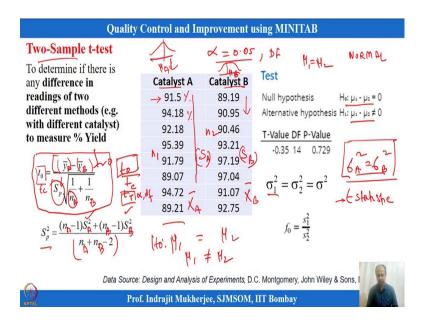
Quality Control and Improvement with MINITAB Prof. Indrajit Mukherjee Shailesh J. Mehta School of Management Indian Institute of Technology, Bombay

Lecture - 19 Two - sample t-test


Hello and welcome to session 19 of our course on Quality Control and Improvement with MINITAB. So, I am Prof. Indrajit Mukherjee from Shailesh J. Mehta School of Management, IIT Bombay. So, earlier session what we have done is that we have talked about hypothesis testing.

And in that case, how to compare the sample observations with the population mean or some value. Whether we can compare that one, we can make a judgment out of that, whether the mean is this value or not, is it equal or not equals to conditions, that is the simplest way we can explain hypothesis testing.

And we have used a z-test and we have used a t-test condition to satisfy that one. And we have also seen that if underlying assumptions of normal distribution fails in that case, what is to be done, what conversion we can do like box-cox transformation we have seen. And then we do the hypothesis testing or the converted data or otherwise we go for non-parametric test. And that considers median and ranking concept.

And based on that, we get the p-values and we make interpretation, p < 0.05, we go for the alternate hypothesis. And if $p \ge 0.05$ we cannot reject the null. So, that is the condition based on which we make analysis.

(Refer Slide Time: 01:41)

And so now what we will do is that, we will go to a specific test which is known as twosample t-test which is very relevant to our quality concept, and that can be considered as the starting point of experimentation ok.

So, this concept I will give over here the statistical concept that is used to do this testing, and how it is to be done in MINITAB. So, here this problem that I am highlighting over here is that there are 2 different catalyst that is used.

And the experimenter is interested in to know that whether to use catalyst A or catalyst B which improves the yield. So, I have a data observation over here which is from catalyst A, when I have used catalyst A, what was the yield.

So, this is the percentage yield that was reported like that. And this is catalyst B which was when I have used catalyst B and the sample observations that I have, and what is the yield percentage that is measured over here.

I want to check whether the in populations this $\overline{\mu_1}$ that we are getting over here and $\overline{\mu_2}$ average – whether they are same, whether they are different like that. So, I have \overline{X}_A , \overline{X}_B the average value that we are getting out of the samples over here.

We can have standard deviation of A (σ_A) , we can also get standard deviation of B (σ_B) that information also we can get from this data observation that we have ok. Now, I have to make a judgment:

$$H_{o}: \mu_{1} = \mu_{2}$$
$$H_{1}: \mu_{1} \neq \mu_{2}$$

So, while doing this test, so what we do is that we use as a, we use a specific test statistic that is known as t test statistic over here. So, we will make a calculated value that will be calculated as:

$$t_0 = \frac{\overline{y}_{\rm A} - \overline{y}_{\rm B}}{S_{\rm P} \sqrt{\frac{1}{n_{\rm A}} + \frac{1}{n_{\rm B}}}}$$

So, if $\overline{y}_A - \overline{y}_B$, is close to 0, we can assume they are close in that case they are not much different.

So, my analysis should show the result should come out that hypothesis testing whenever I am doing that, if it is close to 0, in that case we expect that the null hypothesis cannot be rejected. If it is very different from 0, what is expected is that we should reject the null hypothesis.

So, that is the basic interpretation I am trying to make over here. But the test statistics that is used over here, this difference is calculated, and then a pooled standard deviation is calculated. n_A and n_B is the number of observations for catalyst A and catalyst B, respectively. This can be same or this can be different.

And then we calculate a pool standard deviation for the analysis over here which is given as,

$$S_p^2 = \frac{(n_{\rm A} - 1)S_{\rm B}^2 + (n_{\rm A} - 1)S_{\rm B}^2}{(n_{\rm A} + n_{\rm B} - 2)}$$

So, we can calculate this pooled standard deviation because all information is known over here. This pooled standard deviation will be placed over here. And based on that, we will calculate a t_0 value which is known as we can we can also say t calculated value like that.

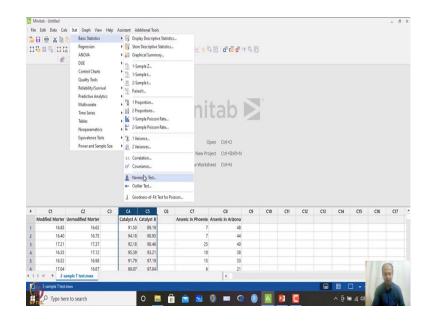
Then T-tabulated value can also be seen because the degree of freedom is given over here. And we are assuming α let us say 0.05 or 5 percent is the level of significance that we are assuming over here. And in this case, what we can do is that with a given level of α and degree of freedom over here that is $n_A + n_B - 2$ over here, what we can do is that we can get the value of tabulated calculated value of t_0 over here. And this can be compared with the tabulated value like that which depends on α and degree of freedom. So, that can be compared and based on that we can make a judgment. So, that was the old way.

And nowadays what we are doing is that we are seeing the p-value what I told because of software interface we are getting p-values, any of the software will report the p-values. And based on that, we can reject or accept the null hypothesis like that, based on the outcomes of p-values like that ok.

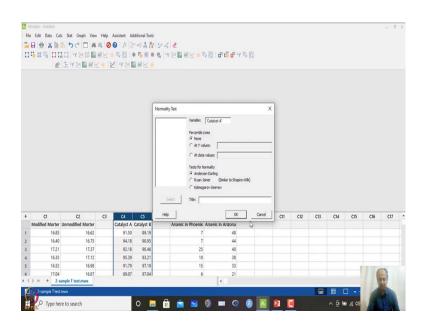
So, here also when I am doing these two-sample t-test to compare the means over here, $\mu_1 = \mu_2$ or $\mu_1 \neq \mu_2$, some assumptions are there. So, over here basic assumption is that the data that is coming from catalyst A and catalyst B both should follow normal distribution like that.

So, normality assumption is there. So, normal assumptions is required for each individual observations that each individual data sets that we are getting. So, this should follow normal distribution. And also we are assuming that the data are independent.

So, set of data over here with catalyst A that we have collected over here has nothing to do with the data set that is in catalyst B. They are independent with each other. So, there is no correlation that should exist between data set A and data set B like that, or catalyst A with catalyst A and catalyst B like that.

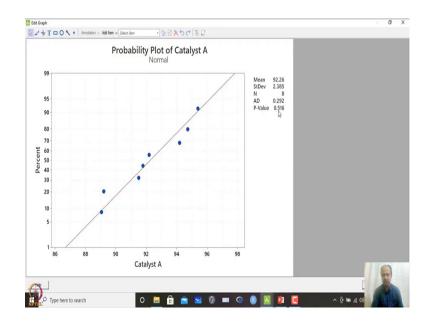

So, that check is also needs to be ensured over here. And then what we can do is the third check that is required is that whether the variance over here so the S_A that we have calculated over here can we estimate whether the variance of A is same as variance of B like that.

So, this will dictate what type of t statistics that we will use t statistics that we will use. And in case they are same, one t statistics will be used; if they are different, another t statistics will be used with a given degree of freedom like that ok.

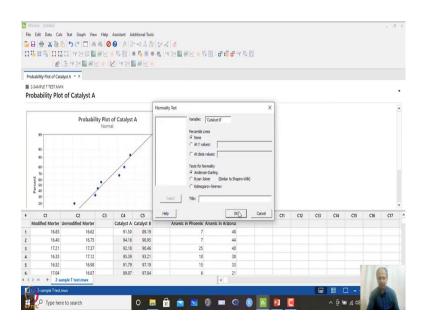

So, that is given condition and you can see any books to understand the basics on this two-sample t-test and the statistical that is t statistics that is used like that. So, degree of freedom will change in case this varies like that. So, in case this is not, this is not same in that case some different test with different degree of freedom is required like that ok.

And so for that we need to do these checks. So, normality one independent testing that the data sets are independent and the variance is same or not that will also considered over here. So, this data set I have in MINITAB. So, I will try to do the test as per the requirements like that.

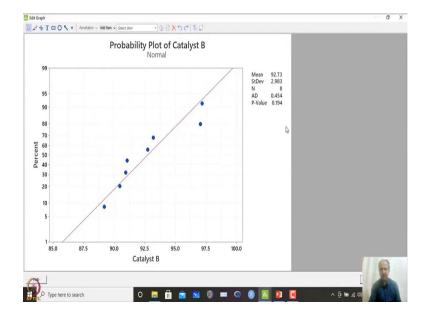
(Refer Slide Time: 08:17)



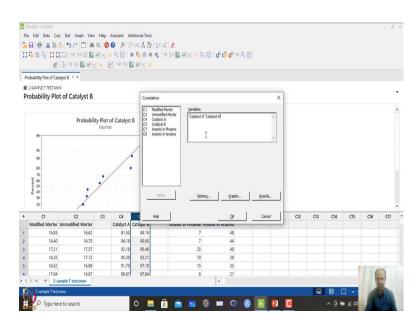
(Refer Slide Time: 08:26)



So, what I will do is that here you see that data set is in C4 and C5 column, what I will do is that I will go to stat and basic stat over here I want to check normality first. So, whether I want to sure whether catalyst A is normal or not data set that I am having. I am using Anderson-Darling test again. For the data set A, and I will click ok over here.

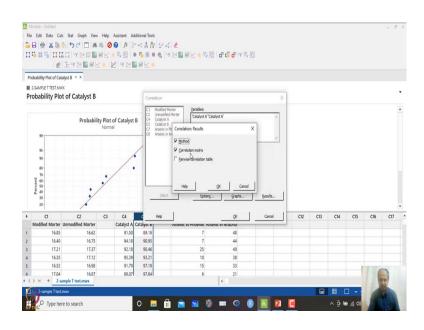

(Refer Slide Time: 08:36)

(Refer Slide Time: 08:51)


(Refer Slide Time: 08:55)

So, when I give ok, what I see is that the p-value that is reported over here is around 0.516. So, data seems to be normal. So, there is no problem. So, I can close this one. And similarly I can do for second for normality test for data set B, catalyst B over here. And I do the same testing over here.

And then for catalyst B what I get is that again I get a p-value which is more than 0.05. So, here also normality assumption is not violated. And then what we can do is that whether they are independent or not catalyst A and catalyst B what we can do is that we can see the correlation coefficient over there.

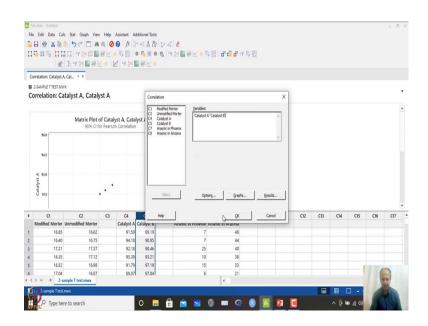

(Refer Slide Time: 09:11)

(Refer Slide Time: 09:15)

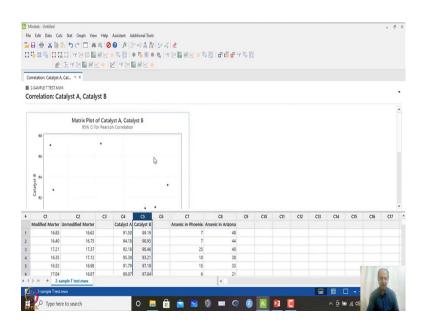
robability Plot of	f Catalyst B 👻 ×														
2-SAMPLE T TEST															
	Plot of Catalyst B			Correlati	ion				×						
99				C1 Mo C2 Un C4 Ca C5 Ca C7 An C8 An		arson correlation	•		v						
95 Deccent 00 00 00 00 00 00 00 00 00 00 00 00 00	į	./	/.		Confidence level:	95.0	OK .	Cancel	lts						
90 Deccent 00 00 00 00 00 00 00 00 00 00 00 00 00	2	•	4		□ Store correlate		<u>0K</u>	Cancel	lts	C12	C13	C14	C15	C16	C17
90 10 10 10 10 10 10 10 10 10 1	rter Unmodified Morter		Catalyst A Cat	talyst D	F Store correlato				its	C12	CI3	C14	CIS	C16	C17
90 - 50 - 70 - 50 -	ter Unmodified Morter		Catalyst A Cat 91.50	talyar o 89.19	F Store correlato	on matrix	0K mic in viruona 48		ts	C12	CI3	C14	C15	C16	C17
90 10 10 10 10 10 10 10 10 10 1	rter Unmodified Morter 5.85 16.62 5.40 16.75		Catalyst A Cat 91.50 94.18	talyst p 89.19 90.95	F Store correlato	n matrix	0K 11 AV12011a 48 44		its	C12	CI3	C14	CIS	C16	CIT
90 10 10 10 10 10 10 10 10 10 1	ter Unmodified Morter 5.85 16.62 5.40 16.75 7.21 17.37		Catalyst A Cat 91.50 94.18 92.18	89.19 90.95 90.46	F Store correlato	оп matrix н ипоетна, инзи 7 7 25	0K 110 11 Particona 48 44 40		ts	C12	CI3	C14	CIS	C16	C17
90 10 10 10 10 10 10 10 10 10 1	rter Unmodified Morter 5.85 16.62 5.40 16.75		Catalyst A Cat 91.50 94.18	talyst p 89.19 90.95	F Store correlato	n matrix	0K 11 AV12011a 48 44		its	C12	C13	C14	CIS	C16	C17

(Refer Slide Time: 09:20)

(Refer Slide Time: 09:26)


- tu Gabar				8K	* 時間 +	ŧ ⁷ 0 ∰ #	费 4	≥∎@k**	10° c° d° -	Y 马 丽								
SAURLET TESTINAX reclation: Catalyst A, Catalyst A 2906 Clief Parson Correlation 499 50 50 50 50 50 50 50 50 50 50		1.	E Y 🖄 🖩 🖉 🗄	2 * 11	∠ 'Y ≥	sk*												
Trelation: Catalyst A, Catalyst A Matrix Plot of Catalyst A, Catalyst A 996 996 996 997 0 Colspan="2">Colspan="2">Cols Colspan="2">Cols Colspan="2">Colspan="2">Cols Colspan="2">Colspan="2">Cols Colspan="2">Colspan="2">Cols Colspan="2">Colspan="2">Cols Colspan="2">Colspan="2">Cols Colspan="2">Colspan="2">Cols Colspan="2">Colspan="2">Cols Colspan="2">Colspan="2"Colspan="2">Colspan="2"Colspa=""2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Co	rrelation: C	Catalyst A, G	at * X															
99% Clar Pearson Correlation 99 95 95 95 95 95 95 95 95 95			lyst A, Cataly	st A														
M9 Signal Cl Cl <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																		
A15 C1 C2 C1 C4 C5 C6 C7 C8 C9 C1 C1 C2 C1 C4 C5 C6 Addified Morter Unmodified Morter Unmodifie	95.0		95% CI 10	ir Pearso	on Correlation			_										
CI C																		
CI C2 C3 C4 C5 C7 C8 C9 C10 C11 C2 C13 C4 C15 C16 foddlied Morter Gradyst A Arsenic in Phoenix Arsenic in Atlona Image: C10 C11 C12 C13 C4 C15 C16 f1643 f1642 91.30 99.19 7 44 Image: C10 C11 C12 C13 C4 C15 C16 C16 C10 C11 C12 C13 C4 C15 C16 C16 C11 Image: C10							•											
State C1 C2 C3 C4 C5 C7 C8 C9 C10 C11 C2 C13 C4 C15 C16 Modified Morter Gatayot A Catayot B Arsenic in Phoenix Assenic in Antonau Image: C11 C12 C13 C4 C15 C16 116.45 116.62 91.30 (9).19 7 4.4 Image: C11	94.5																	
C1 C2 C3 C4 C5 C6 C7 C3 C9 C10 C11 C2 C3 C4 C15 C16 toddled Motter Ctabyrt A Ctabyrt A Ctabyrt B Arsenic in Ploonix Arsenic in Altorna Attemption and the arterial in Altorna C10 C11 C2 C13 C4 C15 C16 toddled Motter Unabolic A 16.62 91.50 91.50 97 A4	94.5					•		N										
C1 C2 C3 C4 C5 C6 C7 C3 C9 C10 C11 C2 C3 C4 C15 C16 toddled Motter Ctabyrt A Ctabyrt A Ctabyrt B Arsenic in Ploonix Arsenic in Altorna Attemption and the arterial in Altorna C10 C11 C2 C13 C4 C15 C16 toddled Motter Unabolic A 16.62 91.50 91.50 97 A4	≪ 93.0					•												
Modified Morter Catalyst A Catalyst A Ansenic in Phoenix Assenic in Attorna 1645 1642 91:00 90:19 7 48 1640 16:75 94:10 90:55 7 44 1721 17:37 94:21 90:66 25 40 1643 17:72 95:39 99:21 10 38 1652 1649 91:79 97:79 15 33 1724 16:87 19:97 97:74 66 21	≪ 93.0					•		\$										
Modified Morter Catalyst A Catalyst A Ansenic in Phoenix Assenic in Attorna 1645 1642 91:00 90:19 7 48 1640 16:75 94:10 90:55 7 44 1721 17:37 94:21 90:66 25 40 1643 17:72 95:39 99:21 10 38 1652 1649 91:79 97:79 15 33 1724 16:87 19:97 97:74 66 21	atalyst A			. •		·		2										
16.85 16.62 91.50 90.19 7 40 16.46 16.75 94.18 90.55 7 44 17.21 17.37 92.18 90.46 25 40 16.35 17.72 95.39 99.21 10 38 16.52 16.69 91.79 15 33 17.24 16.87 96.97 77.44 6 21	Oatalyst A										610	<i>c</i> #	610	613	<i>cu</i>			
1721 17.37 92.18 90.46 25 40 1633 17.72 95.39 92.71 10 30 1652 16.69 91.79 97.94 15 33 1724 16.87 96.971 97.44 6 21	Ostalyst A 930 - 915 - Cl							G		C9	C10	CII	C12	C13	C14	C15	C16	с
1633 17.12 95.39 99.21 10 38 1652 15.69 91.79 97.64 6 21 17.64 15.67 57.64 6 21	Ostalyst A 930 - 915 - Cl	Morter Un	modified Morter	3	Catalyst A	Catalyst B		G	senic in Arizona	C 9	C10	CII	C12	C13	C14	C15	C16	c
16.52 16.98 91.79 97.19 15 33 1724 16.67 89.07 97.04 6 21	930 930 915 915	Morter Un 16.85	modified Morter 16.62	3	Catalyst A 91.50	Catalyst B 89.19		G	senic in Arizona 48	C9	C10	CII	C12	C13	C14	C15	C16	c
17.04 16.87 89.07 97.04 6 21	Ostalyst A 930 - 915 - Cl	Morter Un 16.85 16.40	modified Morter 16.62 16.75	3	Catalyst A 91.50 94.18	Catalyst B 89.19 90.95		C7 Arsenic in Phoenix Ar 7 7	senic in Arizona 48 44	C9	C10	CII	C12	C13	C14	C15	C16	C
	930 930 915 915	Morter Un 16.85 16.40 17.21	imodified Morter 16.62 16.75 17.37	3	Catalyst A 91.50 94.18 92.18	Catalyst B 89.19 90.95 90.46		C7 Arsenic in Phoenix Ar 7 7 25	senic in Arizona 48 44 40	C9	C10	CII	C12	C13	C14	C15	C16	ci
A + 2-sample T test.mvx	930 930 915 915	Morter Un 16.85 16.40 17.21 16.35	16.62 16.75 17.37 17.12	G	Catalyst A 91.50 94.18 92.18 95.39	Catalyst B 89.19 90.95 90.46 93.21		C7 Arsenic in Phoenix Ar 7 7 25 10	senic in Arizona 48 44 40 38	C9	C10	CII	C12	C13	C14	C15	C16	CI
	93.0 · Catalyst ≻ C1 C1 C1	Morter Un 16.85 16.40 17.21 16.35 16.52 17.04	modified Morter 16.62 16.75 17.37 17.12 16.98 16.87	в	Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19		C7 Arsenic in Phoenix Ar 7 25 10 15	senic in Arizona 48 44 40 38 33	C9	C10	C11	C12	C13	C14	C15	C16	c

