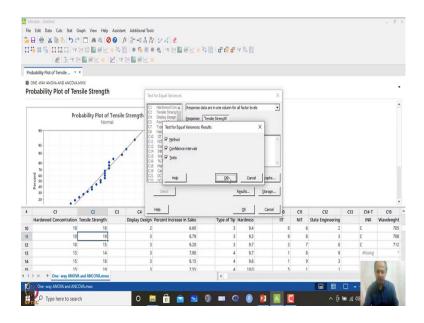


So, assumptions of normality I am considering over here where while checking the variability, variance whether it is same or not then I go back to ANOVA and I will do one-way analysis of variance. And then in the options I will write that assume equal variance, assume normality over here.

(Refer Slide Time: 16:12)



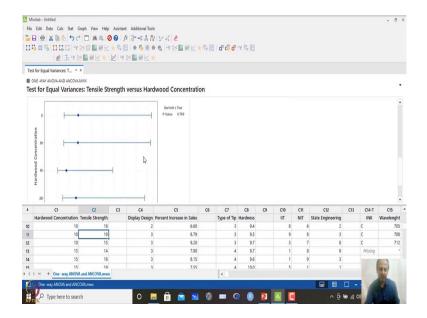
(Refer Slide Time: 16:17)



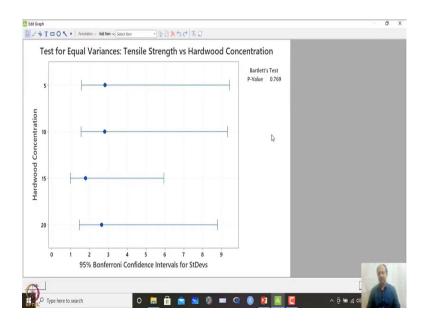
Sorry this is not the test that I have to do. I will select *stat, ANOVA analysis, test of equal variance*. So, over here what we have to do is that response data are in one column. So, tensile strength and hardwood concentration we have given.

(Refer Slide Time: 16:25)

(Refer Slide Time: 16:37)



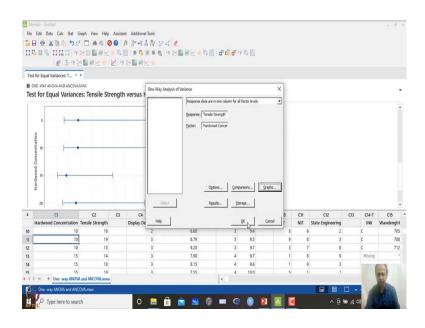
In options we select use test for normality distribution assuming normality distribution over here. I do not change the confidence level over here. So, confidence will remain same. And results what we want to see all things we want to see over here let us say and I click ok.


(Refer Slide Time: 16:42)

	itab - Untitled														- 8
File	Edit Data Calc Stat G	raph View Help	Assista	Additional Tool	8										
	1 2 X 1 5 5 C	0 44 0	0	fx 3= -2 1 3	2 2 2 0										
11		XOMAK	+ 12		HA YMERK	和原	d" (3 d"	いな問							
Test	for Equal Variances: T *	_													
	NE -WAY ANOVA AND ANCOVA														
-			onath	vorcus Har	dwood Concentrati	on									
103	tion Equal variance	est tensile su	engu	versus riure	awood concentrati	on									
M	lethod														
N	ull hypothesis All va	riances are equal													
	ternative hypothesis At lea		fferent												
	gnificance level a = 0.														
	Bartlett's method is used. This i	mathead is accurate for	(narma)	data anhi											
	concert a metrica la carea. mas														
9	5% Bonferroni Confide	nce Intervals fo	r Stan		¹⁵ 😡										
	Hardwood Concentration N StDe 5 6 2.8284 10 6 2.8047		6)		is by										
-	Hardwood Concentration N StDe 5 6 2.8284 10 6 2.8047	v Cl 3 (1.57050, 9.39896 6 (1.55736, 9.32031	6)		5	C6	G	C8	09	C10	C11	C12	C13	C14-T	C15
-	Hardwood StDe 5 6 2.8284 10 6 2.8047 15 6 1.7888 C1 Hardwood Concentration	v Cl 3 (1.57050, 9.39896 6 (1.55736, 9.32031 5 (0.99327, 5.94442 C2	0)) ()	dard Deviation	L2 C5 Percent Increase in Sales	C6	C7 Type of Tip	Hardness	(9	C10 IIT		C12 State Engineering	C13	C14-T INK	Wavelengh
-	Hardwood StDe Concentration N StDe 5 6 2.8284 10 6 2.8047 15 6 1.7888 CI Hardwood Concentration 10	v Cl 3 (1.57050, 9.39899 6 (1.55736, 9.32031 5 (0.99327, 5.94442 C2 Tensile Strength 18	0)) ()	dard Deviation	C5 Percent Increase in Sales 6.60	C6	Type of Tip 3	Hardness 9,4	09			State Engineering 2	C13	INK C	Wavelengh 70
0	Hardwood StDe 5 6 2.8284 10 6 2.8047 15 6 1.7888 C1 Hardwood Concentration	v CI 3 (1.57050, 9.39696 6 (1.55736, 9.32031 5 (0.99327, 5,94442 C2 Tensile Strength 18 19	0)) ()	dard Deviation	L2 C5 Percent Increase in Sales	C6	Type of Tip	Hardness 9.4 9.5	C 9	IIT	NIT	State Engineering	C13	INK C C	Wavelengh 70. 70.
0 11 2	Hardwood N StDe 5 6 2.8284 10 6 2.8047 15 6 1.7888 CI Hardwood Concentration 10 10 10 10 10 10 10 10 10 10	v Cl 3 (1.57050, 9.38996 6 (1.55736, 9.32031 5 (0.99327, 5,94442 C2 Tensile Strength 18 19 15	0)) ()	dard Deviation	CS Percent Increase in Sales 6.60 8.79 9.20	C6	Type of Tip 3 3 3	Hardness 9,4 9,5 9,7	C9	IIT	NIT 6 8 7	State Engineering 2 3 8	C13	INK C C C	Wavelengh 70 70 71
0 11 2	Hardwood N StDe Concentration N StDe 2.8047 10 6 2.8047 15 6 2.8047 15 6 1.7888 CI 10 10 10 10 10 10 10 15	v Cl 3 (1.57050, 9.39696 6 (1.55736, 9.32031 5 (0.99327, 5,94442 C2 Tensile Strength 18 19 15 14	0)) ()	dard Deviation	L2 Percent Increase in Sales 6.60 8.79 9.20 7.30	C6	Type of Tip 3 3 3 4	Hardness 9,4 9,5 9,7 9,7	(9	IIT	NIT 6 8 7 8	State Engineering 2 3 8 9	C13	INK C C	Wavelengh 70. 70.
4 10 11 12 13 14	Hardwood StDe Concentration N StDe 10 6 2.8284 15 6 1.7888 C1 C1 10 Hardwood Concentration 10 10 10 15 15	v Cl 3 (1.57050, 9.398996 6 (1.55736, 9.32031 5 (0.99327, 5,94442 C2 Tensile Strength 18 19 15 14 18	0)) ()	dard Deviation	L2 Percent Increase in Sales 6.60 8.79 9.20 7.90 8.15	C6	Type of Tip 3 3 3 4 4	Hardness 9,4 9,5 9,7 9,7 9,6	09	IIT	NIT 6 8 7	State Engineering 2 3 8 9 3	C13	INK C C C	Wavelengh 70 70 71
4 10 11 12 13 14 15	Hardwood Concentration N SEDE 10 6 2.8247 15 6 1.7888 C1 C1 Hardwood Concentration 10 10 15 15 15 15 15 15 15 15 15 15	v Cl 3 (1.57050, 9.398996 6 (1.55736, 9.32031 5 (0.99327, 5.94442 C2 Tensile Strength 18 19 15 14 18 19	0)) ()	dard Deviation	L2 Percent Increase in Sales 6.60 8.79 9.20 7.30	C6	Type of Tip 3 3 3 4 4 4 4	Hardness 9,4 9,5 9,7 9,7 9,6	C9	IIT	NIT 6 8 7 8	State Engineering 2 3 8 9	C13	INK C C C	Wavelengh 70 70 71
4 10 11 12 13 14 15	Hardwood Concentration N SEDE 10 6 2.8847 15 6 1.7888 C1 10 Hardwood Concentration 10 10 10 15 15 15	v Cl 3 (1.57050, 9.398996 6 (1.55736, 9.32031 5 (0.99327, 5.94442 C2 Tensile Strength 18 19 15 14 18 19	0)) ()	dard Deviation	L2 Percent Increase in Sales 6.60 8.79 9.20 7.90 8.15	C6	Type of Tip 3 3 3 4 4	Hardness 9,4 9,5 9,7 9,7 9,6	C9	IIT	NIT 6 8 7 8	State Engineering 2 3 8 9 3	C13	INK C C C	Wavelengh 70 70 71
4	Hardwood Concentration N SEDE 10 6 2.8247 15 6 1.7888 C1 C1 Hardwood Concentration 10 10 15 15 15 15 15 15 15 15 15 15	v Cl 3 (1.5705,9.39099 6 (1.55736,9.32031 5 (0.99327,5.9442) C2 Tensile Strength 18 19 15 14 18 19 15 14 18 19 14 18 19	0)) ()	dard Deviation	L2 Percent Increase in Sales 6.60 8.79 9.20 7.90 8.15	C6	Type of Tip 3 3 3 4 4 4 4	Hardness 9,4 9,5 9,7 9,7 9,6	C9	IIT	NIT 6 8 7 8	State Engineering 2 3 8 9 3	C13	INK C C C	Wavelengh 70 70 71
4 10 11 12 13 14 15	Hardwood Concentration N Step 6 Concentration 6 C C C C C C C C C C C C C C C C C C	v Cl 3 (1.5705, 9.39999 6 (1.53736, 9.39997 C2 Tensile Strength 18 19 14 18 19 14 10 10 10 10 10 10 10 10 10 10	0)) ()	dard Deviation	C5 Percent Increase in Sales 6.60 8.79 9.20 7.90 8.15 7.55		Type of Tip 3 3 3 4 4 4 4	Hardness 9,4 9,5 9,7 9,7 9,7 9,6 10,0	0	IIT	NIT 6 8 7 8	State Engineering 2 3 8 9 3 1 1		INK C C Missing	Wavelengh 70 70 71

(Refer Slide Time: 16:43)

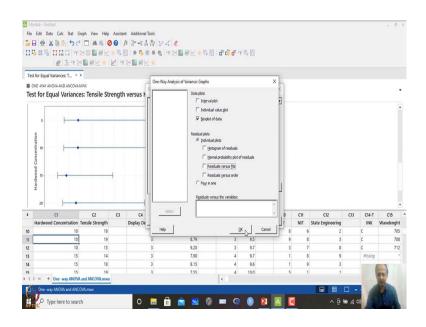
(Refer Slide Time: 16:47)


And what will happen is that it will give me some results over here which is the Bartlett test that you will observe over here, because normality assumptions is taken over here. So, it is most suitable test that is possible to do and statistician recommended this one.

> File Edit Data Calo 🔒 🖯 👲 🔏 🗋 • fx 🗄 == 🛔 🗗 🖢 🔏 🧶 1 B B -边阳:**#**日#Y边尼 Test for Equal Va At Balanced ANOVA I ONI Test for Equal Va ncentration Fully Nested AN Test for Equa 14 Interval Plot. Main Effects Plot. wer and Sample C3 **C4** cs 9,4 8.75 9.5 9.7 9.20 9.7 9.6 7.90 8.15 7.55 0 📄 -. 8 Type here to search P

(Refer Slide Time: 17:22)

And see the p -Value. p -Value is more than 0.205 indicates that all variances are same. So, overall there is no statistical difference in the variance like that. So, when this test is completed. So, equal variance assumptions, is checked. So, then what I will do is that, I will go to *ANOVA* analysis *one-way ANOVA* analysis.


(Refer Slide Time: 17:26)

(Refer Slide Time: 17:29)

ii M	nitab - Untitl	led														- 6	9 X
File	Edit Data	a Calc Stat G	aph View Help	Assista	nt Additional	Tools											
21	J & X	60 50	0 44 6	00	fx 30 -2 .	324											
		II I I I Y						私用日日		收回							
			Bek*					1.13		1.115							
_			_	211													
Tes	t for Equal V	/ariances: T Y															
-		IOVA AND ANCOVA.				One-Way Analysis	of Variance					×					
Te	t for Eq	ual Variance	s: Tensile St	rength	versus H							_					
T	_						Response	data are in one	column for all f	actor level	5	-					
							Response	Tensle Strene	ath'								
	5	+		-	-					_	_	-					
						One-Way Analy	sis of Variance: C	ptions			×	(
	atio					Assume equal	variances										
	10 J	+	-	-		Confidence level:	95		May table of	Dates and	d interval plot)						
	once						1		for some or	incaris an	A LIVE AND PARTY						
	P					Type of confiden	ce interval: Two-	sided <u>•</u>									
	0 15	-		4						_							
	Hardwood Concentration					Help				(Cancel						
	*							-				_					
	20	-	_	_	-	Select	1	Results	Stor	I							
+	~ L	a	C2	G	C4		_						C11	C12	C13 C14	-T C15	
•	Hardwood	d Concentration		G	Display De	Help			(ĸ I	Cancel	1	NIT	State Engineering	C13 C14		
10	Haruwoou	10	18		Uspiay De	2	6.60		3	9,4		Ξ.	6	state engineering	c		05
11		10	19			3	8,79		3	9.5		9	8	3	c		108
12		10	15			3	9.20		3	9.7		3	7	8	c		12
13		15	14			3	7.90		4	9.7		1	8	9	Miss		
14		15	18			3	8.15		4	9.6		1	9	3			
15		15	19			3	7.55		4	10.0		5	1	1		and the	
14 4	рн +	One -way ANOVA	and ANCOVA.mws	4				1	())							1	
1	One -way	y ANOVA and ANCO)VA.mwx														
1	VO TO	pe here to searc			0				- 0		2			A 6	9m @ 40		
NP	IL IV	penere to searc			0				W					~ ų	W 1/4 44		

(Refer Slide Time: 17:39)

In options I will click assume equal variance; that is because we have already checked that one. Then I will click ok and then I will click in the graph what you can see is box plot we can see over here and also some assumption has to be checked that we will see afterwards.

So, let us do this and let us try to figure out ANOVA analysis says when equal variance condition, normal distribution condition and group wise normality distribution also holds.

(Refer Slide Time: 18:05)

	it Data Calc Stat G 👷 🔏 🐚 🏗 🕤 🔿				424												
					あるでで見る下す	21.55		v 15. 59									
				NESK*	*A 1 C C C	- Y D		1 14 05									
Dne-wa	ANOVA: Tensile S *	-															
	WAY ANOVA AND ANCOVA.																
	way ANOVA: Ten:		versu	s Hardwood C	Concentration												
Meth	bod																
		tans are equal															
		I means are equal															
	icance level a = 0.																
	al variances were assumed	for the analysis.															
e yu																	
£ Qui																	
	or Information																
Facto																	
Facto	ır L	evels Values															
Facto		evels Values 4 5, 10, 15, 20															
Facto Facto Hards	r L wood Concentration		f														
Facto Facto Hards	ır L																
Facto Facto Hards	r L wood Concentration ysis of Variance C1	4 5, 10, 15, 20 C2	G	C4	G	C6	C7	C8	C9	C10	C11	C12	CIB	C14-T	C15		
Facto Facto Hardi Anal	r L wood Concentration ysis of Variance C1 rdwood Concentration	4 5, 10, 15, 20 C2 Tensile Strength	G	Display Design P	Percent Increase in Sales	C6	Type of Tip	Halliness	C 9	C10 IIT	C11 NIT	C12 State Engineering	C13	INK	Wavelen		
Facto Facto Hardi Anal	rr L wood Concentration ysis of Variance C1 dwood Concentration 10	4 5, 10, 15, 20 C2	C3		Percent Increase in Sales 6.60	C6		Ha(gness 9,4	C9				C13		Wavelen		
Facto Facto Hards Anal Har	r L wood Concentration ysis of Variance C1 rdwood Concentration	4 5, 10, 15, 20 C2 Tensile Strength	C3	Display Design P	Percent Increase in Sales	C6	Type of Tip	Halliness	09	IIT	NIT		C13	INK	Wavelen		
Facto Facto Hardi Anal Har	rr L wood Concentration ysis of Variance C1 dwood Concentration 10	4 5, 10, 15, 20 C2 Tensile Strength 18	G	Display Design P	Percent Increase in Sales 6.60	C6	Type of Tip 3	Ha(gness 9,4	C9	IIT	NIT 6		C13	INK C	Wavelen		
Facto Facto Hards Anal Har	rr L wood Concentration ysis of Variance C1 dwood Concentration 10 10	4 5, 10, 15, 20 C2 Tensile Strength 18 19	C3	Display Design P 2 3	Percent Increase in Sales 6.60 8.79	C6	Type of Tip 3 3	Ha(Sness 9.4 9.5	C9	IIT	NIT 6	State Engineering 2 3 8	CI3	INK C C	Wavelen		
Facto Facto Hards	rr L wood Concentration ysis of Variance C1 dwood Concentration 10 10 10	4 5, 10, 15, 20 C2 Tensile Strength 18 19 15	в	Display Design P 2 3 3	Percent Increase in Sales 6.60 8.79 9.20	C6	Type of Tip 3 3	Halliness 9.4 9.5 9.7	09	IIT	NIT 6 8 7	State Engineering 2 3 8 9		INK C C C	C15 Waveleng 7 7 7		
Facto Facto Hards Hards	r L L wood Concentration c1 dtwood Concentration 10 10 10 15	4 5, 10, 15, 20 C2 Tensile Strength 18 19 15 14	а	Display Design P 2 3 3 3 3	ercent Increase in Sales 6.60 8.79 9.20 7.90	C6	Type of Tip 3 3	Hallness 9,4 9,5 9,7 9,7	C9	IIT	NIT 6 8 7 8	State Engineering 2 3 8 9		INK C C C	Waveleng 7 7		
Factor Factor Hards Hards	r <u>L</u> wood Concentration ysis of Variance Ct dtwood Concentration 10 10 10 10 15 15 15 15 15 15	4 5, 10, 15, 20 C2 Tensile Strength 18 19 15 14 18 19	в	Display Design P 2 3 3 3 3 3 3 3	Percent Increase in Sales 6.60 8.79 9.20 7.90 8.15	C6	Type of Tip 3 3	Halliness 9.4 9.5 9.7 9.7 9.6	C9	IIT	NIT 6 8 7 8 9	State Engineering 2 3 8 9 3		INK C C C	Wavelen		
Facto Facto Hards Hards	rr L vood Concentration vood Concentration Ct dwood Concentration 10 10 10 15 15 15 15 15 15 15 15 15 15 15 15 15	4 5, 10, 15, 20 C2 Tensile Strength 18 19 15 14 18 19 14 18 19 14	G	Display Design P 2 3 3 3 3 3 3 3	Percent Increase in Sales 6.60 8.79 9.20 7.90 8.15	C6	Type of Tip 3 3 3 4 4 4 4	Halliness 9.4 9.5 9.7 9.7 9.6	09	IIT	NIT 6 8 7 8 9	State Engineering 2 3 8 9 3		INK C C C	Waveleng 7 7		

(Refer Slide Time: 18:07)

日日日 47 全日日 47 全日王 47 日 Tensile S *		00) • 40	t Additional Tools x 2* -≤ ,	⊻∡ & *{ 'Y⊠∎@k_*	与語	d" (<mark>8</mark> d"	ч ч 🗄							- 6
日日日 47 全日日 47 全日王 47 日 Tensile S *		00) • 40	2 計-2 計] # ⁷ 0 雅 #	⊻∡ & *{ 'Y⊠∎@k_*	4 图	d" (<mark>8</mark> d"	ч ¹ , 11							
In II I Y	×0 • 8 K * × • 8 K *	* 4		* YEBSE	為臣	d" (<mark>"</mark> d"	ч ч , 🗄							
ensile S *	 Image: Section 1. Image: Section 1.<				99 8G	0, ro 0,	-1 -9 KB							
ensile S ×	x wwx	Z Y	×∎sk*											
AND ANCOVA	wwx													
OVA: Ten	sile Strength													
		versus	Hardwood	Concentration										
entration	3 382.8 127.5	97 19	61 0.000											
			.01 0.000											
hary														
-sq R-sq(ad) R-sq(pred)													
2% 70.82	6 63.46%													
			R											
M Moon	ODmi 05%	0												
	200 (12.40													
		11443												
1	C2	C3	C4	CS	C6	C7	C8	C9	C10	C11	C12	C13	C14-T	CIS
oncentration	C2 Tensile Strength			Percent Increase in Sales	C6	Type of Tip	Hardness	C9	C10 IIT		State Engineering	C13	INK	Wavelengh
oncentration 10	C2 Tensile Strength 18			Percent Increase in Sales 6.60	C6	Type of Tip 3	Hardness 9,4	C9	IIT 8		State Engineering 2	C13	INK C	Wavelengh 705
oncentration 10 10	C2 Tensile Strength 18 19			Percent Increase in Sales 6.60 8.79	C6	Type of Tip 3 3	Hardness 9,4 9,5	C9	IIT	NIT	State Engineering 2 3	C13	INK C C	Wavelengh 703 703
ncentration 10 10 10	C2 Tensile Strength 18 19 15			Percent Increase in Sales 6.60 8.79 9.20	C6	Type of Tip 3 3 3	Hardness 9,4 9,5 9,7	C9	IIT 8	NIT 6 8 7	State Engineering 2 3 8	C13	INK C C C	Wavelengh 703 703
oncentration 10 10 10 10	C2 Tensile Strength 18 19 15 14			Percent Increase in Sales 6.60 8.79 9.20 7.90	C6	Type of Tip 3 3	Hardness 9,4 9,5 9,7 9,7	C9	IIT 8	NIT	State Engineering 2 3 8 9	C13	INK C C	Wavelengh 703 703
oncentration 10 10 10 15 15	C2 Tensile Strength 18 19 15			Percent Increase in Sales 6.60 8.79 9.20	C6	Type of Tip 3 3 3	Hardness 9,4 9,5 9,7	C9	HT 8 9 3 1 1	NIT 6 8 7	State Engineering 2 3 8 9 3	C13	INK C C C	C15 Wavelenght 705 708 712
oncentration 10 10 10 15 15 15	C2 Tensile Strength 18 19 15 14	G	Display Design 2 3 3 3 3	Percent Increase in Sales 6.60 8.79 9.20 7.90	C6	Type of Tip 3 3 3	Hardness 9,4 9,5 9,7 9,7	C9	IIT 8	NIT 6 8 7 8	State Engineering 2 3 8 9	C13	INK C C C	Wavelengh 703 703
	ary -sq <u>R-sq(adj</u> 236 70.829 <u>N Mean</u> 6 10.00	23 513.0 hary rsq.(adg) R-sq(pred) 206 70.8216 63.46% N Mean SDDev 95% 6 10.00 2.83 (7.831	23 513.0 hary	23 513.0 hary -sq R-sqiped 28 70.22% 63.45% by N Mean 500w 95% Cl	23 513.0 hary -rag R-sagipted) 28 70.228 63.46% D N Mean 3Dev 95% C	23 513.0 Mary 4 <u>40 R-sqladb R-sqlpred)</u> 29 70.829 63.46%	23 513.0 nary 	23 513.0 mary 	23 513.0 mary 	23 513.0 harry +4 R-seq(ad) R-seq(pred) 29 75.82% 63.44%	23 513.0 hary 1-4 <u>R-sq(ad)</u> <u>R-sq(pred)</u> 2% <u>70.82%</u> <u>61.46%</u>	23 513.0 hary 14 <u>R-sq(ab)</u> <u>R-sq(pred)</u> 26 <u>75.828</u> <u>63.466</u>	23 513.0 http: 148_R=seq(ad)	23 513.0 harry 14 R-seq(ad) R-seq(pred) 29 75.22% 63.46%

So, in this case if I click ok what will happen is that, I will get the ANOVA analysis, which is shown over here. So, this can be copied as a picture like that and we can paste it in excel to enlarge the views like that and let us try to see what the results indicate.

關 AT P ✓ Format Painter B I U -🗄 🔹 🤷 • A • 📑 🖷 🖷 🗐 🗒 Merge & Center 96 1 18 28 Picture 1 * f_K A B C D E F G H I J K L M N O P Q R S T Analysis of Variance DF Adj SS Adj MS F-Value P-Value Source 10 11 12 13 14 15 16 17 18 19 20 21 22 Hardwood Concentration 3 382.8 127.597 19.61 0.000 20 130.2 6.508 Error 23 513.0 Total Sheet1 NPTH Type here to search 🙍 🖬 🚷 🔳 🐼 ^ @ W 0 R 22 di-(X)

(Refer Slide Time: 18:30)

What you see is that source of variation is this SS hardwood concentration. So, when I change the hardwood concentration what is the change in variance that is estimated over here and it says adjusted SS. Formula remains same what we have shown in our slides and MINITAB will say adjusted SS.