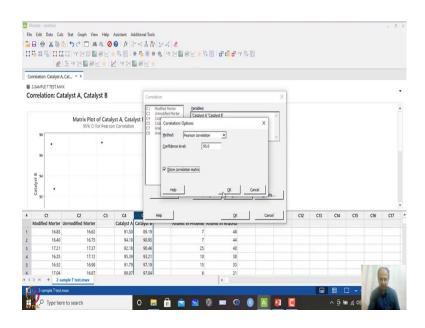
(Refer Slide Time: 09:27)


																		8
ile E	dit Data Calc	Stat Graph View	v Help	Assistant Ad	dditional Tools													
		50 - M				111												
							× BBK + 4	59 . 	v 15.59									
		LYNBR					C B P C A Y		1 -9 03									
			1	a) - 1831														
	ition: Catalyst A, C	Cat • X																
	MPLE T TEST MWX																	
orre	elation: Cata	alyst A, Cataly	yst A															
	-		r = 1.000	CI = (*, *)														
		90.0 9	ns	93.0	94.5		95.0											
			Cata	ilyst A														
	elation type	Pearson																
Cor	nber of rows used relations Catalys	8 8					la .											
Cor	relations Catalys Juer A 1.0	4 8 4 A 500 C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	CT	
Cor	relations Catalys Aver A 1.0 C1 diffed Morter U	d 8 t A 000 C2 nmodified Morter	C3	Catalyst A	Catalyst B	C6		rsenic in Arizona	C9	C10	C11	C12	C13	C14	C15	C16	CT	
Cor	relations Catalys Aver A 1.0 C1 diffed Morter U 16.85	d 8 t A 1000 C2 nmodified Morter 16.62	C3	Catalyst A 91.50	Catalyst B 89.19	C6	C7 Arsenic in Phoenix A 7	rsenic in Arizona 48	C9	C10	C11	C12	C13	C14	C15	C16	CT	
Cor	relations Catalys Aver A 1.0 C1 U dified Morter U 16.85 16.40	t 8 100 C2 16.62 16.75	G	Catalyst A 91.50 94.18	Catalyst B 89.19 90.95	C6	C7 Arsenic in Phoenix A 7 7	rsenic in Arizona 48 44	C9	C10	C11	C12	C13	C14	C15	C16	CI	
Cor	relations Catalys Aver A 1.0 C1 U dified Morter U 16.85 16.40 17.21	t A 500 C2 16.62 16.75 17.37	а	Catalyst A 91.50 94.18 92.18	Catalyst B 89.19 90.95 90.46	C6	C7 Arsenic in Phoenix A 7 7 25	rsenic in Arizona 48 44 40	C9	C10	C11	C12	C13	C14	C15	C16	C1	
Cor	relations Catalys Aver A 1.0 C1 U 16.85 16.40 17.21 16.35	t A nmodified Morter 16.62 16.75 17.37 17.12	C3	Catalyst A 91.50 94.18 92.18 95.39	Catalyst B 89.19 90.95 90.46 93.21	C6	C7 Arsenic in Phoenix A 7 7 25 10	rsenic in Arizona 48 44 40 38	C9	C10	CII	C12	C13	C14	C15	C16	CT	
Cor Car	relations Catalyss Aver A 1.0 C1 U 16.85 16.40 17.21 16.35 16.52	4 A 000 c2 16.62 16.75 17.37 17.12 16.98	C3	Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	C7 Arsenic in Phoenix A 7 7 25	rsenic in Arizona 48 44 40 38 33	C9	C10	C11	C12	C13	C14	C15	C16	CTT	
Cor Carr	relations Catalys Aver A 1/2 dified Morter U 16.85 16.40 17.21 16.35 16.52 17.04	t A nmodified Morter 16.62 16.75 17.37 17.12	G	Catalyst A 91.50 94.18 92.18 95.39	Catalyst B 89.19 90.95 90.46 93.21	C6	C7 Arsenic in Phoenix A 7 7 7 25 10 10 15	rsenic in Arizona 48 44 40 38	C9	C10	C11	C12	C13	C14	C15	C16	CT.	
Nur Cor Carr Mo	relations Catalys Aver A 1/2 dified Morter U 16.85 16.40 17.21 16.35 16.52 17.04	2 8 2 16.62 16.62 16.75 17.73 17.12 16.98 16.87 16.87 16.98 16.87	G	Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	C7 Arsenic in Phoenix A 7 7 7 25 10 10 15	rsenic in Arizona 48 44 40 38 33 21	(9	C10	C11	C12			C15	C16	CI	7
Nur Cor Carr Mo	relations Catalys Aver A 1/2 C1 dified Morter U 16.85 16.40 17.20 16.35 16.52 17.04 17.04 1 2-sam	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8	Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19		C7 Arsenic in Phoenic A 7 7 25 10 15 6	rsenic in Arizona 48 44 40 38 33 21 4		C10	CII	C12	C13			C16	CI	

So, correlation can be checked over here for catalyst A and catalyst B over here. And options is that I can use Pearson correlation, and then results what I can do is that correlation matrix. So, this can be reported over here, and I click ok. So, in this case what we get is that near perfect relationship what we are getting over here.

(Refer Slide Time: 09:42)

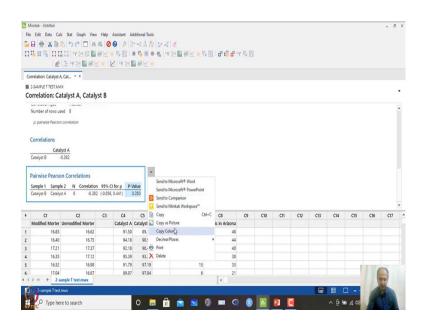
(Refer Slide Time: 09:45)



(Refer Slide Time: 09:46)

1	Ainitab - Untitled																- 0	×
Fil	e Edit Data Ca	Ic Stat Graph View	Helo 4	Assistant As	ditional Tools													
		6 50 I H				111	1.											
							× SK * 4	10 1 	V Mr. 59									
		L Y N B				*61	CONTAN	DE LO LO U	1 24 03									
_			1.7.12	a proce														
C	orrelation: Catalyst	A Cat ~ ×																
B	2-SAMPLE T TEST.MV	VX																
C	orrelation: Ca	atalyst A, Cataly	st B															•
	1	r = -1	0.382 CI = 1	(-0.856, 0.44	1)													
		90.0 91		93.0	94.5		96.0											
			Cataly	rst A														
	Method																	
	Correlation type	Pearson																
	Number of rows u	sed 8																
	Correlations																	
		lyst A																
	Catalyst B	0.382																
								C8					642					¥
+	C1 Modified Monter	C2 Unmodified Morter	C3	C4 Catalyst A	C5	C6	C7 Arsenic in Phoenix A		C9	C10	C11	C12	C13	C14	C15	C16	C17	ł
1	16.85	16.62		91.50	89.19		Arsenic in Phoenix A	48										
2	16.40	16.75		94.18	90.95		7	44										
÷	17.21	17.37		92.18	90.46		25	40										
3		17.12		95.39	93.21		10	38										
3	16.35			1000	97.19		15	33										
3 4 5	16.35	16.98		91.79	37.13													
3 4 5 6	16.52	16.87		91.79 89.07	97.04		6	21								11	0	
6	16.52						6									1		
6	16.52	16.87 ample T test.mwx					6	21								1	2	
	16.52 17.04 b н + 2-s c 2-sample T test	16.87 ample T test.mwx						21			53 -				-		E.	

So, these values are 0.3 approximately, 0.3 negative, negative correlation what it is showing. And also check the P-values for this. So, we can go to stat and again basic statistics like that correlation analysis over here.


(Refer Slide Time: 10:09)

(Refer Slide Time: 10:15)

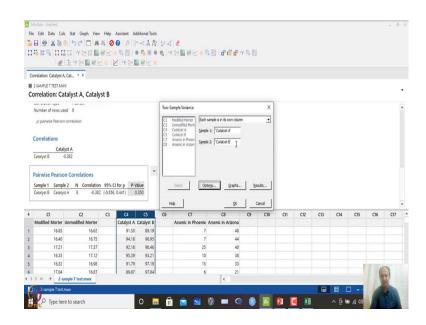
16 1		1 Y M B B	8K	*呜回!#	™ #	卷 4	2 ≚∎8⊻★481	d" (<mark>7</mark> d" ' Y ¹ 4) [2							
	on: Catalyst A,														
	ation: Cat	alyst A, Cataly	vst B		Correl	tion			×						
Catalyst B c c	•	Matrix Plot 95% C f	of Catal or Pearso	lyst A, Cataly	rst E C2 C4 C5 C7	Arsenic in Ar		×	Besults						
	CI	02	G	C4		Help		ok	Cancel	C12	C13	C14	C15	C16	C17
Modi		Inmodified Morter		Catalyst A			USETIC III PROENIX PUSENIC			CIE.	cis		civ	CIU	CI/
	16.85	16.62		91.50	89.19		7	48							
	16.40	16.75		94.18	90.95		7	44							
	17.21	17.37		92.18	90.46		25	40							
	16.35	17.12		95.39	93.21		10	38							
	16.52	16.98		91.79	97.19		15	33							
	17.04	16.87		89.07	97.04		6	21						116	
	+ 2-san sample T test.m	nple T test.mwx			97.041 O			21				■ I ∧ @ N			-

(Refer Slide Time: 10:21)

So, options what we can give is that store correlation matrix, and graphs results. So, we click pairwise correlation matrix and then we can say ok. And then what we can see is that p-value will be reported over here. So, if you see the p-values over here and I am copying as a picture.

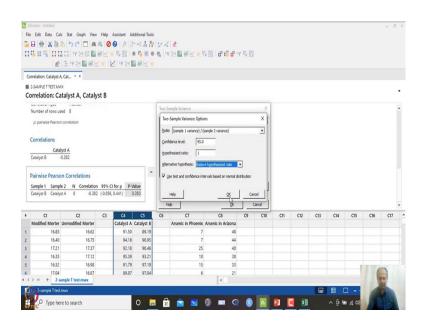
(Refer Slide Time: 10:44)

<u>د ۳</u>		3 * *						Book	1 - Excel (Pr	oduct Actival	tion Failed)									
File	Home	Insert	Page Layout			Review		ACROBAT	V Tell r										Sign in	Q Share
Paste 💉	Cut Copy - Format P board			• <u>\$</u> • <u>A</u>	• = =		•	Wrap Text Merge & Cente	. 🖫 .		* 8	rmatting *	primat as Table * St ples	Cell Inse	t Delete	Format	AutoSum Fill * Clear * Ei	Sort & Filter		
L17	٠	(x)	f _x																	
A In		8 0	D	E	F	G	н	1.1	J	K	L	м	N	0	P	Q	R	s	т	U
1																				
2																				
3																				
5																				
5																				
				D	in	lico	Dog	rean	Co	rrol	atio	D.C.								
3				Pa	airw	<i>ise</i>	Pea	rson	Co	rrela	atio	ns								
)				Pa	airw	/ise	Pea	rson	Co	rrela	atio	ns								
0													24 CI	for	D.	Value				
0								ple 2					% CI	for p) P-	Value	2			
0 1 2				Sa	amp	le 1	Sam	ple 2	N C	orrela	atior	n 95°					-			
0 1 2 3				Sa	amp	le 1	Sam		N C	orrela	atior	n 95°				0.350)			
0 1 2 3				Sa	amp	le 1	Sam	ple 2	N C	orrela	atior	n 95°)			
0 0 1 2 3 4 5 6				Sa	amp	le 1	Sam	ple 2	N C	orrela	atior	n 95°				0.350)			
0 0 1 2 3 3 4 5 6 6 7				Sa	amp	le 1	Sam	ple 2	N C	orrela	atior	n 95°				0.350)			
0 0 1 2 3 3 4 5 6 6 7 7 8				Sa	amp	le 1	Sam	ple 2	N C	orrela	atior	n 95°				0.350)			
0 0 1 2 2 3 4 4 5 6 6 7 8 8 9				Sa	amp	le 1	Sam	ple 2	N C	orrela	atior	n 95°				0.350)			
0 0 1 2 3 3 4 4 5 6 6 7 8 8 9 9 0				Sa	amp	le 1	Sam	ple 2	N C	orrela	atior	n 95°				0.350)			
0 0 1 2 3 3 4 4 5 6 6 7 8 8 9 9 0				Sa	amp	le 1	Sam	ple 2	N C	orrela	atior	n 95°				0.350)			
0 0 1 2 2 3 4 4 5 6 6 7 8 8 9				Sa	amp	le 1	Sam	ple 2	N C	orrela	atior	n 95°				0.350)			
0 0 1 2 3 3 4 4 5 6 6 7 8 8 9 9 0		Sheet1	•	Sa	amp	le 1	Sam	ple 2	N C	orrela	atior	n 95°				0.350)			
0 0 1 2 3 3 4 4 5 6 6 7 8 8 9 9 0	5	Sheet1	•	Sa	amp	le 1	Sam	ple 2	N C	orrela	atior	n 959 2 (-0.8				0.350)			


And I will paste it let us say in excel, so that it is visible also. So, let me just paste this one to show you what is the correlation that is coming out to be between catalyst A and catalyst B. So, let me just click this one. And let us paste the whatever information we

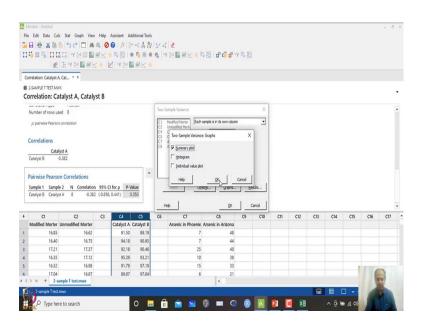
have got. So, over here what you see is that p-value is greater than 0.05, so that means, catalyst A and catalyst B there is no significant correlation that exists between catalyst A and B.

The data set that I have got in sample 1 and sample 2, so they are not. So, correlation also can be checked by Pearson correlation we have discussed like that. And that whether they are significantly correlated or they are not significantly correlated that also can be seen with the p-values that is reported over here.


And it says that p-value is more than 0.05 will indicate that there is no, there is no statistically significant correlation that exists. If it is less than 0.05, significant correlation will be then we can say that there is a significant correlation. So, data seems to be independent over here. So, the second condition also holds. So, in this case, third condition, what we have to do is that whether the variance is same or not. So, I will do a 2 variance test like that 2 variance test over here.

(Refer Slide Time: 11:42)

So, both samples are in different columns. So, sample number 1, I will give catalyst A, and sample number 2 is catalyst B like that.


(Refer Slide Time: 11:58)

So, then I go to options over here. So, because I have checked normality, I will use test and confidence interval based on normal distribution over here. So, what I want to check whether the variance is same. So, I can use variance testing over here. I can also use standard deviation testing over here. I am using variance test let us say.

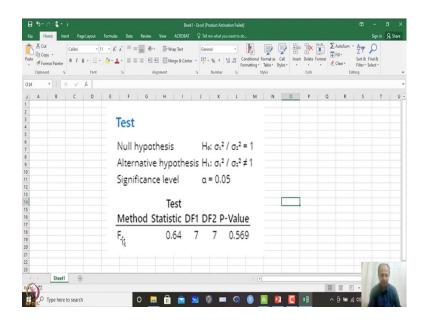
So, in this case, whether the ratio whether the variance is same or not same that I want to check over here. So, ratio not equals to hypothesis ratio over here, so whether there so both sided test I am doing over here is assuming normal distribution. So, in this case if I give ok.

(Refer Slide Time: 12:31)

(Refer Slide Time: 12:36)

Minitab - Untitled										. 0	×
File Edit Data Calc Stat Graph View Help Assistant Additional Tool	5										
🔒 日 愛 🔏 陶 彩 つ ご 🗆 株 🧔 🚱 🕼 計 書書書											
			1 1/ NO.								
		-y 60 1 0 . ro 0	1 19 85								
IN FARBER¥IN ARBERI											
Correlation: Catalyst A, Cat Y X											
2-SAMPLE T TEST.MWX											
Correlation: Catalyst A, Catalyst B											•
serrenser ges i server	Two-Sample Variance			x							
Number of rows used 8											
p: pairwise Pearson correlation		sample is in its own column	×	•							
		e: Kesuits	^								
Correlations	CS C C7 A P Method										
Catalyst A	Co V Statistics										
Catalyst B -0.382	Gonfidence interva	ls .	- 1								
	₩ Iest										
Pairwise Pearson Correlations											
Sample 1 Sample 2 N Correlation 95% CI for p P-Value	Help	96	cancel of us	a]							
Catalyst B Catalyst A 8 -0.382 (-0.856, 0.441) 0.350				_							
	Help	QK	Canor	el							Ŧ
C1 C2 C3 C4 C5	C6 C7	C8	C9	C10 C11	C12	C13	C14	C15	C16	C17	P
Modified Morter Unmodified Morter Catalyst A Catalyst B	Arsenic in Phoenix	Arsenic in Arizona									
16.85 16.62 91.50 89.19	7	48									
16.40 16.75 94.18 90.95	7	44									
17.21 17.37 92.18 90.46	25	40									
1 16.35 17.12 95.39 93.21	10	38									
16.52 16.98 91.79 97.19	15	33						1	1.11.	1	
17.04 16.87 89.07 97.04	6	21							116		
4 b H + 2-sample T test.mwx		•						_	113	3	
2-sample T test.mwx							III			14 mar	
P D Type here to search O	a 🔒 🚔 🖬	(i) = (i)		10 5 2	🗐 🖬		^ @ 9	a 40			
NPTEL INPENSION OF A CONTRACT				<u> </u>	1		. e	114 410		1.5	

(Refer Slide Time: 12:40)

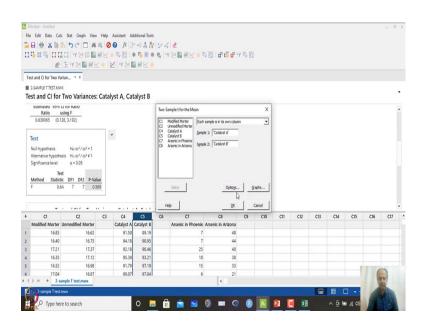

다. 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	(이) 이 가 나 는 한 것 같		finitab - Untitled	c Stat Graph View	Help 4	ssistant As	ditional Tools												- (z				
대응 대응 대응 응용 응용 응용 응용 응용 응용 응용 응용 응용 응용 응용 응용 응용 응용 응	16 0							141																
	Image: Catalyst A, Catalyst B for normal data sorty. Image: Catalyst A, Catalyst B Catalyst A, Catalyst B Control of a sorty. Image: Catalyst A, Catalyst B Catalyst A, Catalyst B <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>50 Lan an an U</th><th>v 14. 59</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>									50 Lan an an U	v 14. 59													
Test and Cl for Two Variance: * * B 246WHIT THST MAX Test and Cl for Two Variances: Catalyst A, Catalyst B Method cassarder developed of Cradyst A cassarder developed of Cradyst A cassa	Catalyst A, Catalyst B for normal das only. Ifor or 235401 36877) Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <td c<="" th=""><th>1</th><th></th><th></th><th></th><th></th><th></th><th>10</th><th>CORTAN</th><th></th><th>19 0.5</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td>	<th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>10</th> <th>CORTAN</th> <th></th> <th>19 0.5</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	1						10	CORTAN		19 0.5												
IB 25AMPLET TEST MAK Test and CI for Two Variances: Catalyst A, Catalyst B Method as standard deviation of Catalyst A, Catalyst B Standard deviation of Catalyst A, Catalyst B Descriptive Statistics Descriptive Statistics Variable M Statistics Variable M Statistics Descriptive Statistics Colspan="2">Colspan="2"Colspa="2"Colspa="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colsp	for normal data only.				1. M. 18	10061	69 D. X																	
Set and CI for Two Variances: Catalyst A, Catalyst B Method a: standard division of Cralyst A as standard division of Cralyst A as used The method is accurate for normal data only. Descriptive Statistics Descriptive Statistics Variable M Boby Variances 99% CI for of Cranyst B & 2.305 Statistics Descriptive Statistics Descriptive Statistics Descriptive Statistics Cl C C C C C C C C C C C C C C C C C C	for normal data only.	Te	st and CI for Two Va	irian Y X																				
Method a: standard devision of Crubyn A a: standard devision of Crubyn A b: standard devision of Crubyn B Rotic u/a Precida via scala Batic u/a Descriptive Statistics Variable N 500+ Variance 95% Cl for of Crubyn B Caralyn B 2.333 Statistics Descriptive Statistics Statistical Statistics Statistical Statistics Total Statistical Statistics Total Statistical Statistical Statistics Statistical Stati	for normal data only.	-																						
a: standard deviation of Crabyts A a: standard deviation of Crabyts B Banco n/b, Emethod vaso used. This method is accurate for normal data only. Descriptive Statistics Vanishe N Stipev Variance 9% Cl for e ² Canalyst A 2.385 5.688 (2.477, 23.56) Canalyst A 2.385 5.688 (2.477, 23.578) Canalyst A 2.385 5	Critical Catalynt A Catalynt B Arsenic in Phoenix Arsenic in Atlona Critical Criteral Criterad Critical Criteral Criteral Critical Criterad Crit	Te	st and CI for	Two Variances:	: Cataly	st A, Ca	talyst B																	
a: standard deviation of Crabyts A a: standard deviation of Crabyts B Banco n/b, Emethod vaso used. This method is accurate for normal data only. Descriptive Statistics Vanishe N Stipev Variance 9% Cl for e ² Canalyst A 2.385 5.688 (2.477, 23.56) Canalyst A 2.385 5.688 (2.477, 23.578) Canalyst A 2.385 5	Critical Catalynt A Catalynt B Ansenic in Phoenix Ansenic in Atlona C1 C1 C2 C3 C4 C5 C16 C17 C1 C130/01 B Ansenic in Phoenix Ansenic in Atlona C10 C11 C2 C13 C14 C15 C16 C17 01.50 09.50 7 44 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>																							
Cit C	Critical Catalynt A Catalynt B Ansenic in Phoenix Ansenic in Atlona C1 C1 C2 C3 C4 C5 C16 C17 C1 C130/01 B Ansenic in Phoenix Ansenic in Atlona C10 C11 C2 C13 C14 C15 C16 C17 01.50 09.50 7 44 <td< td=""><td></td><td>Method</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		Method																					
Retro ofis Exercises Descriptive Statistics Low Variance 95% Cfor of Catalynt & 1.285 Colspan="2">Colspan="2" <colspan="2">Colspan="2"<colspan="2">Colspan="2"<colspan="2">Colspan="2"<colspan="2">Colspan="2"<colspan="2">Colspan="2"<colspan="2">Colspan="2"<colspan="2">Colspan="2"<colspan="2"<colspan="2">Colspan="2"<colspan="2"<colspan="2">Colspan="2"<colspan="2"<colspan="2">Colspan="2"<colspan="2"<colspan="2">Colspan="2"<colspan="2"<colspan="2"<colspan="2">Colspan="2"<colspan="2"<colspan="2"<colspan="2"< th=""> Colspan="2" Colspan="2" Colspan="2" <t< td=""><td>Critical Catalynt A Catalynt B Ansenic in Phoenix Ansenic in Atlona C1 C1 C2 C3 C4 C5 C16 C17 C1 C130/01 B Ansenic in Phoenix Ansenic in Atlona C10 C11 C2 C13 C14 C15 C16 C17 01.50 09.50 7 44 <td< td=""><td></td><td>ol: standard deviati</td><td>on of Catalyst A</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<></td></t<></colspan="2"<colspan="2"<colspan="2"<></colspan="2"<colspan="2"<colspan="2"></colspan="2"<colspan="2"></colspan="2"<colspan="2"></colspan="2"<colspan="2"></colspan="2"<colspan="2"></colspan="2"></colspan="2"></colspan="2"></colspan="2"></colspan="2"></colspan="2"></colspan="2">	Critical Catalynt A Catalynt B Ansenic in Phoenix Ansenic in Atlona C1 C1 C2 C3 C4 C5 C16 C17 C1 C130/01 B Ansenic in Phoenix Ansenic in Atlona C10 C11 C2 C13 C14 C15 C16 C17 01.50 09.50 7 44 <td< td=""><td></td><td>ol: standard deviati</td><td>on of Catalyst A</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		ol: standard deviati	on of Catalyst A																				
C Classical Calification of Calificatio Calification of Calification of Calificatio Calific	Critical Catalynt A Catalynt B Arsenic in Phoenix Arsenic in Atlona Critical Criteral Criterad Critical Criteral Criteral Critical Criterad Crit			on of Catalyst B																				
Constrained (analysis) Cold (analysis) Cold (analysis) Col	Critical Catalynt A Catalynt B Arsenic in Phoenix Arsenic in Atlona CP CP C1 C2 C3 C4 C5 C16 C17 C1 C4 C5 C6 C7 C8 C9 C10 C1 C2 C3 C4 C5 C16 C17 01.50 03.10 7 44																							
City Walde N Store Variance 99% Cf for of Cranjers A & 2383 5588 (2.47,23.58) Cranjers B 2.383 5588 (2.47,23.58) C C C C C C C C C C C C C C C C C C C	Ifor of 23.5671) CS CS CF CB CS CD C1 C2 C3 C4 C5 C16 C17 Callyst A Callyst B Arsenci in Phoemic Arsenci in Artisona Image: Callyst B		F method was used	. This method is accura	ste for norr	nal data only	6																	
Critical M. Subur Valuace - 95, Cl for of Crasynt & 1, 235 S588 C.47, 2358 C.588 C.481 C.58 C.588 C.41 C.12 C.13 C.4 C.55 C.588	Ifor of 23.5671) CS CS CF CB CS CD C1 C2 C3 C4 C5 C16 C17 Callyst A Callyst B Arsenci in Phoemic Arsenci in Artisona Image: Callyst B									N.														
Crashyrit, A B 2.383 5.688 (2.47):2.2583 Crashyritik C <thc< th=""> C <thc< th=""> <thc< th=""></thc<></thc<></thc<>	22.548) 36.877) CLI CLIAJYAT A CLIAJYAT B 47.50 06.10 91.50 08.10 91.50 08.10 92.11 00.45 92.11 00.45		Descriptive Stat	tistics																				
Grayweil B 2.803 B.001 (J.991, 56:77) Destinant Mutainment Catalyste B Catalyste B <th b<="" catalyste="" colspan="4" th="" th<=""><th>36.571) C1 C1 C2 C3 C6 C7 C8 C9 C10 C1 C2 C3 C4 C5 C6 C7 Catalyst A Catalyst B 91.50 90.59 7 44 C 2 C8 C9 C10 C1 C2 C3 C4 C5 C6 C7 92.18 90.65 7 44 C 2 C8 C1 C1 92.18 90.65 7 44 C 2 C8 C1 C1 92.18 90.65 7 44 C 2 C9 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 7 44 C 2 C1 C1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>P0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th>36.571) C1 C1 C2 C3 C6 C7 C8 C9 C10 C1 C2 C3 C4 C5 C6 C7 Catalyst A Catalyst B 91.50 90.59 7 44 C 2 C8 C9 C10 C1 C2 C3 C4 C5 C6 C7 92.18 90.65 7 44 C 2 C8 C1 C1 92.18 90.65 7 44 C 2 C8 C1 C1 92.18 90.65 7 44 C 2 C9 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 7 44 C 2 C1 C1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>P0</th> <th></th>				36.571) C1 C1 C2 C3 C6 C7 C8 C9 C10 C1 C2 C3 C4 C5 C6 C7 Catalyst A Catalyst B 91.50 90.59 7 44 C 2 C8 C9 C10 C1 C2 C3 C4 C5 C6 C7 92.18 90.65 7 44 C 2 C8 C1 C1 92.18 90.65 7 44 C 2 C8 C1 C1 92.18 90.65 7 44 C 2 C9 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 7 44 C 2 C1 C1 C1 C2 C3 C4 C5 C6 C7 92.18 90.62 7 7 44 C 2 C1									P0										
Dation of Murineware C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C11 C12 C13 C14 C15 C11 C12 C13 C14 C15 C11 C13 C11 C13 C11 C13 C11 <thc13< th=""> C11 C13 C11 <thc13< th=""> C11 C13</thc13<></thc13<>	C1 C3 C6 C7 C8 C9 C10 C1 C2 C3 C4 C5 C16 C17 Cablyst A Cablyst B Arsenck in Phoemia: Arsenck in Artizona Image: Cablyst B Image: Cablyst B Image: Cablyst B C1 C12 C13 C14 C15 C16 C17 91.50 90.19 7 48 Image: Cablyst B		Variable N S	tDev Variance 95%	6 CI for o ²					10														
C1 C2 C3 C4 C3 C6 C7 C8 C9 C10 C1 C12 C13 C4 C15 Modified Motter Unmodified	Catalyn A Catalyn B Ansenci in Phoenix Assenci in Atlanco 91.50 60.10 91.50 60.10 92.10 50.00 92.11 10 93.21 10 94.15 33 99.07 97.04		Catalyst A 8	2.385 5.688 (2.48	87, 23.563)					10														
C1 C2 C3 C4 C3 C6 C7 C8 C9 C10 C1 C12 C13 C4 C15 Modified Motter Unmodified	Catalyn A Catalyn B Ansenci in Phoenix Assenci in Atlanco 91.50 60.10 91.50 60.10 92.10 50.00 92.11 10 93.21 10 94.15 33 99.07 97.04		Catalyst A 8	2.385 5.688 (2.48	87, 23.563)					19														
Modified Morter Ummodified Morter Catabyt A Catabyt 8 Assnic in Phoenki Assnic in Astona 1645 1642 91.50 08.19 7 48 1640 16475 94.18 90.09 7 48 1721 1737 95.18 9046 225 40 1635 17.12 95.39 93.21 10 38	Catalyst & Catalyst # Ansenci in Phoenix Insenci in Actions 91:50 69:19 7 48 40:18 90:05 7 44 92:18 90:46 25 40 95:39 99:21 10 38 91:79 97:39 15 33 99:07 97:04 6 21		Catalyst A 8 Catalyst B 8	2.385 5.688 (2.48 2.983 8.901 (3.85	87, 23.563)					19														
16.65 16.62 91.50 89.19 7 40 16.60 16.75 94.16 90.95 7 44 17.21 17.37 92.16 90.46 25 40 16.63 17.12 95.39 92.21 10 38	91.50 89.19 7 40 94.18 90.35 7 44 95.19 90.46 25 40 95.39 90.21 10 30 91.79 97.79 15 33 89.07 97.70 6 21		Catalyst A 8 Catalyst B 8 Datio of Varian	2.385 5.688 (2.48 2.983 8.901 (3.85	87, 23.563) 91, 36.871)		6	<i>c</i> 6	7		6	610	(1)	(1)	612	<i>cu</i>	615	6%	67					
1721 1737 92.18 90.46 25 40 1635 17.12 9539 90.21 10 38	92.18 90.46 25 40 95.39 93.21 10 38 91.79 97.19 15 33 99.07 97.04 6 21		Catalyst A 8 Catalyst B 8 Datio of Variand	2.385 5.688 (2.48 2.983 8.901 (3.89 rec C2	87, 23.563) 91, 36.871) C3	C4		C6		C8	C9	C10	C11	C12	C13	C14	C15	C16	C17					
16.35 17.12 95.39 93.21 10 38	9539 9321 10 30 9179 97.99 15 33 9907 97.04 6 21		Catalyst A 8 Catalyst B 8 Datio of Variano C1 Modified Morter	2.385 5.688 (2.48 2.983 8.901 (3.85 -or C2 Unmodified Morter	87, 23.563) 91, 36.871) C3	C4 Catalyst A	Catalyst B	C6	Arsenic in Phoenix A	C8 rsenic in Arizona	C9	C10	C11	C12	C13	C14	C15	C16	C17					
16.35 17.12 95.39 93.21 10 38	9179 9739 15 33 9907 9704 6 21		Catalyst A 8 Catalyst B 8 Datio of Variano C1 Modified Morter 16.85	2.385 5.688 (2.45 2.983 8.901 (3.85 rec C2 Unmodified Morter 16.62	87, 23.563) 91, 36.871) C3	C4 Catalyst A 91.50	Catalyst B 89.19	C6	Arsenic in Phoenix A	C8 rsenic in Arizona 48	C9	C10	C11	C12	C13	C14	C15	C16	C17					
	88,07 97,04 6 21		Catalyst A 8 Catalyst B 8 Patio of Varian C1 Modified Morter 16.85 16.40	2.385 5.688 (2.45 2.983 8.901 (3.85 rec C2 Unmodified Morter 16.62 16.75	87, 23.563) 91, 36.871) C3	C4 Catalyst A 91.50 94.18	Catalyst B 89.19 90.95	C6	Arsenic in Phoenix A 7 7	C8 rsenic in Arizona 48 44	C 9	C10	C11	C12	C13	C14	C15	C16	C17					
16.52 16.98 91.79 97.19 15 33	4		Catalyst A 8 Catalyst B 8 Patio of Varian C1 Modified Morter 16.85 16.40 17.21	2.385 5.688 (2.46 2.983 8.901 (3.86 -or Unmodified Morter 16.62 16.75 17.37	87, 23.563) 91, 36.871) C3	C4 Catalyst A 91.50 94.18 92.18	Catalyst B 89.19 90.95 90.46	C6	Arsenic in Phoenix A 7 7 25	C8 rsenic in Arizona 48 44 40	C9	C10	C11	C12	C13	C14	C15	C16	C17					
			Catalyst A 8 Catalyst B 8 Patio of Varian C1 Modified Morter 16.85 16.40 17.21	2.385 5.688 (2.46 2.983 8.901 (3.86 -or Unmodified Morter 16.62 16.75 17.37	87, 23.563) 91, 36.871) C3	C4 Catalyst A 91.50 94.18 92.18 95.39	Catalyst B 89.19 90.95 90.46 93.21	C6	Arsenic in Phoenix A 7 7 25 10	C8 rsenic in Arizona 48 44 40 38	C9	C10	C11	C12	C13	C14	CIS	C16	C17					
4 b H + 2-sample T test.mixx			Catalyst A 8 Catalyst B 8 Datio of Varian C1 Modified Morter 16.85 16.40 17.21 16.35 16.52 17.04	2,385 5,688 (2,44 2,983 8,901 (3,80 rec C2 Unmodified Morter 16,62 16,75 17,37 17,12 16,68 16,87	87, 23.563) 91, 36.871) C3	C4 Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	Arsenic in Phoenix A 7 25 10 15	C8 rsenic in Arizona 48 44 40 38 33 21	C9	C10	C11	C12	C13	C14	C15	C16	C17					
🕐 Type here to search O 🚍 🔒 🕿 😒 🛞 💻 📿 📵 🔝 🔯 🦉 🗮 🦄 🤅		1 2 3	Catalyst A 8 Catalyst B 8 Datio of Varian C1 Modified Morter 16.85 16.40 17.21 16.35 16.52 17.04	2,385 5,688 (2,44 2,983 8,901 (3,85 rec C2 Unmodified Morter 16,62 16,75 17,73 17,72 16,98 16,87 16,98	87, 23.563) 91, 36.871) C3	C4 Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19 97.04		Arsenic in Phoenix A 7 25 10 15 6	C8 rsenic in Arizona 48 44 40 38 38 38 21		C10	C11		C13			C16	C17					