So, this is nothing but sum of square variations due to treatment basically. So, this is showing you due to treatment what is the variation then degree of freedom is 3 because we have 4 levels. So, 4 minus 1 is 3 over here and mean square error is SS divided by degree of freedom that is 127 over here. Total degree of freedom is 24-1=23, over here and sum of square of total is calculated. Now, if you subtract sum of square total and then from that you subtract 382 you will get 130.2 over here. Then mean square treatment is 127 how it is? 382 divided by 3 that is 127 over here.

And mean square error what we can calculate is 130 by 20 that will give you 6.5 over here. Then F-value, how we are deriving this one? Mean square treatment divided by mean square error over here. Mean square error gives you an estimation of standard deviation of the process basically or it gives you an estimate $\hat{\sigma}$ of the y and also gives you an estimate of error.

Error variance basically error variance over here. So, over here what you see, F-value is coming out to be 127 by 6.5 this value when you divide it is 19.61 which is very high values of F and it is expected that if F is quite high on the higher side what we can expect is that p value should be going down.

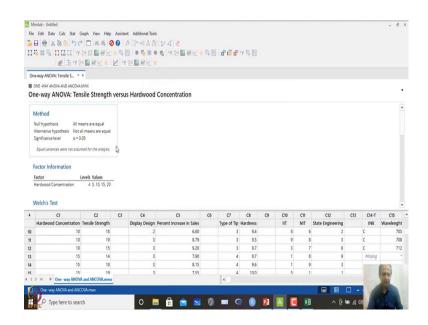
So, highly significant what we are seeing is that, there is at least two levels where when I change the level from one level to the other level basically significant difference exist between the average response that we are getting; that means, this variable is important and is influencing the change in mean of the response CTQs like that.

So, this factor can be considered for further experimentation in future, but this is based on certain assumptions like normality distributions. So, that needs to be checked, but if you are not doing this and if you are assuming that variance is different.

(Refer Slide Time: 21:17)

Minitab - Untitled																	- 8
File Edit Data Ca	nic Stat Gra	ph View H	elp As	sistant /	Additional Too	5											
🖌 🖗 🖁	Basic	Statistics	1	fx	3 E	244	2										
15	Regre	ssion	1	1. 159 1	4 7. 10		HERKI	私用	di cii di	Y K PE							
	ANO	/A		0	ie:Way												
: 82	DOE)	· 神 Ar	al Sis of Mean	i5											
One-way ANOVA: Ter	nsile Contr	ol Charts		A & Ba	lanced ANO/A	h											
ONE -WAY ANOVA A	ND Quali	ty Tools		G	eneral Linear N	lodel	•										
One-way ANO	D-K-L	sility/Survival	- 0	M	ixed Effects M	odel	ation										
ne-way Aivo	Predi	ctive Analytics		CE Fu	lly Nested AN	AVC	ation										
Equal variances w	ere Multi Time	variate Series		G G	eneral MANOV	A											
Factor Informa	Table				st for Equal Va terval Plot	iances											
Factor		alence Tests			ain Effects Plo												
Hardwood Concen		r and Sample S		N IN	teraction Plot.												
Source Hardwood Concern Error Total		382.8 12 130.2	dj MS 7.597 6.508	F-Value 19.61	P-Value 0.000												
CI		C2	0	3	C4		CS	C6	C7	C8	C9	C10	C11	C12	C13 (14-T	C15
Hardwood Con	centration T	ensile Streng	th	Di	splay Design	Percent In	crease in Sales		Type of Tip	Hardness		IIT	NIT	State Engineering		NK	Wavelengh
	10		18		2		6.60		3	9,4		8	6	2	с		70
	10		19		3		8.79		3	9.5		9	8	3	с		70
	10		15		3		9.20		3	9.7		3	7	8	с		71
	15		14		3		7.90		4	9.7		1	8	9	M	ssing	
	15		18		3		8.15		4	9.6		1	9	3			-
	15		19		3		7.55		4	10.0		5	1	1			
4 b H + One-	-way ANOVA a	nd ANCOVA.m	iwx						4								14
P	WA and ANCO	/A.mwx	_													1	Sec.
One -way ANC																	
	ere to search				0		-	10	- (-	100		×		an // 40		100

(Refer Slide Time: 21:22)


h M	initab - Untitled																					- Ø	×
File	Edit Data Calc Stat	Graph	View	Help A	ssistant	Additiona	I Tools																
2	B 🕸 🔏 🖻 ち o)	1 14 1	0) fx	30 -S	1.22	24	2														
										RK .	收阳	d ^o c	di Ly	の間									
	1 E Y																						
	e-way ANOVA: Tensile S *	_																					
							_									_							
-	one-way anova and ancow ne-way ANOVA: Ter		Ctron	oth w	areue.	Harduu	One-W	ay Analysi	s of Varia	ance						X							٠
U	ie-way ANOVA: Iei	isile	Stren	igui ve	ersus	naruwo	-			Response	data are i	1 one colur	n for all fa	ctor level		•							
	Equal variances were assume	a for th	e analycic						- 11							-							•
	equal torances nere assume		e unagen							Besponse:	Tensie 5	itrength'											
F	actor Information									Eactor:	Hardwor	od Concer											
	Factor	Levels	Values						- 1														
	Hardwood Concentration		5, 10, 1						- 1														
_			12.22	2					- 1														
1	Analysis of Variance								- 1														
	Source	DF A	Adj SS	Adj MS	E-Valu	e P-Valu			- 1														
1	Hardwood Concentration			127.597	19.6				- 1							-1							
	Error		130.2	6.508							Ogt	005	Compari	sons	Graphs								
	Total	23	513.0					Select	1		Res	its	Stora	pe									
4	CI	1	C2		G	C4	-				_							C11	C12	C13	C14-T	C15	
	Hardwood Concentration	Tens				Display De	н	elp					Q	<	Cano				State Engineering	CIV	INK	Wavelengh	
10	10			18			2			6.60		-	3	18 9.4	-	_	8	6	2		с	705	5
11	10			19			3			8.79			3	9.5			9	8	3		с	708	3
12	10			15			3			9.20			3	9.7			3	7	8		с	713	2
13	15			14			3			7.90			4	9.7			1	8	9		Missing		•
14	15			18			3			8.15			4	9.6			1	9	3		1		
15	D H + One -way ANOV		ANCONE	19			3			7.55		4	4	10.0			5	1	1			-	
• •		-		LINWX								4		_	_	_	_			-		No.	
e	One -way ANOVA and AN	COVA.r	max		-	-														- 🗆		1	
	P Type here to sea	rch				0				~	8				2	di-	C	×	^ ĝ	🐿 🧟 di			
MP	1 CAR															-	_				100	-	

(Refer Slide Time: 21:25)

File	Edit Data Calc Stat	· □ # #	00	fx 2= =2 . 2] # ₩ []	た シュー 単者 Y2		4 E I (۳ <mark>دة م</mark> ۳ ۱	(英国							×
One-w	way ANOVA: Tensile S *	×														
I ON	E-WAY ANOVA AND ANCOVA	LMWX			One-Way Analysis	Al Mariana					×					
One	-way ANOVA: Ter	sile Strength	n versu	s Hardwe	One way Analysis						_					•
E	iqual variances were assumed	d for the analysis.					data are in on Tensile Stren	column for all	factor level	6	-					*
Fac	ctor Information				One-Way Analy	sis of Variance: Op	tions			;	<					
Fac	ctor	Levels Values			F Assume equal	variances										
Ha	rdwood Concentration	4 5, 10, 15, 20)		Confidence level:			Her table o	(d interval plot						
So	rdwood Concentration	3 382.8 127.		alue P-Valu 9.61 0.00	Type of confiden	ce interval: Two-si	ded _	, 	×	Cancel						٣
4	CI	C2	C3	C4					. 1		0	C11	C12	C13 C14-1		1
	lardwood Concentration			Display De	Help			_	ΩK	Cancel		NIT	State Engineering	INK	Wavelengh	
10	10				2	6.60 8.79		3	9.4 9.5		8	6	2	c	70	
11 12	10				3	9.20		3	9.5		9	8	5	c	70	
13	15				3	7.90		4	9.7		1	8	0	Missin		-
14	15				3	8.15		4	9.6		1	9	3	11000		
15	15				3	7.55		4	10.0		5	1	1		200	
4.4.9	+ + One -way ANOV	A and ANCOVA.mw	x					•							-14	
10	One -way ANOVA and AN	COVA.mwx											₩	□ /	and the	
NPTE	O Type here to sear	rch		0	🖬 🔒	💼 📓	() ()		8	2		×	^ ĝ	••• /4 40		

Then in that case what will happen is that another test, Welch's test, which is equivalent to this one-way analysis will be applicable. So, in the options if you do not assume equal variance or variance is not same, in that case statistical test that exist which is known as Welch's test.

(Refer Slide Time: 21:33)

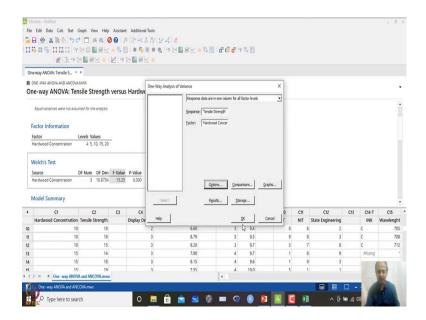
(Refer Slide Time: 21:34)