(Refer Slide Time: 12:45)

ile																	- 6	9
		Ic Stat Graph View																
		6 5 ¢ □ #																
0		⊒ ⊑ +Y ≥ ∅ 📗					K SK *	۵ 🗗 🖆 🖓 ۲	Y 称图									
	1	± Ψ≥∎@Ŀ	< * 12	LY 🖂	BK *													
est a	nd CI for Two V	arian × ×																
2.5	AMPLE T TEST MI	NX																
		Two Variances	: Catalyst	t A. Cat	talyst B													
	sumated 93%																	
	Ratio	using F																
	0.639065 (0.	128, 3.192)																
-																		
Tes	st		Stor Stor															
Nu	I hypothesis	$H_{e1} \sigma_{1}^{2} / \sigma_{2}^{2} = 1$																
		esis Ha 012/012 # 1																
Sig	nificance level	a = 0.05																
Sig		a = 0.05																
Me	Te thod Statis	est tic DF1 DF2 P-Val				e												
	Te thod Statis	est tic DF1 DF2 P-Val	lue 569	4		2												
Me	Te thod Statis	est tic DF1 DF2 P-Val		Ŵ		2												
Me	Te thod Statis	est tic DF1 DF2 P-Val 64 7 7 0.5	569															
F	Te thod Statis 0, - C1	est tic DF1 DF2 P-Val 64 7 7 0.5	569 C3	C4	G	C6	a	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
F	Te sthod Statis 0; C1 odified Morter	est tic DF1 DF2 P-Val 64 7 7 0.5 C2 Unmodified Morter	569 C3	C4 atalyst A	C5 Catalyst B		Arsenic in Phoenix	Arsenic in Arizona	C9	C10	C11	C12	C13	C14	C15	C16	C17	
F	Te sthod Statis 0. C1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1	est tic DF1 DF2 P-Val 64 7 7 0.5 C2 Unmodified Morter 16.62	569 C3	C4 atalyst A 91.50	C5 Catalyst B 89.19		Arsenic in Phoenix 7	Arsenic in Arizona 48	C9	C10	C11	C12	CI3	C14	CIS	C16	C17	
F	C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C	est tic DF1 DF2 P-Val 64 7 7 0.5 C2 Unmodified Morter 16.62 16.75	569 C3	C4 atalyst A 91.50 94.18	C5 Catalyst B 89.19 90.95		Arsenic in Phoenix 7 7	Arsenic in Arizona 48 44	C9	C10	C11	C12	CI3	C14	CIS	C16	C17	
F	C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C	est tic DFI DF2 P-Val 64 7 7 0.05 C2 Unmodified Morter 16.62 16.75 17.37	569 C3	C4 atalyst A 91.50 94.18 92.18	C5 Catalyst B 89.19 90.95 90.46		Arsenic in Phoenix 7 25	Arsenic in Arizona 48 44 40	C9	C10	C11	C12	C13	C14	CIS	C16	C17	
F	C1 C1 00/16/16/16/16/16/16/16/16/16/16/16/16/16/	sst tic DFI DF2 P-Val 64 7 7 0.5 C2 Unmodified Morter 16.67 16.75 17.37 17.12	569 C3	C4 atalyst A 91.50 94.18 92.18 95.39	C5 Catalyst B 89.19 90.95 90.46 93.21		Arsenic in Phoenix 7 7 25 10	Arsenic in Arizona 48 44 40 38	C9	C10	C11	C12	CI3	C14	CIS	C16	C17	
F	Cl Cl Cl 16.85 16.40 17.21 16.35 16.52	est tic DFI DF2 P-Val 64 7 7 0.5 C2 Unmodified Morter 16.62 16.75 17.37 17.12 16.98	569 C3	C4 atalyst A 91.50 94.18 92.18 95.39 91.79	CS Catalyst B 89.19 90.95 90.46 93.21 97.19		Arsenic in Phoenix 7 7 25 10 15	Arsenic in Arizona 48 44 40 38 33	C9	C10	C11	C12	CI3	C14	C15	C16	C17	
F	Te statis 0. ct odffied Morter 16.85 16.40 17.21 16.35 16.52 17.04	stt tic DFI DF2 P-Val 64 7 7 0.5 Unmodified Morter 16.62 16.75 17.37 17.12 16.69 16.87	569 C3	C4 atalyst A 91.50 94.18 92.18 95.39	C5 Catalyst B 89.19 90.95 90.46 93.21		Arsenic in Phoenix 7 7 25 10	Arsenic in Arizona 48 44 40 38 33 21	C9	C10	C11	C12	C13	C14	C15	C16	C17	
F	Te statis 0. ct odffied Morter 16.85 16.40 17.21 16.35 16.52 17.04	est tic DFI DF2 P-Val 64 7 7 0.5 C2 Unmodified Morter 16.62 16.75 17.37 17.12 16.98	569 C3	C4 atalyst A 91.50 94.18 92.18 95.39 91.79	C5 Catalyst B 89.19 90.95 90.46 93.21 97.19		Arsenic in Phoenix 7 7 25 10 15	Arsenic in Arizona 48 44 40 38 33	C9	C10	C11	C12		C14	C15	C16	C17	
F	Te statis 0. ct odffied Morter 16.85 16.40 17.21 16.35 16.52 17.04	est tic DFI DF2 P-Val 66 7 7 7 0.5 C2 Unmodified Morter 16.75 17.37 17.12 16.98 16.87 3emple T test.mvx	569 C3	C4 atalyst A 91.50 94.18 92.18 95.39 91.79	C5 Catalyst B 89.19 90.95 90.46 93.21 97.19		Arsenic in Phoenix 7 7 25 10 15	Arsenic in Arizona 48 44 40 38 33 21	C9	C10	C11	C12	C13		C15	C16	C17	
F	Tel 0/ C1 oddffed Morter 16.85 16.40 17.21 16.35 16.52 16.52 2-sample T test	est tic DFI DF2 P-Val 66 7 7 7 0.5 C2 Unmodified Morter 16.75 17.37 17.12 16.98 16.87 3emple T test.mvx	569 C3	C4 atalyst A 91.50 94.18 92.18 95.39 91.79	C5 Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	Arsenic in Phoenix 7 25 10 15 6	Arsenic in Arizona 48 44 40 38 33 21		C10	CII	C12]	C16	C17	

And then what I can see is that I can see summary plots like that, I can also see results like that. All the results are given over here. So, this is by default and I click ok over here. And what I get is that I will get a F statistics over here.

(Refer Slide Time: 12:56)

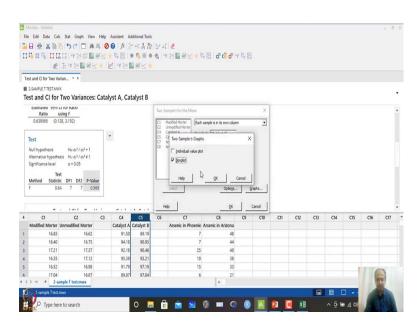

So, I can remove this one now. And I can show you this one what is the results outcome over here. So, if you see the results over here, Fstatistic was used over here method is Fthat is mentioned over here, and the statistic value is 0.64.

And in this case, if the $\frac{\sigma_1^2}{\sigma_2^2}$ is very close to 1, And based on that, what comes out to is

0.64 which is close to 1 basically and that is confirmed also that p-value is not significant over here. So, if P-value is not significant, that means, the variance is same basically. When variance is same, I will go for that condition while doing the hypothesis testing or 2-sample t-test like that.

So, in this case, in catalyst what we have seen is that it follows individual follows normal, then their data is independent like that. And also the variance of A and variance of B are same in population basically. So, then what I will do is that stat, I will go to stat basic stat and 2-sample t-test. Now I will apply the 2-sample t-test over here.

(Refer Slide Time: 14:01)


(Refer Slide Time: 14:12)

h Minitab	- Untitled																	- B	X
File Ed	it Data Cal	c Stat Graph View	v Help	Assistant A	dditional Tools														
28	2 X D	500 H	40	fx a		214	2												
								400 000	d ⁰ 1	政图									
		LYN B																	
Test and	d CI for Two Va	arian * X																	
	IPLE T TEST MW																		
-		Two Variances	: Cata	lyst A. Ca	talvst B														٠
	1114000 93%			,,		Trac	ample t for the Mean				×								
_		using F				-					-								1
0.0	639065 (0.1	28, 3.192)				Ci	wo-Sample t: Options				×・								
				~		04 0	ifference = (sample 1 mei	m) - (sample 2 mei	n)										
Test						07	onfidence level:	95.0											
	hypothesis	$H_{\rm el}\sigma_{\rm v}{}^2/\sigma_{\rm v}{}^2=1$					ypothesized difference:	0.0											
	native hypothe ficance level	esis $H_{11} \sigma_1^2 / \sigma_2^2 \neq 1$ $\alpha = 0.05$									- 11								
28.11						e	Iternative hypothesis:	Difference + hypo	hesized o	Ifference	-								
Meth	Te nod Statist		hae			Ls	Assume goual variances	6											
F	0.6		569								- 1								
							Help	QK		Cancel									
						F	elo		QK	C	ancel								w
4	CI	C2	C3	C4	C5	C6	C7	C8		C9	C10	C11	C12	C13	C14	C15	C16	C17	
Mod		Unmodified Morter		Catalyst A	Catalyst B		Arsenic in Phoenix	Arsenic in Ar	zona										
1	16.85	16.62		91.50	89.19		3		48										
2	16.40	16.75		94.18			3		44										
3	17.21	17.37		92.18	90.46		25		40										
4	16.35	17.12		95.39	93.21		10		38										
5	16.52	16.98		91.79			15		33							1		-	
6	17.04	16.87 ample T test.mwx		89.07	97.04		(4	21								116	10	
111	-sample T test							4	-		_	_						B	
$\{ A \}$	-sample i testi	mwx		-									-	E	ш		100	.785	
ALL.	O Type her	re to search			0		💼 🖬	🔞 💻	Q		die		🗐 関		^ ĝ 9	0 /4 40	1	4-4	
					_	and the second second					_						1		

So, when I apply 2-sample t-test like that, it will ask are they in one column or they are in different column, they are in own column we have mentioned. So, all are in different columns. So, catalyst A and catalyst B, we are trying to do.

And then you go to options and then you assume equal variance. So, this you have to click over here assume equal variance. 95 percent is the confidence band that we are using every time, so that is by default and difference not equals to condition. We want to check catalyst A or catalyst B whichever is giving me is the means are different or not.

(Refer Slide Time: 14:34)

(Refer Slide Time: 14:38)

	finitab - Untitled																- 6	8)
File	Edit Data Ci	alc Stat Graph V	iew Help	Assistant A	dditional Tools													
-	8 8 8 1	500	H. 44	00 fx		21 2	2											
							KEBK*		y 收阳									
		EYMER																
Te	vo-Sample T-Test a																	
_	2-SAMPLE T TEST M	-Test and CI:	Catalu	t A Catal	unt D													•
IV	vo-sample i	- lest and Cl.	cataly	St A, Cataly	ystb													
	Method																	*
	pa population me	an of Catalyst A																
	ps population me																	
	Difference: µi - µi																	
	Equal variances a	re assumed for this an	uysis.															
	Descriptive Sta	atistics		N														
	Sample N	Mean StDev SE		\$														
	Sample N Catalyst A 8	Mean StDev SE 92.26 2.39	0.84	12														
	Sample N Catalyst A 8	Mean StDev SE		ß														
	Sample N Catalyst A 8 Catalyst B 8	Mean StDev SE 92.26 2.39 92.73 2.98	0.84															
	Sample N Catalyst A 8 Catalyst B 8 Catalyst B 8	Mean StDev SE 92.26 2.39 92.73 2.98 92.73 2.98 22 22	0.84 1.1 C3	C4	6	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	•
	Sample N Catalyst A 8 Catalyst B 8 Catalyst B 8 C1 Modified Morter	Mean StDev SE 92.26 2.39 92.73 2.98 92.73 2.98 C2 C2 r Unmodified Mont Mont C1	0.84 1.1 C3	C4 Catalyst A	Catalyst B	C6	Arsenic in Phoenix	Arsenic in Arizona	C9	C10	C11	C12	CI3	C14	CIS	C16	C17	¥
	Sample N Catalyst A 8 Catalyst B 8 C1 Modified Morter 16.85	Mean StDev SE 92.26 2.39 92.73 2.98 92.73 2.98 2.98 2.98 C2 Unmodified Mont 16.1	0.84 1.1 C3	C4 Catalyst A 91.50	Catalyst B 89.19	C6	Arsenic in Phoenix 7	Arsenic in Arizona 48	C9	C10	CII	C12	CI3	C14	C15	C16	C17	¥
1	Sample N Catalyst A 8 Catalyst B 8 Catalyst B 8 C1 Modified Morter	Mean StDev SE 92.26 2.39 92.73 2.98 C2 C3 C4 C4	0.84 1.1 C3 87 2 5	C4 Catalyst A 91.50 94.18	Catalyst B 89.19 90.95	C6	Arsenic in Phoenix 7 7	Arsenic in Arizona	C9	C10	C11	C12	CI3	C14	CIS	C16	C17	•
1	Sample N Catalyst A 8 Catalyst B 8 C1 Modified Morter 16.85 16.40	Mean StDev SE 92.26 2.39	0.84 1.1 c3 rr 2 5 7	C4 Catalyst A 91.50	Catalyst B 89.19 90.95 90.46	C 6	Arsenic in Phoenix 7	Arsenic in Arizona 48 44	C 9	C10	C11	C12	CI3	C14	CIS	C16	C17	•
1 2 3 1	Sample N Catalyst A 8 Catalyst B 8 Modified Morter 16.85 16.40 17.21	Mean StDev SE 92.26 2.39	0.84 1.1 2 5 7 2	C4 Catalyst A 91.50 94.18 92.18	Catalyst B 89.19 90.95 90.46 93.21	C6	Arsenic in Phoenix 7 7 25	Arsenic in Arizona 48 44 40	C9	C10	C11	C12	CI3	C14	C15	C16	C17	Y
1 2 3 1	Sample N Catalyst A 8 Catalyst B 8 C1 Modified Morter 16.85 16.40 17.21 16.35	Mean StDev SE 92.26 2.39 92.73 2.98 92.73 2.98 16.1 16.1 16.1 17.2 17.2 17.2 1 1.7 16.1 16.1	0.84 1.1 2 2 7 2 8	C4 Catalyst A 91.50 94.18 92.18 95.39	Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	Arsenic in Phoenix 7 7 25 10	Arsenic in Arizona 48 44 40 38	C9	C10	C11	C12	CI3	C14	CIS	C16	C17	
4 1 2 3 4 5	Sample N Catalyst A 8 Catalyst B 8 Modified Morter 16.85 16.40 17.21 16.35 16.52 17.04 17.24	Mean StDev SE 92.26 2.39 92.73 2.98 92.73 2.98 16.1 16.1 16.1 17.2 17.2 17.2 1 1.7 16.1 16.1	0.84 1.1 2 2 7 2 8	C4 Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19	C 6	Arsenic in Phoenix 7 25 10 15	Arsenic in Arizona 48 44 40 38 33	C9	C10	C11	C12	CI3	C14	CIS	C16	C17	•
4 1 2 3 4 5 6	Sample N Catalyst A 8 Catalyst B 8 Modified Morter 16.85 16.40 17.21 16.35 16.52 17.04 17.24	Mean StDev SE 92.26 2.39 92.73 2.98 C2 Unmodified Mort 16.1 16.1 17.2 17.2 16.1 16.1 16.1 16.3 16.1 16.1 16.4 16.1 16.1 16.3 16.1 16.1	0.84 1.1 2 2 7 2 8	C4 Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	Arsenic in Phoenix 7 25 10 15	Arsenic in Arizona 48 44 40 38 33 21	C9	C10	C11	C12	C13		CIS	C16	C17	
+	Sample N Catalyst A 8 Catalyst B 8 C1 16435 Modified Morter 16435 16433 1652 P H 2- Vacanty E 1642 Comparison 1642 Modified Morter 1653 1652 1640 1642 1642 1643 1652 1643 1652 1643 1652 1643 1652 1643 1652 1643 1652 1652 1643 1652 1652 1643 1652 1652 1643 1652 1652 1652 1643 1652 1643 1652 1643 1652 1643 1652 1652 1652 1643 1652 1652 1652 1643 1653	Mean StDev SE 92.26 2.39 92.73 2.98 C2 Unmodified Mort 16.1 16.1 17.2 17.2 16.1 16.1 16.1 16.3 16.1 16.1 16.4 16.1 16.1 16.3 16.1 16.1	0.84 1.1 2 2 7 2 8	C4 Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19		Arsenic in Phoenix 7 25 10 15 6	Arsenic in Arizona 48 44 40 38 33 21	C9	C10	CII	C12				C16	C17	

(Refer Slide Time: 14:39)