Hardwood Concentration Tenule Strength Display Design Percent Increase in Sales Type of Tip Hardmood NIT NIT State Engineering 10 10 10 2 6.60 3 5.4 8 6 2 C 11 10.00 105 3 6.75 9 8 3 2.67 1																ab - Untitled			
Implicit In the set of t												Iditional Tools	Assistant Ad	fiew Help	Graph Vi	Edit Data Calc Stat G	File		
Ref. Y Coll Y											2 2 2	一日月初) 🕜 fx 🏱	A A 0	2	● 200 000000000000000000000000000000000	8		
One-way ANOVA: Tensile Strength versus Hardwood Concentration Each information Factor Information Secure were not assumed for the analysis. Velicity Tensile Strength versus Hardwood Concentration Welch's Test Source Levels: Values Hardmood Concentration A 5, 10, 15, 20 Welch's Test Source DF Num DF Den DF Den DF Den DF Des DE Value Hardmood Concentration CS CS CS CS CS Model States Diagna DF Num DF Den DF Des DF Num DF Des Des Des Des Des Des DF Num DF Des Des Des Des Des Des DF Num DF Des								Y鸟图	d" 🖏 d"	為图	육 위논팀용문	非 🎨 瀬 毎	*号图 #	Sek.	NO	1 1 1 1 1 1 V	110		
												BK *	2 YM	K * !!	200	1 EYE			
One-way ANOVA: Tensile Strength versus Hardwood Concentration Experimentation Formation Factor Information Sector Information Matchedo Concentration Information Sector Information Note Strength Of Percent Increase in Sales Of Percent In															x	vay ANOVA: Tensile S *	One-		
Equivariance were not assumed for the analysis. Eactor Information Factor Concentration Levels Values Velch's Test Source DF Num DF Dec Value P. Value Source DF Num DF Dec Value P. Value <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>MWX</th><th>E-WAY ANOVA AND ANCOVA.</th><th></th></th<>															MWX	E-WAY ANOVA AND ANCOVA.			
Equivariance were not assumed for the analysis. Eactor Information Factor Concentration Levels Values Velch's Test Source DF Num DF Dec Value P. Value Source DF Num DF Dec Value P. Value <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Concentration</th><th>rdwood</th><th>versus Ha</th><th>trenath</th><th>nsile St</th><th>-way ANOVA: Ten:</th><th>One</th></th<>											Concentration	rdwood	versus Ha	trenath	nsile St	-way ANOVA: Ten:	One		
Sector Information Partonicod Concentration Levels Values 4 3, 10, 15, 20 Welch's Test Source Partonicod Concentration DF Num 3 DF Det Value P Value P Value 10, 20 C C C S																,			
Sector Information Information Information Information Information Information Inform														he analysis.	med for the	qual variances were not assum	ŧ		
Bactor Levels Values Hardwood Coreennasion 4 5, 10, 15, 20 Welch's Test Source Coreennasion DF Num DF Dem Value Mardwood Coreennasion Of Num DF Dem Value Mardwood Coreennasion Of Num DF Dem Value Mardwood Coreennasion Of Num DF Num DF Dem Value Mardwood Coreennasion DF Num DF Dem Value Mardwood Coreennasion Term colspan="2">Term colspan="2">Term colspan="2" Term colspan="2" Mardwood Coreennasion Term colspan="2" Term colspan="2" Term colspan="2" Mardwood Coreennasion Term colspan="2" Term colspan="2" Term colspan="2" 0 Term colspan="2" <th <="" colspan="2" th="" th<=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th></th>																		
Bactor Levels Values Hardwood Covernation 4 5, 10, 15, 23 Welch's Test Source Covernation Methodood Covernation Covernation Covernation Covernation Methodood Covernation Methodood Covernation Methodood Covernation Methodood Covernation Covernation Covernation Covernation Covernation Covernation Covernation Methodood Covernation Covernation Covernation Covernation Methodood Covernation Covernation Covernation Covernation Covernation Covernation </th <th></th> <th>tor Information</th> <th>Fa</th>																tor Information	Fa		
Mardinood Goncentration 4 5, 10, 15, 20 Welch's Test Source DF Nom DF Den Value P-Value Mardinood Goncentration 3 10,8774 15.25 0.000															Louis La La				
Welch's Test Source Df Num Df Dall Nature													-						
Source DF Nom DF Den Value P-Value Hardwood Concentration 3 10.8774 15.25 0.000 Mardwood Concentration C1 C2 C3 C4 C5 C6 C7 C8 C9 C0 C1 C12 C13 Mardwood Concentration Image:														10, 15, 20	4 3,	rowood concentration	na		
Source DF Num DF Det Lytable P-Value Hardwood Concentration 3 10.8724 15.25 0.000 Model Summary C1 C2 C3 C4 C5 C6 C7 C3 C9 C1 C12 C13 Mardwood Concentration Tenuls Strength 0 Display Design Percent Increase in Sales Type of Tip Hardwood 0 6 2 C1 C4 C3 C6 3 9.4 6 2 C C1 C1 C2 C3 C4 C3 C4 C3 C4 C3 C4 C3 C4 C3 C4 C3 C1 C1 C12 C13 C13 C14 C13 C14 C13 C14																Labor Wala			
Aurosoci Concentration 3 10.873 15.25 0.000 Model Summary 4 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Mardwood Concentration Tenule Strength C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 I0 10 10 2 6.60 3 6.4 8 6 2 C I1 100 10 3 6.79 3 6.7 9 8 3 C I2 100 15 3 3.200 3 6.7 3 7 8 C I2 100 15 3 7.00 4 8.7 13 9 9 0 7 I2 15 10 3 6.5 4 6.6 1 9 0 7													in the second				VV		
Model Summary C1 C2 C3 C4 C5 C6 C7 C3 C9 C11 C22 C3 Hardwod Concentation Tends Strength Dopply Design Percenticences in Sales Type of Tip Hardwod Tit NT State Engineering C1 C2 C3 C4 C6 C7 C3 C4 C1 C2 C3 C1 NT State Engineering C1																			
C C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Hadwood Concentration Tensile Strength Display Design Percent increase in Sales Type of Tip Hardnesse HT NT State Engineering C1												,000	15.25 0.	10.8734	3	rdwood Concentration	Ha		
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Hardwood Concentration Tensile Strength Display Design Percent increase in Sales Type of Tip Hardnesse HT NT State Engineering C1																			
Hadvood Concentration Tensile Strength Display Design Percent increase in Sales Type of Tip Hardness Bit State Engineering 0 10 10 0 2 6.66 3 6.4 8 2 C C 1 0.100 108 3 8.75 3 5.5 9 6 2 C C 2 0.101 0.15 3 8.72 3 5.5 9 6 6 C <th></th> <th>odel Summary</th> <th>M</th>																odel Summary	M		
0 10 10 2 660 3 9.4 8 6 2 C 1 10 19 3 6.79 3 9.5 9 8 3 C 2 10 15 3 9.20 3 9.7 3 7 6 C 3 15 14 3 7.90 4 9.7 1 6 9 7 4 15 18 3 6.15 4 9.6 1 9 3	4-T C15		69	C12	C11	C10	C9	C8	C7	C6	CS	C4	C3	C2	c	CI	F		
1 10 19 3 8,79 3 9,5 9 8 3 C 2 10 15 3 5,20 3 9,7 3 7 8 C 3 15 14 3 7,20 4 6,7 1 0 9 7 6 C 4 15 18 3 6,15 4 9,6 1 9 3 1	IK Wavelenght	C14-T	CID	tate Engineering	NIT	IIT		Hardness	Type of Tip		Percent Increase in Sales	lay Design	Disp	Strength	Tensile S	lardwood Concentration	ŀ		
2 10 15 3 220 9 47 9 7 6 C 3 15 14 3 730 4 57 1 9 7 4 15 18 3 6.15 4 56 1 9 7	705	C14-T INK	cis		6												0		
3 15 14 3 7,90 4 8,7 1 6 9 / 4 15 18 3 6,15 4 9,6 1 9 3	708	INK C		2		9		9.5	3			3					1		
4 15 18 3 8.15 4 9.6 1 9 3	712	INK C C		2					2		0.20	3		15			2		
	sing *	INK C C C			7	3			3										
		INK C C		9	7	3		9.7			7.90	3					3		
		INK C C C		9	7 8 9	1		9.7 9.6	4		7.90 8.15	3		18		15	4		
	1.00	INK C C C		9	7	3 1 1 5		9.7	4		7.90	3		18		15	14		
🚺 One -way ANOVA and ANCOVA.mmx 📰 🔲 🗕 -	100	INK C C C		9 3 1	7 8 9	1		9.7 9.6	4		7.90 8.15	3		18 19 KOVA.mwx	(A and ANC	15 15 15 0ne - way ANOVA	14		
🖳 🖓 Type here to search 🛛 🖸 🔚 😭 😭 😒 🔞 💷 🚱 😰 🔝 🚺 🧮 🛤 🖉 🔅	1	INK C C C		9 3 1	7 8 9	1		9.7 9.6	4		7.90 8.15	3		18 19 KOVA.mwx	(A and ANC	15 15 15 0ne - way ANOVA	14		

So, if you click ok over here you will get another value which is given over here and I just copy as picture and I will paste it over here which is equivalent and which is very strong test also which is recommended in case the variance is different. So, this is Welch's test what you see over here.

(Refer Slide Time: 21:43)

																	ivation Faile	roduct Ac	ei - Excei (h	600				
teter 3 v v v v v v v v v v v v v v v v v v	Sign in A												Format		ACROBAT		Review		Formulas	ayout	Page Li			
A B C P F G H J J K L M N O P Q R S Total 23 513.0 Image: Constraint of the state of th	nd &	Sort & Fin Filter - Sele	Clear •	irmat ∙	Delete F	rsert D		Cell Styles	format as Table *	itional I atting -	S Cons Form	• 8	197 - %	er -	lerge & Cent	1 (1)	-	= 1	<u>م</u> • ۸	· = •	ΙU	ter B	mat Pain	* Fo
Total 23 513.0 Welch's Test Source is DF Num DF Den F-Value P-Value Hardwood Concentration 3 10.8734 15.25 0.000																							* 1	ure 2
Total 23 513.0 Welch's Test Source is Hardwood Concentration 3 10.8734	T	s	R	Q	P		0		N	м	L	K D		1	1	н	G	F	E	D	0		8	A
Welch's Test Source is DF Num DF Den F-Value P-Value Hardwood Concentration 3 10.8734 15.25 0.000											00	v												
Source Is DF Num DF Den F-Value Is Hardwood Concentration 3 10.8734 15.25 0.000 Is													13.0	5	23					lota				
Source Is DF Num DF Den F-Value Is Hardwood Concentration 3 10.8734 15.25 0.000 Is														¢.	G									
Source DF Num DF Den F-Value P-Value Hardwood Concentration 3 10.8734 15.25 0.000							0														0			
Source DF Num DF Den F-Value P-Value Hardwood Concentration 3 10.8734 15.25 0.000							Ĭ														ľ			
Source is DF Num DF Den F-Value P-Value Hardwood Concentration 3 10.8734 15.25 0.000																	t	Tes	lch's	We	-			
Hardwood Concentration 3 10.8734 15.25 0.000																		100	i cirio					
Hardwood Concentration 3 10.8734 15.25 0.000							0	ue	-Valu	ue P	-Val	Den	DF	lun	DF N			-13	rce	Sou	0			
							5 P	_								_								
								00	0.00	20	10,	/54	10.0			ation	ncentr	a co	awoo	mar	_			
														_							-			
		- 5																						
Sheet1 ()	1	-	-					-		1.4		-						_			(+)	et1	She	
	100	- 4	(II) E1	田																			_	N


Here also we are checking whether the levels when I am changing whether it is influencing the mean value of CTQs like that and p value is coming out to be less than 0.05. So, that indicates, but this test is only applied when the variance is not same.

So, this is a statistical test which is equivalent like ANOVA analysis like that when the variance at different levels are not same. So, we can use these Welch's test in that scenario here it is not the scenario, but I have shown you the options. So, when you just click over here.

(Refer Slide Time: 22:21)

	in the														- 8
ile Edit Data Calc				t Additional Tools											
8 8 8 6		c Statistics ression	11	a 3 2 A B	124 26 2										
	ANO		1, 13	A 44 2 44 4	* # W !> @ K #	為臣	o" 🖏 o"	Y鸟图							
<u>@</u>	DOE			Analysis of Mean											
One-way ANOVA: Tensi	-	trol Charts		Balanced ANOVA											
		lity Tools	All	General Linear Mi											
ONE -WAY ANOVA AND	0.5	ability/Survival		Mixed Effects Mo											
ne-way ANOV		dictive Analytics	. 4	Fully Nested ANC	ation										
Equal variances were	*	tivariate e Series	:0	General MANOVA	h										
Factor Informati	Tabl		, σ ¹		iances										
Factor		ivalence Tests	. 14	Main Effects Plot.											
Hardwood Concentr		ver and Sample Size	, 🖂	Interaction Plot											
Welch's Test Source	D	F Num DF Den	F-Value	P-Value											
Source Hardwood Concentr	ation	F Num DF Den 3 10.8734	F-Value 15.25	P-Value											
Source Hardwood Concentr Model Summary	ation	3 10.8734	15.25	P-Value 0.000											
Source Hardwood Concentr Model Summary C1	ation	3 10.8734 C2		P-Value 0.000	CS	C6	C7 Turne of Tim	C8	09	C10	C11	C12 State Environmention	C13	C14-T	C15
Source Hardwood Concentr Model Summary C1 Hardwood Conce	ntration	3 10.8734 C2 Tensile Strength	15.25	P-Value 0.000 C4 Display Design	C5 Percent Increase in Sales	C6	Type of Tip	Hardness	(9	IIT	NIT	State Engineering		C14-T INK	Waveleng
Source Hardwood Concentr Model Summary C1 Hardwood Conce	ntration	3 10.8734 C2 Tensile Strength 18	15.25	P-Value 0.000 C4 Display Design 2	C5 Percent Increase in Sales 6.60	C6	Type of Tip 3	Hardness 9,4	C9	IIT 8	NIT 6	State Engineering 2	c		Wavelengt 70
Source Hardwood Concentr Model Summary C1 Hardwood Conce	ntration 10 10	3 10.8734 C2 Tensile Strength 18 19	15.25	P-Value 0.000 C4 Display Design 2 3	C5 Percent Increase in Sales 6.60 8.79	C6	Type of Tip	Hardness 9.4 9.5	09	IIT 8 9	NIT	State Engineering 2 3	c		Wavelengt 70 70
Source Hardwood Concentr Model Summary C1 Hardwood Conce	ntration 10 10	3 10.8734 C2 Tensile Strength 18 19 15	15.25	P-Value 0.000 C4 Display Design 2 3 3	CS Percent Increase in Sales 6.60 8.79 9.20	C6	Type of Tip 3	Hardness 9,4 9,5 9,7	09	IIT 8	NIT 6 8 7	State Engineering 2 3 8	c c c	INK	Wavelengt 70 70
Source Hardwood Concentr Model Summary C1 Hardwood Conce	ntration 10 10 10	3 10.8734 C2 Tensile Strength 18 19 15 14	15.25	P-Value 0.000 C4 Display Design 2 3 3 3 3 3	CS Percent Increase in Sales 6.60 8.79 9.20 7.90 7.90	C6	Type of Tip 3	Hardness 9,4 9,5 9,7 9,7	C9	HT 8 9 3	NIT 6 8 7 8	State Engineering 2 3 8 9	c c c		Wavelengt 70 70
Source Hardwood Concentr Model Summary C1 Hardwood Conce	ntration 10 10	3 10.8734 C2 Tensile Strength 18 19 15	15.25	P-Value 0.000 C4 Display Design 2 3 3	CS Percent Increase in Sales 6.60 8.79 9.20	C6	Type of Tip 3	Hardness 9,4 9,5 9,7	C9	HT 8 9 3 1	NIT 6 8 7	State Engineering 2 3 8	c c c	INK	Wavelengt 70 70
Source Hardwood Concentr Model Summary C1 Hardwood Conce	ntration 7 10 10 10 15 15 15	3 10.8734 C2 Tensile Strength 18 19 15 14 18	15.25	P-Value 0.000 C4 Display Design 2 3 3 3 3 3 3 3 3	C5 Percent Increase in Sales 6.60 8.79 9.20 7.90 8.15	C6	Type of Tip 3 3 3 4 4 4	Hardness 9,4 9,5 9,7 9,7 9,6	C9	IIT 8 9 3 1 1	NIT 6 8 7 8	State Engineering 2 3 8 9 3	c c c	INK	Wavelengt 70 70
Source Hardwood Concentr Model Summary C1 Hardwood Conce	ntration 10 10 15 15 15 15 15 15	3 10.8734 C2 Tensile Strength 18 19 15 14 18 19 4 19 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	15.25	P-Value 0.000 C4 Display Design 2 3 3 3 3 3 3 3 3	C5 Percent Increase in Sales 6.60 8.79 9.20 7.90 8.15	C6	Type of Tip 3 3 3 4 4 4 4	Hardness 9,4 9,5 9,7 9,7 9,6	(9	IIT 8 9 3 1 1	NIT 6 8 7 8	State Engineering 2 3 8 9 3 1	c c c	INK	CIS Wavelengh 70 70 71

(Refer Slide Time: 22:23)

(Refer Slide Time: 22:24)

File Ec	do - Untilled dit Data Calc Stat (愛 み 国 市 つ C 目 唱 コ は い マ		00	fx 3= =2	18/24/2	ek*	4回-	o ⁿ 🐻 o ⁿ	Y 电图						2	- 8	×
_	₩ ± Y	S B B K *	₩ ·Y	200													
One-wa	ay ANOVA: Tensile S 👻	х															
-	WAY ANOVA AND ANCOVA				One-Way Analysis of	Variance					×						
One-	way ANOVA: Ter	islie Strength	versu	s Hardwe		Response	data are in o	ve column for a	il factor leve	ls .	•						
Equ	ual variances were not assu	med for the analysis.				Besponse:	'Tensile Stre	ngth'								Î	
Fact	tor Information				One-Way Analysis	of Variance: Op	tions	_		;	<						
Fact	or	Levels Values			F Assume equal ve	inner											
Harc	dwood Concentration	4 5, 10, 15, 20			Confidence level:	95		(for table	of means an	d interval plot)	6						
Sour Harc	Ich's Test rce dwood Concentration del Summary	DF Num DF Den 3 10.8734			Type of confidence in Help	nterval: Two-si	Results	- 	gK orage	Cancel							
4	ci	(2	C3	C4			_				0	C11	C12	C13 C1	4-T	C15	È
На	ardwood Concentration	Tensile Strength		Display De	Help				<u>Q</u> K	Cancel	1	NIT	State Engineering	1		elenght	
10	10	18			2	6.60	-	3	9,4				2	с		705	
11	10	19			3	8.79		3	9.5		ş	6	3	c		708	
12	10	15			3	9.20		3	9.7		3	1 7	8	c		712	
13	15	14			3	7.90		4	9.7		1	8		Mè	ising		
14	15	18			3	8.15		4	9.6		1				-	1	
15	H + One -way ANOV	19 A and ANCOVA may			8	7.55	-	4	10.0			1	1		90	1	
	One -way ANOVA and ANG							•			_			-	100		
				1000	- 0-		-	-				-		-	· ·	1	
E.	P Type here to sear	ch		0	- 🖬 🚺	M 🗹	1	- G			di:	× XI	^ @	10 / 10	1		

(Refer Slide Time: 22:34)

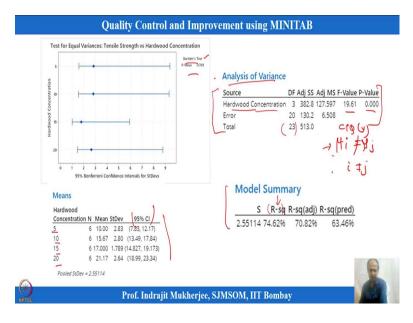
15 19 3 7.55 4 10.0 5 1 1	Mini	tab - Untitled														- 8
Image: Second	File	Edit Data Calc Stat C	iraph View Help	Assistant	Additional Tool	5										
Image: Source with the set of the set	B	W X B A SC	0440		13z J. S	2420										
Image:							私居	d' c'' d'	W & R							
One-way ANOVA: Tensile Strength versus Hardwood Concentration Method Null hypothis All means are equal Spectration hypothesis 4.5 (15 15.20 Wetch's Test Disploy Design Percent thorease in Sales Type of Tip Handmess If NIT State Engineering Cit									1 1 10							
	_	and the second	_													
One-way ANOVA: Tensile Strength versus Hardwood Concentration Method Null pophetis All means are equal Attention hypothesis Neal inverse are equal Strength hypothesis All means are equal Strength hypothesis All means are equal Strength hypothesis All means are equal Matchood Concentration Levels Values Particular Concentration Col	One-	way ANOVA: Tensile S Y	х													
Method Waity hypothesis All means are equal Syntanske hypothesis All all means are equal Syntanske her a - 203 Fautramote Occentration Evelts Yabas Tearmood Concentration Evelts Yabas Nethod Concentration Evelts Yabas 1 10 10 2 10 15 3 9.20 3 9.4 6 2 C 700 10 10 10 3 3.7 6 C 70 70 6 C 70 70 6 C 70	-															
Nethod Null Agentas M mens are equal Systems by Byolans An mens are equal Systems by Byolans Systems by Byolans A sin mens are equal Systems by Byolans Systems by Byolans A sin mens are equal Systems by Byolans Factor C evel Values Hardwood Concentration A construction 2 sin 15 sin Velch's Test D Hardwood Concentration Display Dis	One	-way ANOVA: Ten	sile Strength	versus	Hardwood	Concentration										
Atomatism Number Subgroup	M	ethod														
Attendes Name and State a	Nu	d hypothesis All m	eans are equal													
Batter Information Extor Information Methods Concentration Test Makes Verticity Test Information Information Information Verticity Test Information Information <																
Exter Levels Values Stator Levels Values individual Concernation 4.5.10.15.20 Welch's Test Image: Concernation Concernation <t< td=""><td>Sig</td><td>prificance level a = 0</td><td>.05</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Sig	prificance level a = 0	.05													
Actor Levels Values Machineed Concentration 4 5, 10, 15, 20 Welch's Test Levels Cit <	E	Equal variances were not assur	med for the analysis.													
Catch Cereb Values Hardwood Concentration 4 5, 10, 15, 20 Wetch's Test C <th></th>																
Audiestood Concentration 4 § 10, 15, 30 Welch's Text Imadewood Concentration Ca Cd	Fa	ctor Information														
Audiestood Concentration 4 § 10, 15, 30 Welch's Text Imadewood Concentration Ca Cd	5.	dar	I male Mahane													
Mark Mark <th< th=""><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>				-												
Mark Mark <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>																
C1 C2 C3 C4 C5 C6 C7 C8 C9 C1 C1 C2 C1 C14 C15 C66 C7 C8 C9 C11 C11 C12 C13 C14-T C15 Waveshold Hardwood Concentation Tends Strength Display Design Percent Increase in Sales Type of Tp Hurdwood NT State Engineering NTK Waveshold NTK NTK NTK	W	elch's Test				D										
0 10 18 2 6.60 3 9.4 8 6 2 C 700 11 10 19 3 6.79 3 9.5 9 8 3 C 700 12 10 15 3 9.20 3 9.7 6 C 702 13 15 14 3 7.00 4 9.7 1 8 9 Misray 4 15 18 3 6.15 4 9.6 1 9 3 4 15 18 3 7.55 4 10.6 1 9 3 4 15 10 3 7.55 4 10.6 1 9 3 4 10 3 7.55 4 10.6 1 9 3 4 10 3 7.55 4 10.6 1 9 1 1 1	4	CI	C2	G	C4		C6	C7	C8	C9	C10	C11	C12	C13	C14-T	C15
10 19 3 6.79 3 9.5 9 6 3 C 700 2 10 15 3 9.20 3 9.7 3 7 6 C 700 3 15 14 3 7.00 4 9.7 1 6 9 Morg 1 4 15 18 3 6.15 4 9.6 1 9 3 4 15 18 3 6.15 4 9.6 1 9 3 4 15 16 3 7.55 4 10.0 5 1 1 4 15.0 3 7.55 4 10.0 5 1 1 4 19 3 6 10.0 5 1 1 1	ŀ	Hardwood Concentration	Tensile Strength		Display Design	Percent Increase in Sales		Type of Tip	Hardness		IIT	NIT	State Engineering		INK	Wavelengh
2 10 15 3 920 3 97 3 7 6 C 711 3 15 14 3 730 4 97 1 8 9 Mong 4 4 15 18 3 6.15 4 96 1 9 3 4 15 19 3 7.55 4 16.0 5 1 1 4 16 0 1 9 3 4 16 0 1 9 1 9 3 4 16 0 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	0	10	18		2	6.60		3	9,4		8	6	2		с	70
13 14 3 7,00 4 9,7 1 8 9 Mising 14 15 16 3 8,15 4 9,6 1 9 3 4 15 16 3 8,15 4 9,6 1 9 3 4 2 + + 0.6 1 9 3 4 2 + + 0.6 10.0 5 1 4 > + + + 0.6 10.0 5 1 4 > + + + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + +	11	10	19		3	8.79		3			9	8	3			
13 18 2 8.15 4 9.6 1 9 3 1	12				3			3			3	7	8			71
N 15 10 1 7.55 4 10.0 5 1 1 I P III + 1 Ocer way AND/A and ANCO/Amere 4 IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	13				3			4			1		'		Missing	
C > + + One way MOVA and NKOVA.mma C Core way MOVA and NKOVA.mma		15	18		3			4	9.6		1	9	3			
🖸 Ore-way ANOIA and ANCOIA.max															-	
	15	15			3	7.55		4	10.0		5	1	1			-
	14 15 4 Þ	H + One -way ANOV	A and ANCOVA.mwx		3	7.55		4	10.0		5	1	1			P
	15	H + One -way ANOV	A and ANCOVA.mwx		3	7.55		4	10.0		5	1	1			P

(Refer Slide Time: 22:35).

c Stat Graph Vie SIS SC □ II III Y ≥ 0 II III Y ≥ 0 II III Y ≥ 0 II	14 00 18k + 4	fx 30 -2 1 8	24										
LYN Frig	ek + 4												
LYN Frig	ek + 4												
11 Y M				礼品	n" t" n"	Y L E							
	18 9 9												
sile S Y X													
ID ANCOVA.MWX													
VA: Tensile Str	ength vers	us Hardwood	Concentration										
tration 4 5, 1	0, 15, 20												ľ
DE Num	DF Den F-Val	na D.Volua											
	10.8734 15.												
% 63.46%		l	\$										
0		C4	CS	C6	C7	C8	C9	C10	C11	C12	C13	C14-T	C15
centration Tensile St			Percent Increase in Sales		Type of Tip			IIT		State Engineering		INK	Wavelenght
10	18	2	6.60		3	9.4		8	6	2		c c	705
10	19	3			3	9.5		9	8	3		c	708
								3	0				/12
								1				mosny	
15						HIM						1000	100 0
15	18	3			4	9.6		1	9	3			
15 way ANOVA and ANCO					4								
15 15		14 18 19	14 3 18 3 19 3	14 3 7.90 18 3 8.15 19 3 7.55	14 3 7,90 18 3 8.15 19 3 7,55	14 3 7.90 4 18 3 8.15 4 19 3 7.55 4	14 3 7.90 4 9.7 18 3 8.15 4 9.6 19 3 7.55 4 10.0	14 3 7.90 4 9.7 18 3 8.15 4 9.6 19 3 7.55 4 10.0	14 3 7.90 4 9.7 1 18 3 8.15 4 9.6 1 19 3 7.55 4 10.0 5	14 3 7.90 4 9.7 1 8 18 3 8.15 4 9.6 1 9 10 3 7.55 4 10.0 5 1	14 3 7.30 4 9.7 1 6 9 9 18 3 8.15 4 6.6 1 9 3 19 3 10 5 1 10 5 1 11 10 5 1 11 11 10 11 10 5 11 <th11< th=""> <th11< th=""> <t< td=""><td>14 3 7.90 4 9.7 1 6 9 18 3 6.15 4 9.6 1 9 3 19 3 7.55 4 10.0 5 1 1</td><td>14 3 7.00 4 9.7 1 0 9 Many 16 3 6.15 4 9.6 1 9 3 10 3 7.55 4 10.0 5 1 1</td></t<></th11<></th11<>	14 3 7.90 4 9.7 1 6 9 18 3 6.15 4 9.6 1 9 3 19 3 7.55 4 10.0 5 1 1	14 3 7.00 4 9.7 1 0 9 Many 16 3 6.15 4 9.6 1 9 3 10 3 7.55 4 10.0 5 1 1

(Refer Slide Time: 22:36)