																	- 1	9 >
	Edit Data Cal	c Stat Graph View	Help Assi	istant Ad	ditional Tools													
0		50 B				es d												
								6. 59 L 	v 15. 55									
-		LYNNS				·61	CONT	A DEL CO CO C.	1 .4 05									
_				in ter	10° D. X													
Tw	io-Sample T-Test ar	id Cl: Y X																
-	2-SAMPLE T TEST MV																	
Ти	vo-Sample T	-Test and CI: Ca	talyst A,	Cataly	st B													
	Difference Boo	led StDev Difference																
1	-0.48	2.70 (-3.37, 2.42																
	Test																	
	Null hypothesis	H _{ef} µ ₀ - µ ₀ = 0																
	Alternative hypothe																	
	T-Value DF P	Mahna																
	-0.35 14	0.729		N														
	-0.35 14	0.729		2														
	-0.35 14																	
		0.729 Boxplot of	Catalyst A		st B													
[98	Boxplot of	<i>,</i>	A, Catalys														¥
	93 C1	Boxplot of	3	A, Catalys	G	C6	67	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	-
	93 C1 Modified Morter	Boxplot of C2 Unmodified Morter	3	C4 C4 C4	C5 Catalyst B	C6	Arsenic in Phoenix	Arsenic in Arizona	C9	C10	C11	C12	C13	C14	C15	C16	C17	-
1	93 C1 Modified Morter 16.85	Boxplot of c2 Unmodified Morter 16.62	3	C4 C4 91.50	C5 Catalyst B 89.19	C6	Arsenic in Phoenix 7	Arsenic in Arizona 48	C9	C10	C11	C12	CI3	C14	CIS	C16	C17	-
1	98 C1 Modified Morter 16.85 16.40	Boxplot of c2 Unmodified Morter 16.62 16.75	3	C4 C4 91.50 94.18	C5 Catalyst B 89.19 90.95	C6	Arsenic in Phoenix 7 7	Arsenic in Arizona 48 44	C9	C10	C11	C12	CI3	C14	C15	C16	C17	-
1 2 3	93 C1 Modified Morter 16.85	Boxplot of c2 Unmodified Morter 16.62	3	C4 C4 91.50	C5 Catalyst B 89.19	C6	Arsenic in Phoenix 7	Arsenic in Arizona 48 44 40	C9	C10	CII	C12	CI3	CI4	CIS	C16	C17	-
2	98 C1 Modified Morter 16.85 16.40 17.21	Boxplot of c2 Unmodified Morter 1662 16.75 17.37	3	C4 atalyst A 91.50 94.18 92.18	C5 Catalyst B 89.19 90.95 90.46	C6	Arsenic in Phoenix 7 25	Arsenic in Arizona 48 44 40 38	C9	C10	C11	C12	CI3	C14	C15	C16	C17	-
1 2 3 4 5	98 C1 Modified Morter 16.85 16.40 17.21 16.35	C2 Unmodified Morter 16.62 16.75 17.37 17.12	3	C4 91.50 94.18 92.18 95.39	C5 Catalyst B 89.19 90.95 90.46 93.21	C6	Arsenic in Phoenix 7 7 25 10	Arsenic in Arizona 48 44 40 38	C9	C10	C11	C12	CI3	C14	CIS	C16	C17	-
1 2 3 4 5	93 C1 Modified Morter 16.85 16.40 17.21 16.35 16.52 17.04	C2 Unmodified Morter 16.62 16.75 17.37 17.12 16.98	3	C4 91.50 94.18 95.39 91.79	C5 Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	Arsenic in Phoenix 7 7 25 10 15	Arsenic in Arizona 48 44 40 38 33	C9	C10	C11	C12	CI3	C14	C15	C16	C17	
1 2 3 4 5	93 C1 Modified Morter 16.85 16.40 17.21 16.35 16.52 17.04	C2 Unmodified Morter 16.62 16.75 17.37 17.12 16.98 ample T test.mwx	3	C4 91.50 94.18 95.39 91.79	C5 Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	Arsenic in Phoenix 7 7 25 10 15	Arsenic in Arizona 48 44 40 38 33 21	C9	C10	C11	C12	CI3		CIS	C16	C17	•
1 1 2 3 4 5 6 4 1	98 Ct Modified Morter 16.40 17.21 16.35 16.52 17.04 2.5 2000 Text	C2 Unmodified Morter 16.62 16.75 17.37 17.12 16.98 ample T test.mwx	3	C4 91.50 94.18 92.18 95.39 91.79 89.07	C5 Catalyst B 89.19 90.95 90.46 93.21 97.19		Arsenic in Phoenix 7 7 25 10 15 6	Arsenic in Arizona 48 44 40 38 33 21		C10	C11	C12				C16	C17	

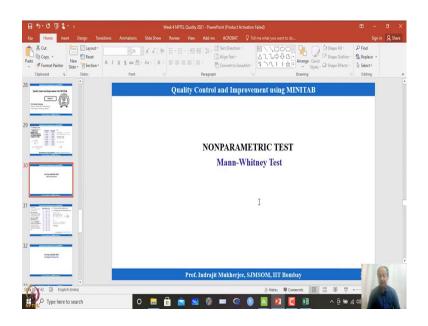
So, both sided test I am doing over here. So, in this case, I will give ok. And then box plot can also be seen over here box plot over here. And I click ok. What will happen is that I will get some values over here, and I will get a corresponding values over here. So, if I copy this one.

(Refer Slide Time: 14:53)

	5.4.	1.1		Book1 - Exc	el (Produc	Activation F	ailed)												
	Home		Page Layout			Review		ACROBAT	Format										A Share
aste	💑 Cut 🗈 Copy 🔹 🖋 Format Pa Sipboard	nter ^B		• 💁• A	• 53		1 B	Wrap Text Merge & Center	· 🕾 - %	* * *0 *0 nber *2	Conditional F Formatting - St	semat as 1 Table - St ples		sert Delete	Format	AutoSum Fill * Clear * Ec	Sort & F Filter - S		
Picture	e3 *	х	√ fe																
1	A		C D	E	F	G	н	1.1.1	J	K L	м	N	0	P	Q	R	s	T	U
				0						_				0					
														_					
-																			
					Te	ct								_					
					IC	SL													
				_	NI.					1.1			. 0						
)					IN.	ui ny	/ро	thesis	5		s:μ	μ2 =	- 0						
1														-					
:				0	Alt	tern	ativ	e hyp	othe	sis H	: µ	U: 7	ŧ 0	9					
1								~ `				'							
5					т-	Valu		DF P-	Value	2									
7					<u> </u>	valu		21.1	value	-		1							
3						0.2	-	14	0 700	·		8							
2						-0.2	5	14	0.72	9									
)																			
1									0										
9 0 1 2 3				0					0					~			1	0	10.00
1			0	_				_					-				_	100	
in	, si	eet1	۲								1							-	
Adi .	10														Ħ	(D) E] - [100	
	O Type	here to s	earch			0	1		M 🚳			. 5	1	×II		õ 🐿 🖉	100		

And then in that case what will happen is that I will I can paste this one over here. So, this is already done. So, we can just enhance this visibility for enhancing the visibility.

So, in this case, when we have done the two-sample t-test, what the value that we are getting is 0.729 is the p-value.


And that is more than what is what is recommended value of 0.05. So, I cannot reject the null hypothesis. So, in this case $\mu_1 = \mu_2$; that means when I am using catalyst A and catalyst B means are not differing much statistically basically ok. So, whichever catalyst you use the overall mean is remain same.

So, in this case, whatever improvement may be with a new catalyst that you have developed that is not giving you higher yield as compared to catalyst A. So, we can retain the catalyst A like that until unless we have enough evidence that this is effective, we will catalyst some new catalyst is effective, we will not go ahead and say that we will not make claims like that catalyst B is effective as compared to A.

So, that is this type of testing like a drug is effective or not like that, so with the original drug.

We do the testing and we calculate what is the effectiveness of the drug with some measures like that, and with a second drug which is the new drug that you have developed whether it is giving you better efficiency as compared to drug a like that that can be tested using this type of two-sample t-test like that ok. So, what is required when I am doing a two-sample t-test is that now all these assumptions needs to be satisfied over here. All these assumptions needs to be satisfied.

(Refer Slide Time: 16:17)

And, but if this assumption fails, one option is that conversion of the data set like what we have mentioned like that. We convert it to normality and then do the testing. And both the data set has to be converted. So, in that case, you have to keep in mind like that because to make a fair comparison between the 2 data set like that ok. So, and another option is that another option is that non-parametric testing.

So, I have a non-parametric option which is known as Mann-Whitney test in case you do not want to go about it because the assumption fails. So, I want to assure big. But this test are so robust I can assure you that even if some deviation happens small deviation to moderate deviation happens.

In that case, the conclusion will be more or less same with non-parametric like that. So, I will use a Mann-Whitney test which is provided by MINITAB and that is the recommended one when the assumption fails. And you do not want to go with the assumption. So, in that case, I will go directly to non-parametric testing over here.

(Refer Slide Time: 17:19)

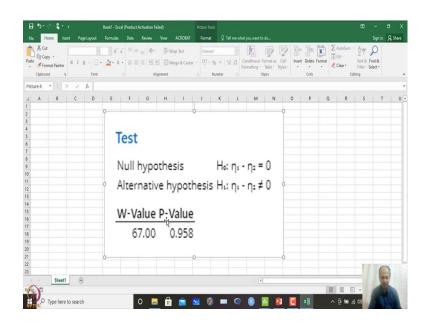
Cardyn A & 92 Cardyn B & 92 Cardyn		16.85 16.40 17.21	16.75 17.37		92.18	90.46		40										
Predices Augustics Mathematics Caralyne & B. 62 Time Seles Caralyne & B. 63 Time Seles Estimation for Di Reparametrics Caralyne & B. 62 Time Seles Estimation for Di Reparametrics Add 2.70% range Wilknown. Offference Nodes Provise Augustic Wilknown. Offference Nodes Non-Nobleger. Add 2.70% range Wilknown. Add Constant Wilknown. Add Constant Wilknown. Add Constant Wilknown. Add Constant Wilknown. Add Research Mynophelies Main Rel		16.85 16.40	16.75				1											
Predice Predice Main andre Predice Caralyne & B & S2 Times feries File			16.62															
Prediox Analysis Mathematic Caralyne B & 92 Time Series Béle Time Series Constructions Manale Witkeon Béle Constructions Constructions Manale Witkeon Constructions Constructions Constructions Manale Witkeon Constructions Bele Constructions Bele Constructions Bele Constructions Bele Constructions Bele Difference Constructions Constructions Bele Difference C						89.19	7											
Predictive Analysics Predictive Analysics Caralyn B 8 92 Time Sories Estimation for Di Adde Table 1 Sample Witcomen Difference Pooler 1 Sample Witcomen Out and the predictive Analysis Mano-Witchger T-Value Predictive Analysis				G					C9	C10	CII	C12	C13	C14	C15	C16	C17	
wo-Sample T-T Reliability/Survival Catalyst B	Catalyst A Catalyst B Estimati Differen -0. Test Null hypor Alternativ	A 8 92 B 8 92 tion for Di nce Pooler 0.48 othesis ve hypothesis e DF P-Val	$\label{eq:predictive AnalytiMultivariateTime SeriesTablesNonparametricsEquivalence TestPower and Semp2.70 (-3.37, 2.42)\label{eq:prediction} Het p_{0} - p_{0} \neq 0 \\ Het p_{0} - p_{0} \neq 0 \\ p_{0} \neq 0 $	s s v	, , , , , , , , , , , , , , , , , , ,	ample Sign ample Wikcoxon https://wiks od's Median Test dman is Test wise Averages									***			
	10 II II		Basic Statistics Regression ANOVA		1 1	# 🍢 🎚 # #i		4 🕅 l 🗗 🐻 🗗 🖞	4 四									
は、2019年間には、 Represion と同一年間にはない。 と同一年間にはない。	8		itat Graph View	Help	Assistant A												- 1	

(Refer Slide Time: 17:20)

N	finitab - Untitled																. e 6	
File	Edit Data Ca	Ic Stat Graph View	w Help	Assistant A	dditional Tools													
•		50 D H	1 0	O A		1210	1 1											
								2.59	W 27. 59									
		LYMES					CONTA	WORLD CO D	1 -9 03									
	: 💇	TTAK BEI		2010	- 10 K. X													
Tw	o-Sample T-Test an	nd Cl: Y X																
Ħ	2-SAMPLE T TEST.MV	NX.																
Tv	vo-Sample T	-Test and CI: Ca	atalyst	A, Cataly	st B													٠
			1.1				Mann-Whitney		,	<								î.
	Catalyst B 8	92.73 2.98	1.1					First Sample: Cat	alyst A'									
								Second Sample: Cat	aluet R'									
	Estimation for							contraction of the	.,									
		95% CI fo						Confidence level:	95.0									
	-0.48	2.70 (-3.37, 2.4)						compense rero.	30.0									
	-9040	2.70 (5.57, 2.4																
	Test		*					Alternative: not eq.	•									
	Null hypothesis	$H_{e1}\mu_{e}\cdot\mu_{b}=0$																
		esis Haµv+µv≢0					Select											
	T-Value DF P		-				Help	OK	Cancel	1								¥
	CI	C2	C3	C4	C5	C6				C10	C11	C12	C13	C14	C15	C16	C17	-
		Unmodified Morter		Catalyst A				Arsenic in Afizona										
	16.85	16.62		91.50	89.19			7 48										
	16.40			94.18	90.95													
	17.21	17.37		92.18	90.46		2:											
1	16.35	17.12		95.39	93.21		1											
5	16.52	16.98		91.79	97.19		1:								-	11	3	
4	17.04	16.87 ample T test.mwx		89.07	97.04			5 21								111	-	
j								1							_		Sec.	
4	2-sample T test	smwx											•			100	100	
K	O Type he	re to search			0	1	1 💼 🚮	() = (die	0			^ @ 9	0 6 40			
NP	TEL															1	1	

So, Mann-Whitney test I will do. And in this case, median again, the median whenever I am going for non-parametric median value is recommended as compared to mean over here. So, first sample is in catalyst A and second sample is catalyst B. Let us assume that our distribution fails, assumption fails.

(Refer Slide Time: 17:39)

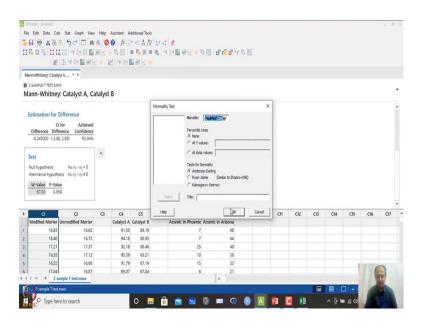

																	- 6	
ile	Edit Data Cale	: Stat Graph View	Help Assis	istant Ad	ditional Tools													
6	1 🕸 🗶 🖻	500 H	400	fx B	-2 A B	21	2											
								d" (" d" "	4日									
		LYMERE																
Man	n-Whitney: Cataly																	
	SAMPLE T TEST MW																	
-		: Catalyst A, Ca	talyst B															,
	and minute,	· cutury st ri, ct	unyse o															
M	lethod																	
0.0	a median of Cataly	nt A																
	median of Cataly																	
	lifference: ŋɨ - ŋɨ																	
Di		istics																
Di	lifference: ŋɨ - ŋɨ																	
	lifference: ŋ, - ŋ, Hescriptive Stat Sample N M Catalyst A 8	Median 91.985		e e														
	lifference: ŋi - ŋi lescriptive Stat Sample N M	Median 91.985	D	à														
	Infference: ηι - ηι Nescriptive Stat Sample N M Catalyst A 8 Catalyst B 8	Median 91.985 91.910	L.	à														
	lifference: ŋ, - ŋ, Hescriptive Stat Sample N M Catalyst A 8	Median 91.985 91.910	D ₂	\$														
	Infference: ηι - ηι Nescriptive Stat Sample N M Catalyst A 8 Catalyst B 8	Median 91.985 91.910	G	C4	G	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
	Nifference: nj nj Nescriptive Statt Sample N M Catalyst A 8 Catalyst B 8 stimation for [C1 Modified Morter	Aedian 91.985 91.910 Difference C2 Unmodified Morter	G	C4 atalyst A	Catalyst B	C6	C7 Arsenic in Phoenix Arse	enic in Arizona	C9	C10	C11	C12	C13	C14	C15	C16	C17	
	Nifference: nj nj Nescriptive Statt Sample N M Catalyst A 8 Catalyst B 8 stimation for [C1 Modified Morter 16.85	Median 91,985 91,910 Difference C2 Unmodified Morter 16.62	G	C4 atalyst A 91.50	Catalyst B 89.19	C6	Arsenic in Phoenix Arse	enic in Arizona 48	C9	C10	C11	C12	C13	C14	C15	C16	C17	
	Infference: ni - ni Inference: ni Inference: ni Inference: ni - ni Inference: ni -	Median 91,985 91,910 Difference C2 Unmodified Morter 16,62 16,75	G	C4 atalyst A 91.50 94.18	Catalyst B 89.19 90.95	C6	Arsenic in Phoenix Arse 7 7	enic in Arizona 48 44	C9	C10	C11	C12	C13	C14	CIS	C16	C17	
	Hifference: ry - ry Hescriptive Start Sample N h Cereilyst A 8 Catalyst B 8 stimation for [Ct Modified Morter 16.85 16.40 17.21	Aedian 91.985 91.910 Difference C2 Unmodified Morter 16.62 16.75 17.37	G	C4 atalyst A 91.50 94.18 92.18	Catalyst B 89.19 90.95 90.46	C6	Arsenic in Phoenix Arse 7 7 25	enic in Arizona 48 44 40	C9	C10	C11	C12	C13	CI4	C15	C16	C17	
	Hifference: r) - r) Lescriptive Stat Sample N M Cetalyst A 8 Cetalyst A 8 stimation for C C1 Modified Morter 16.85 16.40 17.21 16.35	Aedian 91.985 91.910 Difference Unmodified Morter 16.62 16.75 17.37 17.12	G	C4 atalyst A 91.50 94.18 92.18 95.39	Catalyst B 89.19 90.95 90.46 93.21	C6	Arsenic in Phoenix Arse 7 25 10	enic in Arizona 48 44 40 38	C9	C10	C11	C12	C13	C14	C15	C16	C17	
Di Di C C C C C C C C C C C C C C C C C	Hifference: ry - ry Hescriptive Start Sample N h Cereilyst A 8 Catalyst B 8 stimation for [Ct Modified Morter 16.85 16.40 17.21	Aedian 91.985 91.910 Difference C2 Unmodified Morter 16.62 16.75 17.37	G	C4 atalyst A 91.50 94.18 92.18	Catalyst B 89.19 90.95 90.46	C6	Arsenic in Phoenix Arse 7 7 25	enic in Arizona 48 44 40	C9	C10	C11	C12	C13	C14	CIS	C16	C17	

(Refer Slide Time: 17:40)

	Edit Data Ca	lc Stat Graph View	Help	Assistant A	dditional Tools												- 6	
		6 50 DA				121	1.											
									v 16. 59									
1		LYNER					C. P.C. A.	A DE LO CO D	1.24.03									
	: 🖭		() X ()	217121														
M	ann-Whitney: Catal	lyst A, Y X																
8	2-SAMPLE T TEST.MI	WX																
M	ann-Whitney	y: Catalyst A, Ca	talyst	В														
			•															
	Estimation for	Difference																
	c	a for Achieved																
	Difference Diff																	
	-0.345000 (-3.6	58, 2.99) 95.94%																
	Test																	
	Null hypothesis	$H_{el} : n_e + n_b = 0$																
	Null hypothesis Alternative hypoth	Han, -n, =0 Han, -n, ≠0	1															
	Alternative hypoth	nesis H _a : η₁ - η₂ ≠ 0	l	2														
		nesis Ha:η₁-η₂≠0 Iue	l	2														
	Alternative hypoth W-Value P-Val	nesis Ha:η₁-η₂≠0 Iue	l	2														
	Alternative hypoth W-Value P-Val	nesis Ha:η₁-η₂≠0 Iue	3	c4	65	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
	Alternative hypoth W-Value P-Val 67.00 0.9 C1	nesis H _i an ₀ - η₂≢0 Iue IS8				C6	C7 Arsenic in Phoenix		C 9	C10	C11	C12	CI3	C14	C15	C16	C17	
	Alternative hypoth W-Value P-Val 67.00 0.9 C1	nesis H _i : η ₂ · η ₂ # 0 lue 258 C2 Unmodified Morter		C4	Catalyst B	C6		Arsenic in Arizona	C 9	C10	C11	C12	CI3	CM	CIS	C16	C17	
	Alternative hypoth W-Value P-Val 67.00 0.9 C1 Modified Morter	resis Harns-ns #0 lue 558 C2 Unmodified Morter 16.62		C4 Catalyst A	Catalyst B 89.19	C6	Arsenic in Phoenix	Arsenic in Arizona 48	C9	C10	C11	C12	CI3	C14	C15	C16	C17	
	Alternative hypoth W-Value P-Val 67.00 0.9 C1 Modified Morter 16.85	esis Harn, - n, # 0 lue 558 C2 Unmodified Morter 16.62 16.75		C4 Catalyst A 91.50	Catalyst B 89.19 90.95	C6	Arsenic in Phoenix 7	Arsenic in Arizona 48 44	C9	C10	C11	C12	CI3	C14	C15	C16	C17	
	Alternative hypoth W-Value P-Val 67.00 0.9 C1 Modified Morter 16.85 16.40	C2 Unmodified Morter 16.62 16.75 17.37		C4 Catalyst A 91.50 94.18	Catalyst B 89.19 90.95 90.46	C6	Arsenic in Phoenix 7 7	Arsenic in Arizona 48 44 40	C9	C10	C11	C12	CI3	C14	CIS	C16	C17	
	Alternative hypoth W-Value P-Val 67.00 0.9 C1 Modified Morter 16.85 16.40 17.21 17.21	tesis Harp-rp.≢0 tesis Harp-rp.≢0 tesis te		C4 Catalyst A 91.50 94.18 92.18	Catalyst B 89.19 90.95 90.46 93.21	C6	Arsenic in Phoenix 7 25	Arsenic in Arizona 48 44 40 38	C9	C10	C11	C12	CI3	C14	CIS	C16	C17	
	Alternative hypoth W-Value P-Val 67.00 0.9 C1 Modified Morter 16.85 16.40 17.21 16.35 16.52 17.04	c2 Unmodified Morter 16.62 16.75 17.37 17.12 16.68		C4 Catalyst A 91.50 94.18 92.18 95.39	Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	Arsenic in Phoenix 7 7 25 10	Arsenic in Arizona 48 44 40 38 33 21	C9	C10	C11	C12	CI3	C14	CIS	C16	C17	
	Alternative hypoth W-Value P-Val 67.00 0.9 C1 Modified Morter 16.85 16.40 17.21 16.35 16.52 17.04	esis Hirp+rp≠0 tes C2 Unmodified Morter 16.62 16.75 17.37 17.12 16.98		C4 Catalyst A 91.50 94.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	Arsenic in Phoenix 7 7 25 10 15	Arsenic in Arizona 48 44 40 38 33	C9	C10	C11	C12	CI3	C14	CIS	C16	C17	
	Alternative hypoth W-Value P-Val 67.00 0.9 C1 Modified Morter 16.85 16.40 17.21 16.35 16.52 17.04 Р н + 2.46	C2 Unmodified Morter 16.62 16.75 17.37 17.12 16.68 16.87 16.87 16.87		C4 Catalyst A 91.50 94.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	Arsenic in Phoenix 7 7 25 10 15	Arsenic in Arizona 48 44 40 38 33 21	C9	C10	C11	C12				C16	C17	
	Alternative hypoth W-Value P-Val 67.00 0.9 C1 Modified Morter 16.85 16.40 17.21 16.35 16.52 17.44 2.4 2.4 2.4 2.4	C2 Unmodified Morter 16.62 16.75 17.37 17.12 16.68 16.87 16.87 16.87		C4 Catalyst A 91.50 94.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19		Arsenic in Phoenix 7 25 10 15 6	Arsenic in Arizona 48 44 40 38 33 21		C10	C11	C12				C16	CIT	

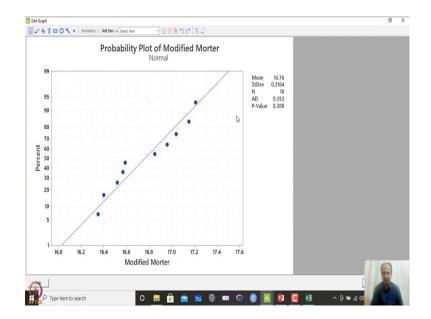
And I am taking not equals to condition over here. So, I am doing and if I click ok over here. So, what will happen is that you will get a W statistics over here and you will get a value of p-value over here, so that will be reported like that. Here also p-value is reported. So, here also we will get some p-values like that ok.

(Refer Slide Time: 17:50)

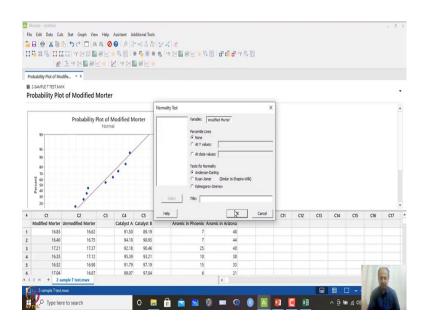

W is the statistic that is Mann-Whitney statistics that we are getting over here. And this p-value indicates that p is more than 0.05. So, indicates that medians are not different over here. So, these are the difference of medians like that; medians are not different over here.

So, basically conclusion is that both the drugs are equally effective like that. There is no one cannot give higher yield as compared to the other one. So, percentage yield improvement is not much significant statistically significant what we have done. So, catalyst A yield is same as in population is same as catalyst B.

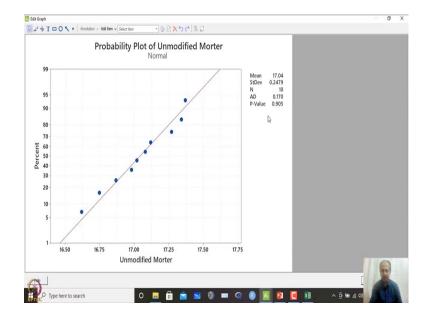
So, with one sample information, let us say over here what we have. So, we have 1, 2, 3, 4, 5, 6, 7, 8 observations like that for a given catalyst, and another eight observations on this side. So, at the degree of freedom, you see 14. So, $n_1 + n_2 - 2$ that will be 14, so that degree of freedom is used over here; and the corresponding p-value says that there is no difference between catalyst A and catalyst B like that ok.


So, we can have different examples over here like this is one example taken again from Montgomery's Design of Experiment Book, where some cement formulation is checked. So, one is modified one and one is unmodified. Unmodified is the original formulation; modifier is the new formulation of cement that is there. And we want to check and do the two-sample t-test and want to confirm that whether they are different or whether they are same like that.

So, what we will do is that again we will do the basic statistics testing over here. So, I want to check two-sided test let us say. So, in this case, what I will do is that first I will check the normality. So, I will check for modified morter, is it normal. So, and the data set says that when I do the first testing over here, P-value is 0.388.



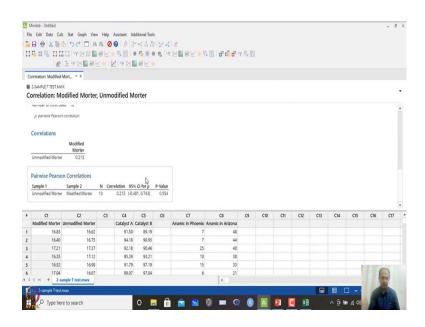
(Refer Slide Time: 19:28)


(Refer Slide Time: 19:32)

(Refer Slide Time: 19:45)

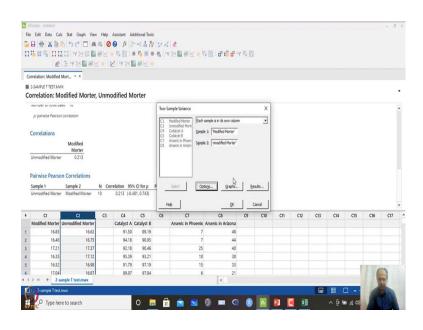
(Refer Slide Time: 19:46)

So, it is normal. So, second data set what I will do is that second we will do the same normality testing. And instead of modified, I will use unmodified over here and check the normality measures over here. And what I am observing over here p-value is 0.9 approximately that also indicates that unmodified morter data that we have is also in population will be normal. And then what we can do is that so first assumption is constant.


(Refer Slide Time: 20:06)

(Refer Slide Time: 20:10)

		Stat Graph View															
9 👲	X D 6	50 . 4	14 0	O A	一個人都	21 2	2										
i II 9		G Y MO	8k	- 時間 (H To III #	(光)	EBK*	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y & E								
		LYMERK															
ad ation:	Modified M																
	T TEST MWX	ort															
		dified Morter,	Unm	dified M	ortor												
relati		unieu worter,	Uning	Junea w	orter												
	Matr	ix Plot of Modifi	ed Mo	rter, Unmo in Correlation	dified Mo	rter											
17.4		1010 6110		in contractor			_										
					•		•										
		•															
17.2																	
orte	•																
2					N	•											
					18												
diffed																	
nmodified					•												
Unmodified					•												
Cumodified	•	2	C3	C4	cs	C6	G	C8	C9	C10	C11	C12	C13	C14	C15	C16	с
c	Morter U	nmodified Morter	СЗ	Catalyst A	Catalyst B	C6	C7 Arsenic in Phoenix	Arsenic in Arizona	C9	C10	C11	C12	C13	C14	C15	C16	c
c	Morter U	nmodified Morter 16.62	C3	Catalyst A 91.50	Catalyst B 89.19	C6		Arsenic in Arizona 48	C9	C10	C11	C12	C13	C14	C15	C16	c
c	I Morter U 16.85 16.40	nmodified Morter 16.62 16.75	в	Catalyst A 91.50 94.18	Catalyst B 89.19 90.95	C6	Arsenic in Phoenix 7 7	Arsenic in Arizona 48 44	C9	C10	C11	C12	C13	C14	C15	C16	c
c	16.85 16.40 17.21	nmodified Morter 16.62 16.75 17.37	в	Catalyst A 91.50 94.18 92.18	Catalyst B 89.19 90.95 90.46	C6	Arsenic in Phoenix 7 7 25	Arsenic in Arizona 48 44 40	C9	C10	C11	C12	C13	C14	C15	C16	c
c	Morter U 16.85 16.40 17.21 16.35	nmodified Morter 16.62 16.75 17.37 17.12	G	Catalyst A 91.50 94.18 92.18 95.39	Catalyst B 89.19 90.95 90.46 93.21	C 6	Arsenic in Phoenix 7 7 25 10	Arsenic in Arizona 48 44 40 38	C9	C10	C11	C12	CI3	C14	C15	C16	c
c	I Morter U 16.85 16.40 17.21 16.35 16.52	nmodified Morter 16.62 16.75 17.37 17.12 16.98	G	Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	Arsenic in Phoenix 7 25 10 15	Arsenic in Arizona 48 44 40 38 33	C9	C10	C11	C12	C13	C14	C15	C16	c
C	Morter U 16.85 16.40 17.21 16.35 16.52 17.04	nmodified Morter 16.62 16.75 17.37 17.12 16.98 16.87	G	Catalyst A 91.50 94.18 92.18 95.39	Catalyst B 89.19 90.95 90.46 93.21	C6	Arsenic in Phoenix 7 7 25 10	Arsenic in Arizona 48 44 40 38	C9	C10	C11	C12	CI3	CI4	C15	C16	c
Modified	Morter U 16.85 16.40 17.21 16.35 16.52 17.04	nmodified Morter 16.62 16.75 17.37 17.12 16.98 16.87 nple T test.mwx	З	Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	Arsenic in Phoenix 7 25 10 15	Arsenic in Arizona 48 44 40 38 33	C9	C10	C11	C12	C13		C15	C16	c


(Refer Slide Time: 20:11)

Then second assumption what we can do is that basic statistics in that case correlation we can check. So, modified one and unmodified one. So, I will click ok over here. And I will go the p-value that is coming over here. And the p-value observed is 0.554. So, I am not converting I am not taking the, so this also indicates that modified and unmodified the correlation is about 0.2. So, I told you that thumb rule is that approximately more than 0.7 will be significantly different significant correlation exist like that.

But we have a p-value testing for that. So, we have a p-value hypothesis testing measures over here. So, that will confirm that there is no correlation between the two data set that we are having modified and unmodified. They are independent data observation over here ok.

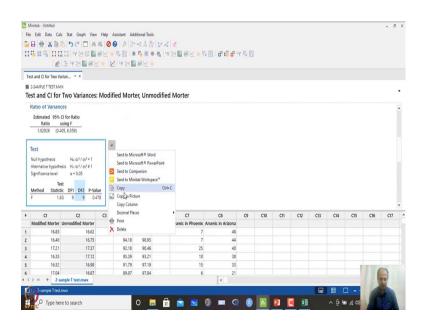
(Refer Slide Time: 20:53)

(Refer Slide Time: 20:58)

File		Ic Stat Graph View Port C All C C All All All All All All All All All	A C	● fx : ★ 站 图		120		:**		Y 鸟 匠									2
_				20121	B C														
B 2.5	elation: Modified	NX																	
	relation: M	lodified Morter	, Unm	odified N	lorter		and the starter	-			×								
	o: pairwise Pearso	n correlation				_	Sample Variance												î
						Tw	o-Sample Variance	: Optio	ins		×I								
Ur Pa Sa	imple 1	Modified Morter r 0.213 on Correlations Sample 2 r Modified Morter	N Co 10	0.213 (-0.		Con Hite Hite P		95.0 1 Ratio		Ca	ncel								
+	c	<i>c</i> 2	G	C4	CS	C6	C7	_	C8	0	C10	C11	C12	C13	C14	C15	C16	C17	•
		Unmodified Morter	G		Catalyst B	Co		oenix	Arsenic in Arizona	Ca	CIU	CII	CIZ	CIS	CIA	CID	CID	Cir	
1	16.85	16.62		91.50				7	48										
2	16.40	16.75		94.18	90.95			7	44										
3	17.21	17.37		92.18	90.46			25	40										
4	16.35	17.12		95.39	93.21			10	38										
5	16.52	16.98		91.79	97.19			15	33										
6	17.04			89.07	97.04			6	21								1		
H d D	_	ample T test.mwx							4								1.6	H	
4	2-sample T test	:mwx														□		No.	
NPT	O Type he	ere to search			0		1	4	🗿 💻 🍕	8	1		X	8	∧ ĝ !	a d i	1		

So, the final testing that we have to do is that whether they are same, whether the variance is same or not. So, I do a two variance test. And I will go for this 2 variance test over here. So, one is modified; one is unmodified.

So, I will go to options over here. 95 percent confidence level we will take over here. And this is sample 1 variance and sample 2 variance. So, I am doing two-sided test, and I will click this option because normally assumptions we are making.


(Refer Slide Time: 21:14)

	nitab - Untitled																-	Ø
		lc Stat Graph View																
		6 5¢ □ #																
2		1 🛛 🖓 🖂 🖉 📗	8k	時間	非心派者	もい	Y 🖂 🖩 🗟 🗠 🛪 🌣	🗄 🗗 🐻 🗗 🖓	Y鸟图									
		IL Y ME BE	1 * 1	2 4Y 1×1	BK*													
	t and CI for Two V	arian Y X																
	SAMPLE T TEST MI																	
		Two Variances	Mad	God Man	ten Umm	e diffe	d Mantau											
2	st and CI for	Two variances	; woa	med wor	ter, Unm	oame	a Morter											
1																		
	Aethod		N															
		ion of Modified Morter																
	h: standard deviat Ratio: di/di	ion of Unmodified Mor	ter															
		d. This method is accur	na las an	const data and														
	Descriptive Sta Variable Modified Morter	N StDev Vari		% CI for o ² 047, 0.334)														
	/ariable	N StDev Vari 10 0.316 (r 10 0.248 (0.100 (0.															
	Ariable Modified Morter Inmodified Morte Intio of Varian C1	N StDev Vari 10 0.316 (10 0.248 (ref C2	0.100 (0.	047, 0.334) 029, 0.205) C4	CS	Cő	a	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	7
	Aariable Andified Morter Inmodified Morter Latio of Varian C1 Modified Morter	N StDev Vari 10 0.316 0 r 10 0.248 0	0.100 (0. 0.061 (0.	047, 0.334) 029, 0.205) C4 Catalyst A	Catalyst B	C6	Arsenic in Phoenix A	Arsenic in Arizona	C9	C10	C11	C12	C13	СМ	C15	C16	C17	7
	Aniable Andified Morter Jamodified Morter C1 Modified Morter 16.85	N StDev Vari 10 0.316 (10 0.248 (cor C2 Unmodified Morter 16.62	0.100 (0. 0.061 (0.	047, 0.334) 029, 0.205) C4 Catalyst A 91.50	Catalyst B 89.19	C6	Arsenic in Phoenix A	Arsenic in Arizona 48	C9	C10	C11	C12	C13	C14	C15	C16	C17	7
	Aariable Modified Morter Inmodified Morte Ct Modified Morter 16.85 16.40	N StDev Vari 10 0.316 (r 10 0.248 (cos C2 Unmodified Morter 16.62 16.75	0.100 (0. 0.061 (0.	C4 C4 Catalyst A 91.50 94.18	Catalyst B 89.19 90.95	C6	Arsenic in Phoenix A 7 7	Arsenic in Arizona 48 44	C9	C10	C11	C12	C13	C14	C15	C16	C17	7
	Aariable Modified Morter Unmodified Morter C1 Modified Morter 16.85 16.40 17.21	N StDev Variation 10 0.316 () r 10 0.248 ()	0.100 (0. 0.061 (0.	C4 C4 Catalyst A 91.50 92.18	Catalyst B 89.19 90.95 90.46	C6	Arsenic in Phoenix A 7 7 25	Arsenic in Arizona 48 44 40	C9	C10	C11	C12	C13	C14	C15	C16	C17	7
	Ariable Modified Morter Inmodified Morter Ct Modified Morter 16.85 16.40 17.21 16.35	N StDev Variation 10 0.316 0 r 10 0.248 0	0.100 (0. 0.061 (0.	047, 0.334) 029, 0.205) C4 Catalyst A 91.50 94.18 92.18 95.39	Catalyst B 89.19 90.95 90.46 93.21	C6	Arsenic in Phoenix A 7 7 25 10	Arsenic in Arizona 48 44 40 38	C9	C10	C11	C12	C13	C14	C15	C16	C17	1
	Ariable Modified Morter Inmodified Morter C1 Modified Morter 16.85 16.40 17.21 16.35 16.52	N StDev Vari 10 0.316 (r 10 0.248 (Unmodified Morter 16.62 16.75 17.37 17.12 16.98	0.100 (0. 0.061 (0.	047, 0.334) 029, 0.205) C4 Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	Arsenic in Phoenix / 7 25 10 15	Arsenic in Arizona 48 44 40 38 33	C9	C10	C11	C12	C13	C14	C15	C16	CIT	1
	Ariable Andified Morter Inmodified Morter C1 Modified Morter 16.85 16.40 17.21 16.35 16.52 17.04	N StDev Vari 10 0.316 (10 0.248 (10 0	0.100 (0. 0.061 (0.	047, 0.334) 029, 0.205) C4 Catalyst A 91.50 94.18 92.18 95.39	Catalyst B 89.19 90.95 90.46 93.21	C6	Arsenic in Phoenix A 7 7 25 10	Arsenic in Arizona 48 44 40 38 33 21	C9	C10	C11	C12	C13	C14	CIS	C16	CIT	1
	Аrtable Acdified Morter Inmodified Morter 16.85 16.40 17.21 16.53 16.52 17.04 р. н. + 2-0	N StDev Vari 10 0.316 (r 10 0.248 (C2 Unmodified Morter 16.62 17.37 17.12 16.95 16.87 ample T test.mvx	0.100 (0. 0.061 (0.	047, 0.334) 029, 0.205) C4 Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	Arsenic in Phoenix / 7 25 10 15	Arsenic in Arizona 48 44 40 38 33	C9	C10	C11	C12				C16	СПЛ	7
-	Ariable Andified Morter Inmodified Morter C1 Modified Morter 16.85 16.40 17.21 16.35 16.52 17.04	N StDev Vari 10 0.316 (r 10 0.248 (C2 Unmodified Morter 16.62 17.37 17.12 16.95 16.87 ample T test.mvx	0.100 (0. 0.061 (0.	047, 0.334) 029, 0.205) C4 Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	Arsenic in Phoenix / 7 25 10 15	Arsenic in Arizona 48 44 40 38 33 21	C9	C10	C11	C12	C13		CIS	C16	CIT	