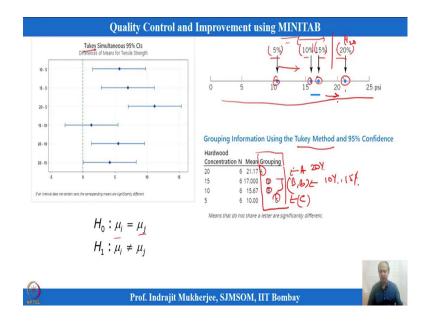
16 년 10 년 24 대 (bp) New 140 Assister Addeed Not 응 전 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
10日日日 10日日 10日 10日 10日日 10日日 10日日 10日 10日 10日 10日 10日 <th10日< th=""> 10日 <th10日< th=""></th10日<></th10日<>	
Image:	
Norway ANOVA: Tensils S * X Core-away ANOVA: Tensile Strength versus Hardwood Concentration 7.4528 70.21% 63.46% Means Strength Versus Strength Versu	
ONE-WAY AND VAX: Tensile Strength versus Hardwood Concentration 74.42% 70.21% 6.84% Mardwood Mardwood Concentration Strength versus Hardwood Concentration Concentration Mardwood Concentration Concentration Strength versus Hardwood Concentration Concentration Concentration Concentration Strength versus Hardwood Concentration	
Interway ANOVA: Tensile Strength versus Hardwood Concentration 74.82% 70.82% 63.44% Means Hardwood 0 6 1000 2.83 (72), (1.87) 10 6 1557 2.00 (1.92, (1.87)) 15 6 1000 102 (1.92, (1.87))	
7.4.62% 70.62% 63.46% Means Maximum Max SDev 95% CL 5 6 1000 2.83 (7/6), 12.67) 10 6 15.77 2.80 (12.7, 16.67) 15 6 17.00 17.00 17.00	
7.4.62% 70.62% 63.46% Means Maximum Max SDev 95% CL 5 6 1000 2.83 (7/6), 12.67) 10 6 15.77 2.80 (12.7, 16.67) 15 6 17.00 17.00 17.00	
Mardmood Mean SDev 99% CI 5 6 1000 2.83 (703) 12.97) 10 6 15.67 2.80 (12.1, 16.1) 15 6 1000 1000 1000 107	
Hardwood Concentration N Mean StDev 95% CI 5 6 10:00 238 0232 12:57 10 6 15:57 2.89 (12.72, 16.61) 15 6 17:00 1298 (15:12, 18.77)	
Hardwood Concentration N Mean StDev 95% CI 5 6 10:00 238 0232 12:57 10 6 15:57 2.89 (12.72, 16.61) 15 6 17:00 1298 (15:12, 18.77)	
Concentration N Mean SDev 99% CI 5 6 10.00 2.88 (7.83, 2.67) 10 6 15.67 2.00 (2.27, 18.61) 15 6 17.00 1.78 (5.23, 18.67)	
5 6 10.00 2.83 (7.02,12.07) 10 6 15.67 2.80 (12.72,16.01) 15 6 17.00 1780 (132,18.07)	
10 6 15.67 2.80 (12.72, 18.61) 15 6 17.000 1.799 (15.123, 18.877)	
Boxplot of Tensile Strength	
25	
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13	C14-T C15
Hardwood Concentration Tensile Strength Display Design Percent Increase in Sales Type of Tip Hardness IIT NIT State Engineering	INK Wavelen
10 18 2 6.60 3 9.4 8 6 2	с
10 19 3 8.79 3 9.5 9 8 3	c
10 15 3 9.20 3 9.7 3 7 8	c
15 14 3 7,90 4 9,7 1 8 9	Missing
15 18 3 8.15 4 9.6 1 9 3	
15 19 3 7.55 4 10.0 5 1 1	100
b H + One-way ANOVA and ANCOVA.mwx 4	
One -way ANOVA and ANCOVA.max	


So, if you go to *stat, analysis of variance, one-way analysis of variance*, in options if you do not click this one and we tested that variance is not same just uncheck this one. So, if you uncheck this one immediately Welch's test will come. So, the results will be reflected over here.

And you will get all other values like that confidence interval and all these things. So, model summaries how much values over here. So, this is at present not required that we are not explaining that one we are explaining that what is the overall idea. So, the at least there are two levels which is which are different basically which are different over here and that is the Welch's test ok. Now, let us go back to another important concept.

So, this what you are seeing over here is basically the analysis of variancetable and this is the same what we have derived using MINITAB and this is the variance test Bartlett test that I have shown over here.

And this is the confidence interval at different levels 5 percent, 10 percent, 15, 20. So, 95 percent confidence interval is given and model summary R^2 values we try to see how much of the variability of total variability is explained basically by hardwood concentration variation when I change the levels. So, that means, whether this factor is very much significant or not that can be seen by this R^2 value. Higher R square value means basically the change in the hardwood concentration is influencing the overall variability basically. So, that is known R^2 value which is known as coefficient of determination that will come when we are discussing about regression analysis.


So, that will be more clear when you see the formulations of regression. So, this we will leave out at present moment model summary is over here. We are interested in this ANOVA analysis, 19.61 and p values over here. This indicates that there is at least one pair of $\mu_i \neq \mu_i$ over here.

(Refer Slide Time: 24:18)

So, in this case at least there is one i and one j where the mean response is different like that for the CTQ or response basically when I change the level of hardwood concentration.

So, Bartlett test is used if normality assumptions is taken, but in case normality assumptions you are not taking in that case Levene's tests is there, multiple comparison test is there. And the multiple comparison is more powerful than Levene's test. And Levene's test is a non-parametric test which can be also used for interpretation when the data size is small or distribution is skewed. So, in that case we can use Levene's test and later on we will see some scenarios where when it can be applied.

(Refer Slide Time: 25:14)

So, let us try to see that another important concept over here which is shown in this diagram. What you see over here is that I know that two means are different, but which one is different from which one?

Whether it is 5 with 10, 10 with 15 or 15 with 20, that ANOVA analysis cannot tell you and for that we need something which is known as multiple comparison test and there are different methods of doing multiple comparison test.

And we will go by one of the methods which is known as Tukey's method which is given in our MINITAB software and there are other options Fishers method is also given. So, anyway, so, there are different methods, but we will prefer using Tukey's method over here. I will explain one methods or other methods also you can see.

So, over here the overall objective is that which means are similar. Why I am doing this because I want to find out which level I should freeze so, that I get the maximum CTQ and that is the most optimal level.

So, where do I set 5 percent, 10 percent, 15 percent, 20 percent then I need to know which is different from which one. So, over here I need to know whether 20 is different from 15 or 15 is different from 10, 10 is different from 5 like that paired comparison we want to check.

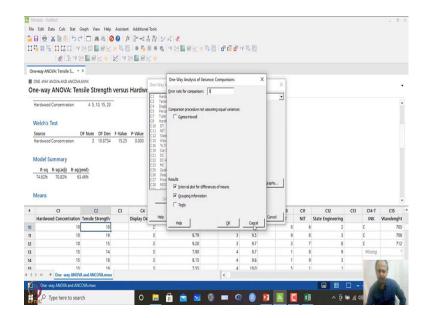
So, in this case I will use in MINITAB. So, now, we have seen that there is significant ANOVA analysis says that there are two levels which are significantly different let us figure out which is different from which one. How do I do that?

So, this will be like paired comparison what I told. So, that will be reflected when I use the Tukey's multiple comparison test, when I am doing that I will get this information. How do I get that? We will see some letter codes that will come over here and we are only interested in seeing the letter codes over here which is written as A, B, C like that.

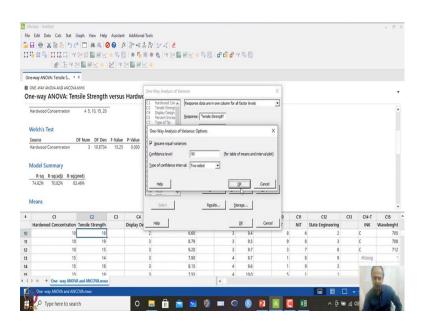
So, the letter code, which are not similar that levels are significantly different. So, here I am getting a letter code of A and here I am getting a letter code of C and these two levels I am getting a little code of B and B like that. So, when they are same letter code; that means, there is no difference between 10 percent and 15 percent over here.

But A level which is 20 percent over here is significantly different from this 10 and 15. Mean of 20 is statistically different from any of the other three basically.

So, C is also far away from this 15 and this is very different from this 15, 10 and 15 like that. So, this is very different. So, at 5 percent we are getting the lowest mean over here and we want to maximize.

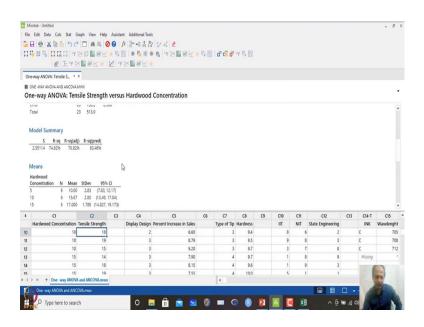

So, it says that which mean is different from which one. So, paired comparison like that this is known as multiple Tukey's multiple comparison test that you can find out when you are doing this in MINITAB, how to do that?

So, what we have to do is that because we have found significant difference here in two levels like that. So, to understand which level is different from which one I go to stat ANOVA analysis again I use one-way analysis of variance.

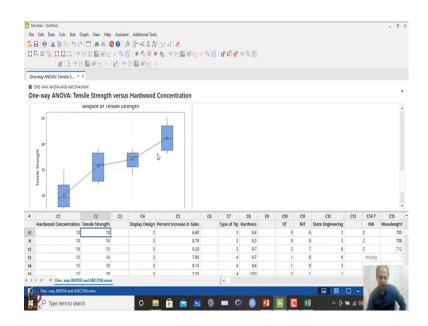

4. N STANBER* NAMEER One-way ANOVA: Tensile S... * B ONE -WAY AND One-way ANOVA: Tensile Strength versus Hardw 4 5, 10, 15, 20 Tensile Stri Display Des Percent Ino Type of Tip Hardness IIT Besponse: Tensile Strength' Eactor: Hardwood Concer Welch's Test DF Num DF Den F-Value P-Value 3 10.8734 15.25 0.000 Source Model Summ R-sq R-sq(adj) R-sq(pred) 74.62% 70.82% 63.46% Optons... Compart gns... Graphs... Means Results... Storage... C3 C4 C13 C14-C15 Help QK Cancel 9.5 9.7 9.20 7.90 8.15 7.55 9.7 9.6 10.0 0 🔒 -🕺 🥘 💻 👰 . 12

(Refer Slide Time: 28:53)

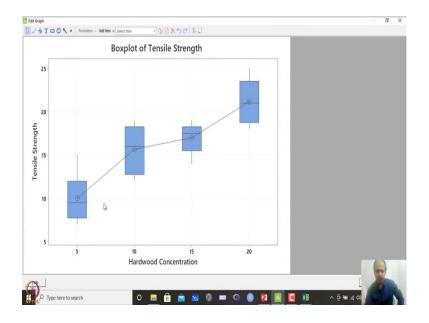
(Refer Slide Time: 28:55)


(Refer Slide Time: 29:04)

(Refer Slide Time: 29:11)


Min	itab - Untitled														- 0	×
File	Edit Data Calc Stat Gra	aph View Help	Assistan	Additional Tool	5											
. 6	1 · · · · · · · · · · · · · · · · · · ·	- A 4 0	0	fx 2=== 1 2	244											
							教展	d" (" d"	Y教問							
		BEKKI														
000	way ANOVA: Tensile S * ×															
-	e-way ANOVA AND ANCOVAM e-way ANOVA: Tens		IOTCU	Hardwood	Concont	ration										٠
One	e-way ANOVA: Tens	lie strengtn v	versu	s naruwoou	concent	ration										
M	lethod															*
N	ull hypothesis All mea	ans are equal														
	ternative hypothesis Not all															
SI	gnificance level a = 0.0	5														
	Equal variances were assumed fo	or the analysis.														
Fa	ctor Information			0												
Fa	ictor Le	vels Values														
H	ardwood Concentration	4 5, 10, 15, 20														
A	nalysis of Variance															Ψ
	CI	C2	C3	C4		25	C6	C7	C8	C 9	C10	C11	C12	C13 C14		
	Hardwood Concentration T	ensile Strength		Display Design	Percent Inci	ease in Sales		Type of Tip	Hardness		IIT	NIT	State Engineering	IN	Wavelengt	nt
0	10	18		2		6.60		3	9,4		8	6	2	с	70	
11	10	19		3		8.79		3	9.5		9	8	3	c	70	
12	10	15		3		9.20		3	9.7		3	7	8	c	71	2
13	15	14		3		7.90		4	9.7		1	8		Missi	1g	•
14	15	18		3		8.15		4	9.6		1	9			0	
15	15	19		3		7.55		4	10.0		5	1	1		-	
4.0	H + One -way ANOVA							4	_					_	1 and 1	
4	One -way ANOVA and ANCO	VA.mvx												□ V	100	
	P Type here to search			0	1	🚖 🔤	10	- (100		×	۸â	900 <i>(</i> 4 40)		
NPTI	EL											1 QH				

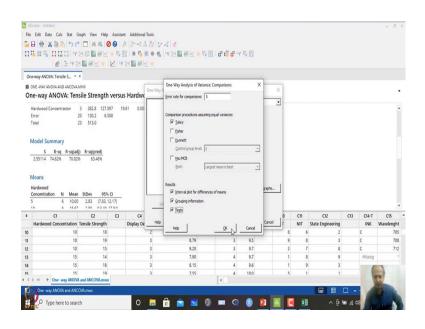
(Refer Slide Time: 29:12)



Now there is a comparison test that is given over here. When you go to comparison test, so, and all this one you keep it as default. So, options over here. So, equal variance if I assume equal variance over here. And then do the test, let us say and we get the analysis over here.