(Refer Slide Time: 21:16)

Mir	vitab - Untitled																- 8	X
		lc Stat Graph View																
6	- 😔 🕹 🖻	50 D #	40	fx a	一日本語	21 4	2											
15		16 Y > 0 1	8k	* 時間 !-	ŧ 7₀ Ⅲ ŧ	尚 4		4 🗄 l 🗗 🗗 🗗 🤟	Y构图									
		LYNE BE		2 4Y 2	BK.													
Test	and CI for Two V	(arian × X																
	SAMPLE T TEST.MI																	
-		r Two Variances	Mod	ified Mor	ter Unm	odifie	d Morter											٠
		Tiwo variances		med wor	ter, onin	oume	u worter											
F		.63 9 9 0.4																٨
	G																	
	Test and C	Line Two Verlages		the d Marste	. Unmad	CodM												
	Test and C	I for Two Variance Rati		Ratio # 1	r, Unmodi	tied M	orter											
		95% CI for a ² (Modified I	Moster) (a ² /Hemodified	Moster)													
		STACION O (MODILICA)	invite//	o (onnounco	mound)		i-Test											
					_		fue 0.478											
	0	1 2	i i	1	i													
		95% Chi-	-square C	Is for σ^2														
	Modified Norter-				_													
		0																*
4 N	C1 Andified Morter	Unmodified Morter	G	C4 Catalyst A	C5 Catabet B	C6	C7 Arsenic in Phoenix	C8 Arsenic in Arizona	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1	16.85	the second s		91.50	89.19		7	48										
2	16.40			94.18	90.95		7	44										
3	17.21	17.37		92.18	90.46		25	40										
4	16.35	17.12		95.39	93.21		10	38										
5	16.52	16.98		91.79	97.19		15	33										
6	17.04			89.07	97.04		6	21								111		
4.1	н + 2-	sample T test.mwx						4								144	3	
4	2-sample T test	Lmwx											•	#			12 mar	
Y.	O Tune he	ere to search			0		A 34	() G			51	i xi		A 6 9	0 1 40	1	1.5	
NPT	EL. Type ne	are to search			•			• - •			e 1				- na 410	1	TO A	

(Refer Slide Time: 21:20)

(Refer Slide Time: 21:27)

Home Insert	Page Layout Formulas	Data Review View ACROBA A [*] = = ≫ IP Wrap Text • = = IP Wrap Text IP Wrap Text • = = IP Wrap Text IP Wrap Text • = = IP Wrap Text IP Wrap Text • = = IP Wrap Text IP Wrap Text	General er - 129 - 96 + 1%	0 Conditional Format as C Formatting - Table - Sty	lel inset	Delete Format	AutoSum * A Fill * Sort & Clear * Filter * Editing	Find &	Share
cture 5 × i ×	√ <i>f</i> e								
A B		Test Null hypothesi Alternativę _t hyj Significance let	oothesis H /el α est	ι: σι² / σ₂² ≠ 1 = 0.05	0		R S	T	U
		-		9 0.478				0	

And we have also cross check that one. So, I will click ok. And then I will click ok over here. So, what will happen is that I will get a variance test over here, and F test indicates that there is no difference. So, F test if I can take this one, and I take it to excel. So, the values that we are getting over here is F test for the modified and unmodified cement, and that means, variance testing that we are doing for the two data set. So, p-value is 0.478. And that indicates that basically the variance is same or the ratio of variance is close to 1, and that is not different from one like that. So, that can be confirmed from here. And so we can go, so every check is done over here. So, first test, second test and third is satisfactory.

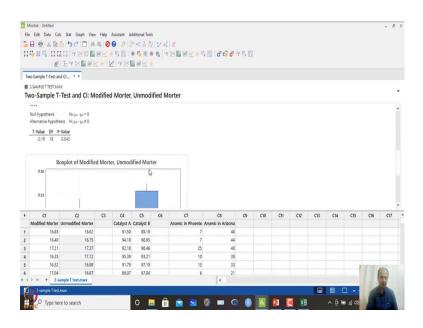
(Refer Slide Time: 21:57)

Te	st and CI for Two V	≟ Y ⊠ ∎ @ b arian × X	4 0 8 K (* 1	Ø /A 3 ▶ % № + ⊻ 4 ⊵		the la	(⊠∎ 8 ∀ ★\$)	8 d a ca d a v	Y 🏷 🛅									•
	Ratio of Varian	ces				Two-S	ample t for the Mean			x								٨
		CI for Ratio using F 405, 6.559)				C2 C4 C5	Unmodified Morter Catalyst A Catalyst B Sample 1:	ple is in its own colur Modified Morter	n	•								
	Test Null hypothesis Alternative hypoth Significance level Te Method Statis F 1/	tic DF1 DF2 P-Val	ue	*		C3	Select	nmodified Horter	_	raphs Cancel								Ŧ
+	CI	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
	Modified Morter 16.85	Unmodified Morter 16.62		Catalyst A 91.50	89.19		Arsenic in Phoenix Ars	senic in Arizona 48										
1	16.40	16.75		94.18	90.95		7	40										
3	17.21	17.37		92.18	90.46		25	40										
4	16.35	17.12		95.39	93.21		10	38										
5	16.52	16.98		91.79	97.19		15	33										
6	17.04	16.87		89.07	97.04		6	21								16	1	
14 . 4	DH + 2-5	ample T test.mwx						4								1.1.1	5	

(Refer Slide Time: 22:04)

-		Stat Graph View Stat Graph View State of the state State of the state Stateoof the state State of the state State of th	4 00 8 K * 1		一日月日 日本日日	2/4 根 Y) 🗄 i 🗗 🐻 d ^a -	Y ¥\$ 13									×
	2-SAMPLE TTEST.MW	× Two Variances:	Modified	d Mort	er Unm	odified	Morter											٠
		$\begin{array}{c} \text{(I for Ratio} \\ \text{ssing F} \\ \text{(05, 6.559)} \\ \\ \\text{(05, 6.559)} \\ \\ \ \\\text{(05, 6.559)} \\ \\ \ \\\text{(05, 6.559)} \\ \\ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\$	100			C1 Two C2 Diffe C3 Conf C3 Conf the Alter Q A	ple t for the Mean -Sample t: Options rence = (sample 1 mean idence level: measure level: ssume goual variances Help		Cano									*
4	CI	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	P
		Unmodified Morter	Cal		Catalyst B	1	Arsenic in Phoenix											
1	16.85	16.62		91.50 94.18	89.19 90.95		1	48										
2	16.40	16.75		94.18	90.95		25	44										
4	16.35	17.12		95.39	93.21		10	38										
5	16.52	16.98		91.79	97.19		15	30										
6	17.04	16.87		89.07	97.04		6	21								6	3	
A Manual A	D H + 2-sa 2-sample Ttest.r	mple T test.mwx			0			(R		1	= xB			 • @ 40		K	

Then what we can do is that we go to basic statistics to sample t-test, and then one want to check whether modified cement is different from unmodified one. So, we can also do one-sided test like that. So, if I change the condition we can do which is higher than which one. So, that if it is different that can also be checked by the results itself. So, I, if I take equals to condition also we can do that so if they are significantly different like that.


(Refer Slide Time: 22:18)

Unmodified Morter	4 H	Y ⊠ 8 K ★ 4	₩ •Y	• ∰ # 1 	8 * * *	¥ ⊠ I #	**** 2 '**	* 12 * 12	Modifi	Y N R	3 □ Y ≥ ± Y ≥ nd C:_ Y × / -Test and C	Sample T-Test and AMPLE T TEST AWAY -Sample T-Test AWAY -Sample T-Test AWAY -Sample T-Test AWAY	Two-
Unmodified Morter	4 11 1			8 K *	KESK	-Y ≥ ∎	14 PA	* 12	Modifi	Y ≥ ■ 8 k × × and CI: Me	L Y ≥ nd C: Y × •Test and C	Sample T-Test and AMPLE T TEST MWX -Sample T-T ethod	Two-
C3 C6 C7 C8 C9 C10 C11 C12 C13 C4 C15 C46 C17 Catalyst B Arsenic in Phoenic Arsenic in Arizona		forter	ied Mo	modifi	rter, Unmo	Aorter, U	ed Mort	dified N	r	and CI: Me	-Test and C	AMPLET TEST MWX	1 2-5 Two
C3 C6 C7 C8 C9 C10 C11 C2 C13 C14 C15 C16 C17 Catalyst 8 Arsenic in Prilonia		forter	ied Mo	modifi	rter, Unmo	Aorter, U	ed Mort	dified N	,	and CI: Me	-Test and C	AMPLET TEST MWX	1 2-5 Two
C3 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 Catalyst B Arsenic in Prilonic Arsenic in Automa		lorter	ied Mo	modifi	rter, Unmo	Aorter, U	ed Mort	dified N	,		-Test and G	-Sample T-T	wo
C3 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 Catalyst 8 Arsenic in Phoenic Arsenic In P									,			ethod	
C5 C6 C7 C6 C9 C10 C11 C12 C13 C14 C15 C16 C17 C13/byt 8 Arsenic in Phoenic Arsenic in Atlona 01 01 C12 C13 C14 C15 C16 C17										diffed Marrie			M
C5 C6 C7 C6 C9 C10 C11 C12 C13 C14 C15 C16 C17 C13/byt 8 Arsenic in Phoenic Arsenic in Atlona 01 01 C12 C13 C14 C15 C16 C17										different Manager			
C5 C6 C7 C6 C9 C10 C11 C12 C13 C14 C15 C16 C17 C13/byt 8 Arsenic in Phoenic Arsenic in Atlona 01 01 C12 C13 C14 C15 C16 C17												population mean	U.
C5 C6 C7 C8 C9 C10 C11 C22 C13 C44 C15 C16 C17 C13/byt B Arsenic in Phoenic Arsenic in Automa 01 01 02 01 02 03 04 01									rter			population mean fference: µi - µi	μ
C5 C6 C7 C8 C9 C10 C11 C22 C13 C44 C15 C16 C17 C13/byt B Arsenic in Phoenic Arsenic in Automa 01 01 02 01 02 03 04 01													
C5 C6 C7 C6 C9 C10 C11 C12 C13 C14 C15 C16 C17 C13/byt 8 Arsenic in Phoenic Arsenic in Atlona 01 01 C12 C13 C14 C15 C16 C17									iysis.	ed for this analysi	e assumed for thi	Equal variances are a	1
C5 C6 C7 C8 C9 C10 C11 C92 C13 C14 C15 C16 C17 C13/byt 8 Arsenic in Phoenic Arsenic in Artiona C10 C11 C12 C13 C14 C15 C16 C17													
C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C13/byt 8 Arsenic in Phoenic Arsenic in Artiona C13 C14 C15 C16 C17				N							tistics	escriptive Statis	D
Catalyst B Arsenic in Phoenix Arsenic in Arizona				10		1	Mean	SE Mean	tDev SI	Mean StDe	N Mear	mple	Sa
Catalyst B Arsenic in Phoenix Arsenic in Arizona							0.10		0.316		10 16.76-	odified Morter	
Catalyst B Arsenic in Phoenix Arsenic in Arizona						3	0.078	0.078).248	17.042 0.24	r 10 17.043	modified Morter	Ur
Catalyst B Arsenic in Phoenix Arsenic in Arizona													
						C4		G		C2		C1	
89.19 7 48	Arseni		1		yst A Catalyst			Ca				odified Morter U	M
						91.50				16.62		16.85	
90.95 7 44						94.18				16.75		16.40	
90.46 25 40						92.18				17.37		17.21	
93.21 10 38						95.39				17.12		16.35	
97.19 15 33						91.79				16.98		16.52	
97.04 6 21		6		97.04	89.07 97.0	89.07	89		7	16.87		17.04	
4										test.mwx	ample T test.mn	H + 2-san	4.1
				-						1 Contractory	mwx	2-sample Ttest.m	ſ.
4		6		97.04	89.07 97.0	89.07	89				ample T test.ma	H + 2-san	4.0

(Refer Slide Time: 22:20)

rije	Edit Data Cal	c Stat Graph V	iew Help	Assistant Ad	ditional Tools													
- 1	8 😤 X 🖻	500	H H Q		一日日間	21 2	2											
11		IG Y NO	BK	* 時間 1	0 To 11 0	橋 4	NE BEX	4 🗄 i 🗗 🖬 🗗 -	YB									
		1 Y ME	K * I	Z YN	BK .													
Twe	o-Sample T-Test an	d Cl. × X																
	SAMPLE T TEST MW																	
-		-Test and CI:	Modifie	d Morter	Unmodi	fied M	lorter											
1 44	o-sample r	rest and en	wound	u morter,	onnou	neu w	lorter											
	Modified Morter	10 16.764		0.10														
ļ	Unmodified Morter	10 17.042	0.248	0.078														
E	stimation for I	Difference																
		95%																
		led StDev Differ																
2	-0.278	0.284 (-0.545,																
	-0.278				t	à												
					l	ar and an ar an ar												
T	-0.278 Test Null hypothesis	0.284 (-0.545, He: µ= - µ= = 0			t	à												
T	-0.278 Test Null hypothesis	0.284 (-0.545,			t	à												
T	-0.278 Test Null hypothesis	0.284 (-0.545, На: µь - µь = 0 esis На: µь - µь ≠ 0			l	es est												
T	-0.278 Test Null hypothesis Alternative hypothe T-Value DF P C1	0.284 (-0.545, H _{c1} µ ₂ - µ ₂ = 0 esis H _{c1} µ ₂ - µ ₂ ≠ 0 -Value C2	-0.011) C3	C4	CS	C6	a	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
T	-0.278 Test Vull hypothesis Vternative hypothe T-Value DF P C1 Modified Morter	0.284 (-0.545, Ha: µa - µa = 0 esis Ha: µa - µa ≠ 0 -Value C2 Unmodified Morte	-0.011) C3	Catalyst A	C5 Catalyst B		Arsenic in Phoenix	Arsenic in Arizona	C9	C10	C11	C12	C13	CM	CIS	C16	C17	
T 1 1	-0.278 Test Vull hypothesis Viternative hypothe T-Value DF P C1 Modified Morter 16.85	0.284 (-0.545, Ha: µa - µa = 0 esis Ha: µa - µa ≠ 0 -Value C2 Unmodified Morte 16.6	C3 F 2	Catalyst A 91.50	C5 Catalyst B 89.19		Arsenic in Phoenix 7	Arsenic in Arizona 48	C9	C10	C11	C12	C13	C14	CIS	C16	C17	
T 1 1 2	-0.278 Test Vull hypothesis Viternative hypothe T-Value DF P C1 Modified Morter 16.85 16.40	0.284 (-0.545) Ha: µa - µa = 0 esis Ha: µa - µa ≠ 0 -Value C2 Unmodified Morte 16.6 16.7	C3 F 2 5	Catalyst A 91.50 94.18	C5 Catalyst B 89.19 90.95		Arsenic in Phoenix 7 7	Arsenic in Arizona 48 44	C9	C10	C11	C12	C13	C14	CIS	C16	C17	
T 1 1 2 3	-0.278 Test Vull hypothesis Viternative hypothe T-Value DF P C1 Modified Morter 16.85 16.40 17.21	0.284 (-0.545) Hec µe + µe = 0 esis Hec µe + µe ≠ 0 -Value C2 Unmodified Mortu 16.0 16.1 17.3	C3 F 2 5 7	Catalyst A 91.50 94.18 92.18	C5 Catalyst B 89.19 90.95 90.46		Arsenic in Phoenix 7 25	Arsenic in Arizona 48 44 40	C9	C10	C11	C12	CI3	C14	CIS	C16	C17	
T 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-0.278 "est Vull hypothesis Vernative hypothe T-Value DF P C1 Modified Morter 16.85 16.40 17.21 16.35	0.284 (-0.545) Het µs + µs = 0 esis Het µs + µs ≠ 0 -Value C2 Unmodified Mortu 16.0 16.1 17.3 17.1	C3 rr 2 5 7 2	Catalyst A 91.50 94.18 92.18 95.39	C5 Catalyst B 89.19 90.95 90.46 93.21		Arsenic in Phoenix 7 7 25 10	Arsenic in Arizona 48 44 40 38	C9	C10	C11	C12	C13	C14	CIS	C16	C17	
T / / / / / / / / / / / / /	-0.278 Cest Vall hypothesis Vernative hypothe T-Value DF P C1 Modified Morter 16.85 16.40 17.21 16.35 16.52	0.284 (+0.545, Her µs + µs = 0 eslis Her µs + µs ≠ 0 -Value C2 Unmodified Mortu 16.0 17.1 17.2 17.1 16.5	C3 F C3 F C3 C3 F C3 F C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	Catalyst A 91.50 94.18 92.18 95.39 91.79	C5 Catalyst B 89.19 90.95 90.46 93.21 97.19		Arsenic in Phoenix 7 7 25 10 15	Arsenic in Arizona 48 44 40 38 33	C9	C10	C11	C12	C13	C14	CIS	C16	C17	
T / / / / / / / / / / / / /	-0.278 est Vull hypothesis Vicenative hypothe CI Modified Morter 16.85 16.40 17.21 16.35 16.32 16.35 17.04 1	0.284 (-0.545, He µx - µx = 0 esis He µx - µx ≠ 0 -Value C2 Unmodified Mortu 16.6 16.7 17.7 17.1 16.6 16.7 16.6 16.7 16.6 16.7 16.6 16.7 16.6 16.7 17.7 16.6 16.6 16.7 17.7 16.6 16.7 17.7 16.6 16.7 17.7 16.6 16.7 17.7 16.6 16.7 17.7 16.6 16.7 17.7 16.6 16.7 17.7 16.6 16.7 17.7 16.6 16.7 17.7 16.6 16.7 16.7 16.6 16.7 17.7 16.6 16.7 16.7 16.6 16.7 16.6 16.7 16.7 16.6 16.7 16.7 16.6 16.7 16.7 16.8 16.7 16.7 16.8 16.7 16.7 16.8 16.7 16.8 16.7 16.7 16.8 16.8 16.7 16.8 16.7 16.8 16.7 16.8 16.7 16.8 16.7 16.7 16.8 16.7 16.7 16.7 16.8 16.7	C3 F C3 F C3 C3 F C3 F C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	Catalyst A 91.50 94.18 92.18 95.39	C5 Catalyst B 89.19 90.95 90.46 93.21		Arsenic in Phoenix 7 7 25 10	Arsenic in Arizona 48 44 40 38 33 21	C9	C10	C11	C12	C13	C14	C15	C16	C17	
	-0.278 est Vull hypothesis Vicenative hypothe CI Modified Morter 16.85 16.40 17.21 16.35 16.32 16.35 17.04 1	0.284 (0.545) He (p+ (p=0 esis He (p+ (p=0)) C2 Unmodified Mont- 16,0 16,0 17,1 17,1 16,0 16,0 16,0 16,0 16,0 16,0 16,0 16	C3 F C3 F C3 C3 F C3 F C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	Catalyst A 91.50 94.18 92.18 95.39 91.79	C5 Catalyst B 89.19 90.95 90.46 93.21 97.19		Arsenic in Phoenix 7 7 25 10 15	Arsenic in Arizona 48 44 40 38 33	C9	C10	C11	C12	C13		CIS	C16	C17	