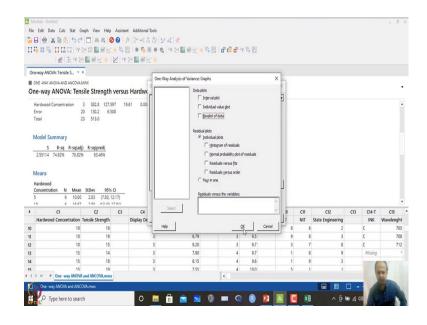
(Refer Slide Time: 29:13)

(Refer Slide Time: 29:20)


The plot is shown over here you can see the box plot also shown over here. So, this indicates that how the values are changing. So, hardwood concentration is increasing. So, but what you see is that 10 and 15 percent are more or less having overlapping distributions.

So, slope is there when I compare 5 with 10 and 15 and 20 is also having a high slope as compared to 10 and 15 like that and 5 is the lowest one and 20 is the highest one like that.

(Refer Slide Time: 29:53)


	E IY															
ne-way	ANOVA: Tensile S * ×	-														
ONE -W	AY ANOVA AND ANCOVA.M	wx		E.						-	×					
ne-w	ay ANOVA: Tens	ile Strength	h versus	Hardwe	One-Way Analysis of											
United	ood Concentration	3 382.8 127.	.597 19.0			Response d	lata are in one colu	nn for all fa	ctor levels		•					
Error	21		.508	.61 0.00		Response:	'Tensile Strength'									
Total	2						Hardwood Concer									
						Eactor:	Hardwood Concer									
Mode																
	1 Summary															
2.551 Mean																
2.551 Mean Hardw	<u>S R-sq R-sq(adj)</u> 114 74.62% 70.82%	63.46% StDev 959 2.83 (7.83,	% CI 12.17)		Select		Options Results	Concul Stores		graphs						
2.551 Mean Hardw Concer 5	S R-sq R-sq(adj) 114 74.62% 70.82% is rood ntration N 6 10.00 4 16.6.7 C1 C1 C1 C1 C1	51.0ev 951 2.83 (7.83, 2.00 (12.40) C2	12.17) 17.04) C3	C4				Storag	pe			C11	C12	C13	C14-T	C15
2.551 Mean Hardw Concer 5	S R:sq R:sq(adj) 114 74.62% 70.82% rood ntration N Mean 6 10.00 6 10.00 6 6 10.00 6 6 10.00 6 6 10.00 6 6 10.00 6 6 10.00 10.667 C1 10 10	5tDev 951 2.83 (7.83, 200 (12.40 C2 rensile Strength	12.17) 17.04) C3	C4 Display De _	Select Help			-	pe	Graphs Cancel		NIT	State Engineering	C13	INK	Wavelen
2.551 Mean Hardw Concer 5	S R-5q R-5q(Adj) 114 74.62% 70.82% is	5tDev 951 2.83 (7.83, 200 (12.40 C2 rensile Strength 18	12.17) 17.040 C3			6.60		Stora; Qr 3	ре с 9,4		0	NIT 6	State Engineering 2		INK C	Wavelen
2.551 Mean Hardw Concer 5	S R·sq R·sq(adj) 114 74.62% 70.82% is	5tDev 951 2.83 (7.83, 2.00 (12.40) C2 (rensile Strength 18 19	12.17) 17.041 C3			8.79		Storag	9.4 9.5		9	NIT 6 8	State Engineering 2 3		INK C C	Wavelen
2.551 Mean Hardw Concer 5	S R-sq R-sq(adj) 114 74.82% 70.82% Is rood 6 ntration N Mean d 10.00 4 twood CI 10 10 10 10	50.46% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50	C3			8.79 9.20		Stora; Qr 3	9.4 9.5 9.7			NIT 6 8 7	State Engineering 2 3 8		INK C C C	Wavelen
2.551 Mean: Hardw Concer 5 10 Hard	S R-sq R-sq(adj) 114 74.82% 70.82% is	63.46% <u>StDev 951</u> 2.83 (7.83 2.90 (12.90 C2 C2 C2 Fensile Strength 18 19 15 14	12.17) 17.041 C3			8.79 9.20 7.90		Stora; Qr 3	9.4 9.5 9.7 9.7		9	NIT 6 8 7 8	State Engineering 2 3 8 9		INK C C	C15 Wavelen
2.551 Mean Hardw Concer 5	S R-sq R-sq(adj) 114 74.82% 70.82% Is rood 6 ntration N Mean d 10.00 4 twood CI 10 10 10 10	50.46% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50	C3			8.79 9.20		Stora; Qr 3	9.4 9.5 9.7		9	NIT 6 8 7	State Engineering 2 3 8		INK C C C	Wavelen

(Refer Slide Time: 29:54)

So, box plot will give you that indication over here and then what we have to do is that, I go to *stat*, what we wanted to do is that multiple comparison. So, I go to comparison test over here and I go to Tukey's test over here. I do not see any other test what we will adopt only Tukey's test over here there are other test which can be used, but I am using only Tukey's test. So, grouping information this is very robust test Tukey's test like that.

(Refer Slide Time: 30:15)

So, grouping information is important for us and then we will click ok and we will not change any other default condition. So, graph we want to check box plot you can see that one otherwise you can ignore that one. If I ignore already box plot we have seen all the data set.

(Refer Slide Time: 30:25)

The fair Dual Calc Sut Caper Yeen Help Autom Maddenal Tools 日 他 文 な た か つ ー 林 単 ② ③						•
다 나 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가						•
						•
One-way ANOVA: Tensile S * × Tensile Strength versus Hardwood Concentration Method Null hypothesis All means are equal Alemated hypothesis Net all means are equal Significance level = 0-055 Equationarisance = 0-055 Equationarisance = tensiles Eactor Information Eactor Levels Values						•
III OIE: NAX AVOIA AND ANCOVAAND One-way ANOVA: Tensile Strength versus Hardwood Concentration Method Nul hypothesis All means are equal Segmetares level a -0.05 Equationarizes are assumed for the avaigns. Factor Information Factor Levels Values						•
One-way ANOVA: Tensile Strength versus Hardwood Concentration Method Nul hysorbasis All means are equal Significance level a = 0.05 Equarismics were assumed for the avaigns. Factor Information factor Levels Values						•
One-way ANOVA: Tensile Strength versus Hardwood Concentration Method Nul hysorbasis All means are equal Significance level a = 0.05 Equarismics were assumed for the avaigns. Factor Information factor Levels Values						•
Method Null means are equal Atarnano hypothesis Nus all means are equal Significance level 0 * 0.05 Equationizationesi were assumed for the evaluation. Factor Information Factor Levels Values						*
Null hypothesis All means are equal Alexnance hypothesis. Note all means are equal Significance live a an 0.05 Equationances are assumed for the analysis. Factor Information						*
Alternance hypothesis . Not all means are equal Significance level a + 0.05 Equari universe were assumed for the avaiyss. Factor Information Discourse and the second seco						
Alternative hypothesis . Not all means are equal Significance level a + 0.05 Equarisationes were assumed for the analysis. Factor Information Defection Control Contro						
Equivariant or the analysis. Factor Information Definition Definition						
Factor Information						
Factor Levels Values						
Factor Levels Values						
The on our concentration 4 of 10, 10, 60						
Analysis of Variance						
4 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10	C11	C12	C13	C14-T	C15	Y
Hardwood Concentration Tensile Strength Display Design Percent Increase in Sales Type of Tip Hardness IIT	NIT	State Engineerin		INK	Wavelengt	
10 10 18 2 6.60 3 9.4 8	1411		2	C	Travelengt 70	
m 10 19 3 8.79 3 9.5 9	5		3	c	70	
12 10 15 3 9,20 3 9,7 3			8	c	71	
13 15 14 3 7.90 4 9.7 1	5	8	9	Missing		1
4 15 18 3 8.15 4 9.6 1	5	9	3	_	-	
15 10 3 7.55 4 10.0 5	1	1	1			
4 b H + One-way ANOVA and ANCOVA.mwx					1	
Cone -way ANOVA and ANCOVA.mix			П	- 14	ST.	
🖸 🖉 Type here to search 🛛 🗧 📑 🚔 🐋 😒 💷 🐼 😰 🔝 🧮			i 100 //		1	h

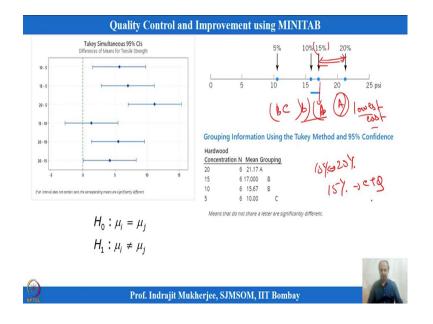
(Refer Slide Time: 30:27)

	Edit Data Calc Stat															
1	日 曼 X 隆 的 ち (•	1. 14 0	0	な Be - E 山 門	2 2 2										
I.	0	XO	BK	黄斑图		· 先 · Y 区 图 图 图 长 ★	為图	d" 🐻 d"	Y 收回							
	# 7 Y		K+I	14 LY	KERK											
		_														
	e-way ANOVA: Tensile S 🗡															
	ONE -WAY ANOVA AND ANCOV															
n	e-way ANOVA: Tel	nsile St	rength	versus	s Hardwood	Concentration										
A	Analysis of Variance															
		DF Adj	s Adi M	AS E.U.	lue P-Value											
	Hardwood Concentration	3 38			10e P-Value											
	Error	20 13			ier oreer											
	Total	23 51														
-	Model Summary <u>S R-sq</u> R-sq(a 2.55114 74.62% 70.8		pred) 3.46%		ß											
M	S R-sq R-sq(a				Q											
M H	<u>S R-sq R-sq(a</u> 2.55114 74.62% 70.8 Means Hardwood		2		C4	CS	C6	CT	C8	09	C10	C11	C12	C13	C14-T	C15
M H	s R-sq R-sq(a 2.55114 74.62% 70.8 Means Hardwood C1 Hardwood Concentration	Tensile	2 2 2 2		C4	Percent Increase in Sales	C6	C7 Type of Tip	Hardness	09	C10 IIT	C11 NIT	Ct2 State Engineering	C13	INK	Waveleng
M H	<u>S R-sq R-sq(a</u> 2.55114 74.62% 70.8 Means Hardwood	Tensile	3.46% 2 itrength 18		C4	Percent Increase in Sales 6.60	C6		Hardness	C9			State Engineering	C13	INK C	Waveleng 7
M	s R-sq R-sq(a 2.55114 74.62% 70.8 Means Hardwood C1 Hardwood Concentration	Tensile	2 2 2 2		C4 Display Design	Percent Increase in Sales	C6	Type of Tip	Hardness 9,4 9.5	(9	IIT	NIT	State Engineering	C13	INK C C	Waveleng 7 7
M H	S R-sq R-sq(a 2.55114 74.62% 70.8 Means Hardwood C1 Hardwood Concentration 10	Tensile	3.46% 2 itrength 18		C4 Display Design	Percent Increase in Sales 6.60	C6	Type of Tip	Hardness 9,4 9,5	09	IIT 8	NIT	State Engineering 2 3 3	C13	INK C	Waveleng 7 7
M	S R-sq R-sq(a 2.55114 74.62% 70.8 Means Hardwood C1 Hardwood Concentration 10	Tensile	2 itrength 18 19		C4 Display Design 2 3	Percent Increase in Sales 6.60 8.79	C6	Type of Tip	Hardness 9,4 9,5 9,7	C9	IIT 8	NIT	State Engineering	C13	INK C C	C15 Waveleng 7 7 7
M H	S R-sq R-sq 2.55114 74.62% 70.8 Means Hardwood C1 Hardwood Concentration 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <tr< td=""><td>Tensile</td><td>2 2 18 19 15</td><td></td><td>C4 Display Design 2 3 3</td><td>Percent Increase in Sales 6.60 8.79 9.20</td><td>C6</td><td>Type of Tip</td><td>Hardness 9,4 9,5 9,7 9,7</td><td>09</td><td>IIT 8</td><td>NIT</td><td>State Engineering S 2 3 3 7 8 3 9</td><td>C13</td><td>INK C C C</td><td>Waveleng 7 7</td></tr<>	Tensile	2 2 18 19 15		C4 Display Design 2 3 3	Percent Increase in Sales 6.60 8.79 9.20	C6	Type of Tip	Hardness 9,4 9,5 9,7 9,7	09	IIT 8	NIT	State Engineering S 2 3 3 7 8 3 9	C13	INK C C C	Waveleng 7 7
M	<u>S</u> R-4g R-4g(a) 2.55114 74.62% 70.8 Means Hardwood Concentration 10 11 11 11 11 11 11 11 11 11 11 11 11	Tensile	2 2 itrength 18 19 15 14 18 19		C4 Display Design 2 3 3 3 3 3	Percent Increase in Sales 6.60 8.79 9.20 7.90	C6	Type of Tip	Hardness 9,4 9,5 9,7 9,7 9,6	09	IIT 8	NIT	State Engineering S 2 3 3 7 8 3 9	C13	INK C C C	Waveleng 7 7
M	<u>S</u> R-9q R-9q(a) 2.55114 74.62% 70.8 Adeans Hardwood C1 Hardwood Concentration 10 11 11 11 11 11 11 11 11 11 11 11 11	Tensile	2 2 itrength 18 19 15 14 18 19		C4 Display Design 2 3 3 3 3 3 3 3	Percent Increase in Sales 6.60 8.79 9.20 7.90 8.15	C6	Type of Tip	Hardness 9,4 9,5 9,7 1,9,7 4,9,6	09	IIT 8 9 3 1 1	NIT	State Engineering 5 2 3 3 7 8 3 9 9 3	C13	INK C C C	Wavelen
M	<u>S</u> R-4g R-4g(a) 2.55114 74.62% 70.8 Means Hardwood Concentration 10 11 11 11 11 11 11 11 11 11 11 11 11	Tensile	2 itrength 18 19 15 14 18 19 0WLmwx		C4 Display Design 2 3 3 3 3 3 3 3	Percent Increase in Sales 6.60 8.79 9.20 7.90 8.15	C6	Type of Tip	Hardness 9,4 9,5 9,7 1,9,7 4,9,6	0	IIT 8 9 3 1 1	NIT	State Engineering 5 2 3 3 7 8 8 9 9 3 1 1	CI3	INK C C C Missing	Waveleng 7 7

(Refer Slide Time: 30:30)

rite	Edit Data Calc Stat C	iraph View Help	Assista	nt Additional Tool	5											
1	B 👷 🕹 🖻 🖒 50	- AA 0	0	fx 3= -2 1 3	24											
	5 🖬 🖫 🗖 🐻 🖓 😽					松原	d 6 6 6	Y 的 图								
		BRKA														
_		_														
On	e-way ANOVA: Tensile S Y	×														
-	ONE -WAY ANOVA AND ANCOVA															
Or	e-way ANOVA: Ten	sile Strength	versu	s Hardwood	Concentration											
Ľ,																
	Grouping Information	Ling the Tub	au Mat	had and OFM	onfidence Y											
		n Using the Tuk	ey met	nou and 93% (.omidence ve											
	Hardwood Concentration N Me	Complex.														
		an Grouping														
	15 6 17.0															
	10 6 15															
	5 6 10	100 C														
			different													
	5 6 10 Means that do not share a l		different.													
	Means that do not share a l	ietter are significantly		Means												
	Means that do not share a l Tukey Simultaneous 1	ietter are significantly Fests for Differe														
	Means that do not share a l Tukey Simultaneous T Difference Difference	etter are significantly. Tests for Differe SE of		Means Adjuste												
	Means that do not share a l Tukey Simultaneous T Difference Difference	etter are significantly. Tests for Differe SE of	nces of	Adjust		C6	C7	C8	C9	C10	C11	C12	C13	C14-T	C15	
	Means that do not share a l Tukey Simultaneous T Difference Difference of Levale of Means	Fests for Differe SE of Difference C2	nces of	Adjuste T-Value D-Valu C4	10	C6	C7 Type of Tip		C9	C10 IIT	C11 NIT	Ct2 State Engineering	C13	C14-T INK	Wavelen	ngh
	Means that do not share a l Tukey Simultaneous 1 Difference of Levale of Meane C1	Fests for Differe SE of Difference C2	nces of	Adjuste T-Value D-Valu C4	CS	C6			C9			State Engineering			Wavelen	
)	Means that do not share a l Tukey Simultaneous T Difference of Iseale of Maane C1 Hardwood Concentration	Fests for Differe SE of Nifferance C2 Tensile Strength 18 19	nces of	Adjuste T-Value D-Valu C4	CS Percent Increase in Sales 6.60 8.79	C6	Type of Tip	Hardness 9,4 9,5	C9	IIT	NIT	State Engineering 2		INK	Wavelen	70.
0	Means that do not share a l Tukey Simultaneous T Difference Ofference of Leonie Ofference of Maane C1 Hardwood Concentration 10 10 10	reter are significantly rests for Differe SE of Nifferance C2 Tensile Strength 18 19 15	nces of	Adjuste T-Value D-Valu C4	C5 Percent Increase in Sales 6.60 8.79 9.20	C6	Type of Tip 3	Hardness 9,4 9,5 9,7	C9	IIT 8	NIT 6 8 7	State Engineering 2 3 8		INK C	Wavelen	70.
1	Means share do not share a l Tukey Simultaneous 1 Difference of Isaal Hardwood Concentration 10 10 10 10	Fests for Differe SE of Nifferance C2 Tensile Strength 18 19	nces of	Adjuste T-Value D-Valu C4	CS Percent Increase in Sales 6.60 8.79	C6	Type of Tip 3	Hardness 9,4 9,5	C9	IIT 8	NIT 6	State Engineering 2 3 8		INK C C	Wavelen	70 70
0 1 2 3	Means that do not share a l Tukey Simultaneous T Difference Ofference of Leonie Ofference of Maane C1 Hardwood Concentration 10 10 10	reter are significantly rests for Differe SE of Nifferance C2 Tensile Strength 18 19 15	nces of	Adjuste T-Value D-Valu C4	C5 Percent Increase in Sales 6.60 8.79 9.20	C6	Type of Tip 3	Hardness 9,4 9,5 9,7	C9	IIT 8	NIT 6 8 7	State Engineering 2 3 8 9		INK C C C	Wavelen	70.
0 1 2 3 4	Means that do not have a li Tukey Simultaneous 10 Difference of sender of Maxim C1 Hardwood Concentration 10 10 10 15 15 15	rester are significantly rests for Differe SE of ruiffarearce 0450 C2 Tensile Strength 18 19 15 14 18 19	nces of	T-Ushna Adjust Display Design 2 3 3 3	** C5 Percent Increase in Sales 6.60 8.79 9.20 7.90	C6	Type of Tip 3	Hardness 9,4 9,5 9,7 9,7	C9	IIT 8	NIT 6 8 7 8	State Engineering 2 3 8 9 3		INK C C C	Wavelen	70 70
0 11 2 3 4 5 4	Means that do not have a li Tukey Simultaneous 10 Difference of sender of Maxim C1 Hardwood Concentration 10 10 10 15 15 15	rester are significantly fests for Differe SE of Difference C2 Tensile Strength 18 19 19 15 14	nces of	T-Ushna Adjust Display Design 2 3 3 3	n C5 Percent Increase in Sales 6.60 8.79 9.20 7.90 8.15	C6	Type of Tip 3	Hardness 9,4 9,5 9,7 9,7 9,6	C9	HT 8 9 3 1 1	NIT 6 8 7 8 9	State Engineering 2 3 8 9 3		INK C C C	Wavelen	70 70
0 1 2 3 4 5	Means that do not have a li Tukey Simultaneous 10 Difference of sender of Maxim C1 Hardwood Concentration 10 10 10 15 15 15	Fester are significantly Fester for Differe SE of Difference C2 Tensile Strength 18 19 15 14 18 18 19 15 14 18 18 19 15 14 18 18 19 15 14 18 18 19 15 14 18 18 19 15 14 18 18 18 19 15 15 16 18 18 18 18 18 18 18 18 18 18	nces of	T-Ushna Adjust Display Design 2 3 3 3	n C5 Percent Increase in Sales 6.60 8.79 9.20 7.90 8.15	C6	Type of Tip 3 3 3 4 4 4	Hardness 9,4 9,5 9,7 9,7 9,6	C9	HT 8 9 3 1 1	NIT 6 8 7 8 9	State Engineering 2 3 8 9 3		INK C C C Missing	Wavelen	70 70

(Refer Slide Time: 30:38)


			Book1 - Excel (Product Ac	tivation Faile	:d)												- (
File H	ome Inser	Page Layout	t Formulas		Review		ACROBAT	Format		me what y									A Share
A Cut Cupboa	py * mat Painter	в <u>х ц</u> - [6 For	8 • 🔷 • A	• = =			ge & Center		% • \%	Co For	naturity -	ormat as Cel Table - Styles yles	Inser	t Delete Cells	Format	AutoSum Fill - Clear - Ed	A Z Sort & Fi Filter - Se iting		
Picture 3	* I ×	√ fx																	
A	8	C D	E	F	G	н	1	J	K	ι	м	N	0	Р	Q	R	S	T	L
i i			Hardwoo	d Co	ncentr	ration		3 10	.8734	15	.25	0.000							
			101 01000		neena	ation		5 10	.07.54		.20	0.000							
									@										
									0.										
			9						0							9			
			Grou	iping	Infor	matio	n Usir	ig the	Tukey	Me	thod	and 95	% C(onfid	ence				
1																			
1			Hard	wood															
			Conc	entrat	ion N	Mean C	Groupin	q								_			
i ,			20			21.17 A													
			0				™B									6			
1			15		6 1	7.000	B°												
			10		6	15.67	в												
							-									-			
1			5		б	10.00	C												
1			Mea	ans tha	t do not	share a	letter ar	e signific	antly di	ferent									
i								1											
1			0						0							0		0	
																		100	
	Sheet1	۲									1 1							(and	1
4 3																			
6															田	(II) (E	1 - 1	11	

And I click ok what will happen is that, I will get a letter code over here with group information. So, if you click this one go down over here and copy like this and you will get a group information over here. What you see the same results over here, 20 is giving a letter code of A, 15 and 10 is giving a letter code of B and 5 is giving a letter code of C.

So, A is very different from 15, 10 and 5 like that because this letter code is not matching with any of the other levels 5, 10 and 15 like that. So, in this case what we can say is that

A is having a significant higher mean as compared, but B and C is giving me that is 15 and 10 levels over here is giving me the same mean values.

So, if you have to freeze which is the level I will select over here? I will go by the 20 percent hardwood concentration because that is giving me a significant higher tensile strength over here that is given me a significant higher tensile strength over here, but if we have got letter codes.

(Refer Slide Time: 31:39)

That means we have got letter codes over here. So, in case we get letter codes; that means, 20 similar let us say it is giving you a letter code of A and 15 is also giving you a letter code of A and this is B let us assume and this is B like that. So, in this case both are having letter code A; that means there is no statistical difference between 15 and 20 percent.

So, in this case I will go by a lowest cost, I will go by selecting the level which is giving me lowest cost like that because if hardwood concentration 15 maybe this is the lowest cost. And there is no significant difference at population level because hypothesis testing at population level based on the sample information.

So, in this case I will freeze at 15. Here there is statistical difference because this is A, and these others are this one was coming out to be B and this was C like that. So, A is significantly different. So, we should freeze at 20 percent that is the optimal level

basically we should freeze assuming this is the only factor and then, but otherwise if both the levels are showing the same letter code, in that case I will go by the lowest cost. So, if 15 and 20 is giving me if I have options selecting within 15 and 20, I will go by 15 percent which will maximize the CTQ values like that and that is the level I will select because 15 and 20 is not statistically different.

So, whether if I freeze at 20 or 15 does not matter only matter what we have to see over here is that which is giving me lowest cost setting like that. So, we will go by the lowest cost setting and overall it is the optimal scenario that is that we are getting over here. So, we will stop over here and we will continue with the assumptions of analysis of one-way analysis of variance.

And further we will discuss some more cases on this before we go into actual more than one factor experimentation that we will discuss in subsequent slides. So, we will stop over here and we will continue from here and try to figure out what are the other things we need to check and do in case while we are doing one-way analysis of variance ok.

So, thank you for listening we will continue the sessions starting with again one-way analysis of variance model adequacy check ok.

Thank you.