(Refer Slide Time: 22:21)

So, in this case, what we will do I will click ok. And after the test statistic, what we are getting over here. So, this can be seen same test statistics what we have got over here. So, this is catalyst 1 and catalyst 2. And for this what we are getting is that let us go back to this analysis over here. So, this I can copy this and place it over here.

(Refer Slide Time: 22:44)

Filt Home Image: Content of the con	inter B	I U · [⊞ · Font	× A* A*	= _ *·	🗄 Merge & C	AT Format General General General Nu	• 1% .00 Co For	R 🛡	s Cell Ins	ert Delete F	ΣA ormat	iutoSum = 31 -		a bi	, Share
Paste v Copy v V Format Pa Clipboard Picture 6 v I A E	5 X 1	I U · [<u>∆</u> • A • ≣	== ==	🗄 Merge & C	enter - 🔛 - %	• 1% .00 Co For		s Cell Ins	ert Delete F	ΣA ormat	iutoSum = 21 =	ATT Sort & Fin	a bi	
A							nber	Styles		Cells		llear * Editi		ĸt*	
	3 C	D													
2 3 4			E F	G	HI	J	K L	MN	0	P	Q	R	S	T	U
0 0 1 2 3 4 5									-						
2 2 4 5				Test											
1 2 3 4 5				lest											
2 3 4 5															
3 4 5				Null b	unothe	sis	Herman	= 0							
5				TYON IT	ypound	212	1.10. p.	p. 0							
5			0	Altern	ative by	ypothesi	e Hermer	. u. ± 0	0						
				Altern	arive	ypoulesi	s m. pr	h:+0							
6															
0				T-Valu	IA DE D	-Value									
Ô.				I valu		value									
0				.2 1	10 12	0.042									
1				-2,	19 10	0.042									
2															
3			0			0			-0						
4															
5															
6															
7															
0													- 1	0	
	heet1	(+)						1					- 6	-	
3	neeti	J						: [4]			000	880 000		100	
da Yi				_	_				-		Ħ	(II) E	- 1		

So, let me place it over here. And we can see whether the modified and unmodified are different or not. So, here what we see is that p-value is 0.042, that means, what p-value is less than 0.05, that means, there is a difference between these two values that we are we

are getting over here. So, that means, one mean is different from the other mean. So, modified morter and unmodified morter formulation. So, let us go to the mean which is different from which one.

		Book1 - Excel ()	Product Activation Fa	iled)									
	Insert Page Layout	Formulas	Data Review	View ACROBAT	Format	V Tell me what you want to do.					s	gnin 🖇	Share
aste Clipboard	ter B I U - E	• 💁 • A •	= = = = =	Wrap Text	- 127 - %	* 0 00 Conditional Form Formatting * Tab		Insert Delete	1000	FILE	Z V Sort & Find Filter - Sele) I& tt*	
Picture 7 *	$\times \forall f_{k}$												
A 8	C D	E	ہ م T-Val	ue DF P-1		K L M	N	O P	Q	R	S	T	
2			-2.	19 18	0.042								
			0			0				,			
0 1 2 3 4 5 7 3 0 0 0 1						Statistics N Mean	StDev	SE Me	an c)			
2 3 4 5 5 7 7 8						r 10 16.764 rter 10 17.042							
5 7 3 She	etl (+)		C			0					1		

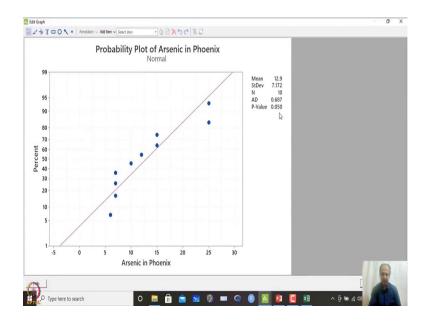
(Refer Slide Time: 23:14)

So, let us go to this and we have confirmed that there is significant difference between these two. So, we can place it like that and paste it over here. And we can see enlarge this one and see which is different from which one. So, we have seen that P-value indicates that they are different.

Now, modified morter is giving me a strength of 16.76, and unmodified is giving me a mean strength of 17.04 like that. So, unmodified is giving you higher strength as compared to modified morter over here, and they are significantly different statistically over here ok.

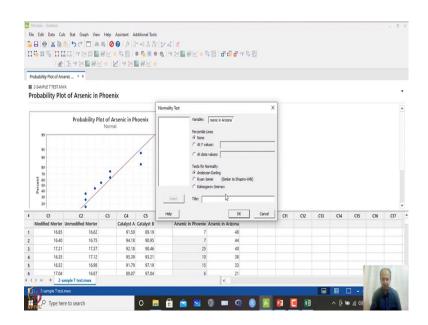
So, if you have to choose between modified morter and unmodified morter, So a tensile strength let us say tensile strength is measured over here which is the given condition. So, in this case whichever strength is higher, I will go for that.

But the results indicate that unmodified is giving me average which is higher than the modified one. And they are statistically different basically what which was proved by this p-value over here. So, if you have to implement which formulation to be adopted, in this case, I will go for the unmodified or old formulation. I will not go for the modified

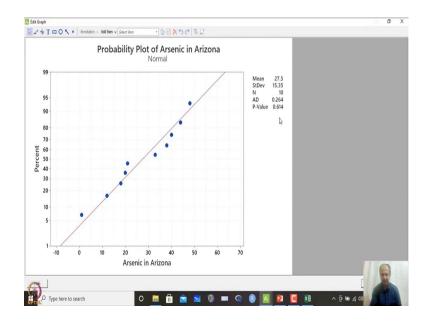

formulation of the morter that is next one because that is giving me lower strength as compared to the unmodified morter.

So, in a population, at population level, what we can see is that unmodified one is giving me higher strength as compared to modified morter over here ok. So, that is the physical interpretation we can take out of this. We can take another example like what is given over here. Arsenic content in phoenix whether it is different from Arizona Arsenic content like that is another example where we can see whether which test to adopt like that.

(Refer Slide Time: 24:50)

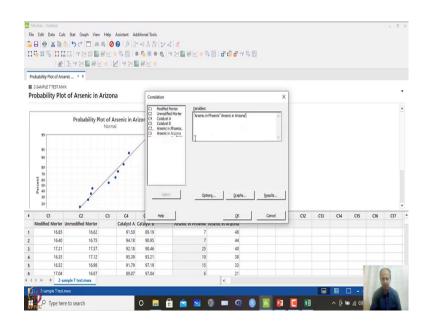

		d Cl: Y X				8K1												
8	2-SAMPLE T TEST MV																	
-	wo-Sample T		I: Moo	lified N	Aorter,	Unmod	ified Mor	ter										
	Equal variances an	e assumed for thi	analysis.				Normality Te		senic in Phoenix'	_	×							
	Descriptive Sta Sample Modified Morter Unmodified Morter Estimation for Difference Poo -0.278	N Mear 10 16.76- 10 17.042 Difference 95	0.316 0.248 % CI for fference	0.10	5		Select	-	lues:	apiro-Wilk)							
	CI	C2		C3	C4	C5	Help			к	Cancel	C11	C12	C13	C14	C15	C16	C17
	Modified Morter	Unmodified M	orter	Ca	atalyst A	Catalyst B	A	senic in Phoenix	Arsenic in Arizona									
	16.85		16.62		91.50	89.19		7	48									
	16.40		16.75		94.18	90.95		7	44									
	17.21		17.37		92.18	90.46		25	40									
	16.35		17.12		95.39	93.21		10	38									
			16.98		91.79	97.19		15	33							1		C. C. C.
	16.52																	

(Refer Slide Time: 24:53)

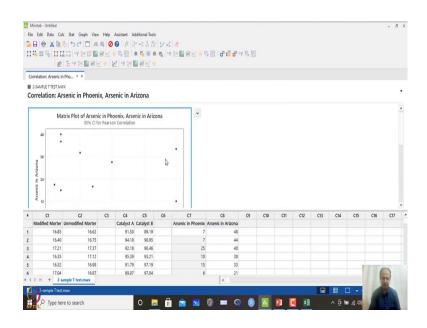


So, in this case, what we can see is that whether the basic assumptions holds true or not. So, in this case we will go for Phoenix and let us try to do the testing over here. So, it is just on the line that means, you see p-value is exactly equals to 0.05. So, we may consider that this is not greater than this one. So, this assumptions holds like that.

(Refer Slide Time: 25:14)



(Refer Slide Time: 25:18)



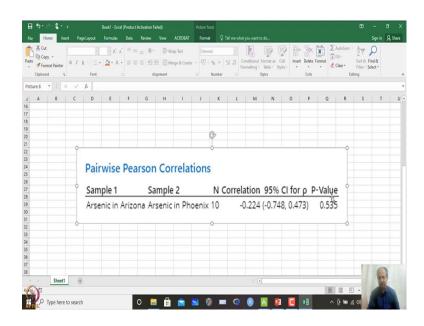
If I go to Arsenic in other condition like that, so I will go to basic status normal normality test. And in this case, I will take the Arsenic in Arizona and try to do this test over here. So, here also we see that the conditions are satisfactory over here. And we can assume that normality assumption is not violated as such.

(Refer Slide Time: 25:31)

(Refer Slide Time: 25:38)

(Refer Slide Time: 25:39)

File	nitab - Untitled																- 6	X
1110	Edit Data Cale	c Stat Graph View	Help	Assistant Ad	ditional Tools													
1	a e x D	5 5 C = #	11 0		-24.8	214	10											
									y KL RE									
		LYMER																
	relation: Arsenic in																	
-	SAMPLE T TEST MW																	
0	rrelation: An	senic in Phoeni	ix, Ars	ienic in Ai	izona													
																		٨
	Aethod																	
	Correlation type Number of rows us	Pearson ed 10																
	p: pairwise Pearson	correlation																
,	orrelations					N												
0	orrelations					C3												
		Arsenic in																
		Obeenix																
7	rsenic in Arizona	-0.224																
7	krsenic in Arizona																	
	Arsenic in Arizona Vairwise Pearso	-0.224																*
P		-0.224	G	C4	CS	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
P	airwise Pearso C1	-0.224	G	C4 Catalyst A		C6	C7 Arsenic in Phoenix		C9	C10	C11	C12	C13	C14	C15	C16	C17	•
P	airwise Pearso C1	-0.224 in Correlations C2	в			Cő			C9	C10	C11	C12	C13	C14	C15	C16	C17	v
P	C1 Modified Morter	-0.224 on Correlations C2 Unmodified Morter	в	Catalyst A	Catalyst B	C6	Arsenic in Phoenix	Arsenic in Arizona	C9	C10	C11	C12	CI3	C14	C15	C16	C17	¥
P	C1 Modified Morter 16.85	-0.224 In Correlations C2 Unmodified Morter 16.62	в	Catalyst A 91.50	Catalyst B 89.19	C6	Arsenic in Phoenix 7	Arsenic in Arizona 48	C9	C10	C11	C12	CI3	СМ	C15	C16	C17	¥
P	C1 Modified Morter 16.85 16.40	-0.224 en Correlations c2 Unmodified Morter 16.62 16.75	G	Catalyst A 91.50 94.18	Catalyst B 89.19 90.95	C6	Arsenic in Phoenix 7 7	Arsenic in Arizona 48 44 40	C9	C10	CII	C12	C13	C14	C15	C16	C17	v
P	C1 Modified Morter 16.85 16.40 17.21	-0.224 on Correlations C2 Unmodified Morter 16.62 16.75 17.37	C3	Catalyst A 91.50 94.18 92.18	Catalyst B 89.19 90.95 90.46	Cő	Arsenic in Phoenix 7 7 25	Arsenic in Arizona 48 44 40 38	C9	C10	C11	C12	C13	C14	C15	C16	C17	•
P	tairwise Pearso C1 Modified Morter 1685 1640 17.21 1635 1652 17.04	0.224 in Correlations C2 Unmodified Morter 16.62 16.75 17.37 17.12 16.98 16.87	в	Catalyst A 91.50 94.18 92.18 95.39	Catalyst B 89.19 90.95 90.46 93.21	C6	Arsenic in Phoenix 7 7 25 10	Arsenic in Arizona 48 44 40 38	C9	C10	C11	C12	CI3	C14	C15	C16	C17	•
P	tairwise Pearso C1 Modified Morter 1685 1640 17.21 1635 1652 17.04	-0.224 In Correlations C2 Unmodified Morter 16.62 16.75 17.37 17.12 16.98	в	Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	Arsenic in Phoenix 7 7 25 10 15	Arsenic in Arizona 48 44 40 38 33	C9	C10	C11	C12	CI3	C14	C15	C16	C17	
P 1 2 3 4	tairwise Pearso C1 Modified Morter 1685 1640 17.21 1635 1652 17.04	0.224 cc Correlations cc Unmodified Morter 16.62 16.75 17.37 17.12 16.98 16.87 16.87	G	Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19	Cő	Arsenic in Phoenix 7 7 25 10 15	Arsenic in Arizona 48 44 40 38 33 21	C9	C10	C11	C12	C13		C15	C16	C17	· · · · · · · · · · · · · · · · · · ·
P	Cl Modified Morter 16.85 16.40 17.21 16.35 16.52 17.04 E H + 2-sa 2-sample T test.	0.224 cc Correlations cc Unmodified Morter 16.62 16.75 17.37 17.12 16.98 16.87 16.87	G	Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19		Arsenic in Phoenix 7 25 10 15 6	Arsenic in Arizona 48 44 40 38 33 21		C10	CII	C12				C16	C17	


(Refer Slide Time: 25:40)

	Minitab - Untitled																- 6	8
ij,	e Edit Data Calc	Stat Graph View	Help	Assistant Ad	ditional Tools													
	8 8 8 6	SO A	11 0	0 fr 3		121 0	1											
								4 🖾 l 🗗 🖨 🖬 4	v 12. 159									
		LYMER					C. BOLLAS											
			1		E CL													
CI	orrelation: Arsenic in I	Pho * X																
-	2-SAMPLE T TEST MWX																	
)	orrelation: Ars	enic in Phoen	ix, Ars	enic in A	rizona													
		N 19																
	p: pairwise Pearson	correlation																
	Correlations																	
		Arsenic in																
		Phoenix																
	Arsenic in Arizona	-0.224																
	Arsenic in Arcona	-0.224																
							l v											
	Pairwise Pearsor	n Correlations																
	Pairwise Pearsor Sample 1	n Correlations Sample 2		rrelation 95		P-Value	× ⊘											
	Pairwise Pearsor	n Correlations Sample 2	N Co 10	rrelation 95 -0.224 (-0.		P-Value 0.535												
	Pairwise Pearsor Sample 1 Arsenic in Arizona	n Correlations Sample 2 Arsenic in Phoenix	10	-0.224 (-0.	748, 0.473)	0.535	D3	68	9	C10	CII	CI2	613	CH	C15	C16	617	
	Pairwise Pearsor Sample 1	n Correlations Sample 2 Arsenic in Phoenix C2			748, 0.473) C5	0.535 C6		C8 Arsenic in Arizona	C9	C10	C11	C12	C13	C14	C15	C16	C17	
	Pairwise Pearsor Sample 1 Arsenic in Arizona	n Correlations Sample 2 Arsenic in Phoenix C2	10	-0.224 (-0.	748, 0.473) C5	0.535 C6	6		C9	C10	C11	C12	CI3	C14	C15	C16	C17	
	Pairwise Pearsor Sample 1 Arsenic in Arizona C1 Modified Morter L	n Correlations Sample 2 Arsenic in Phoenix C2 Jnmodified Morter	10	-0.224 (-0. C4 Catalyst A	C5 Catalyst B	0.535 C6	6	Arsenic in Arizona 48	C9	C10	C11	C12	C13	C14	CIS	C16	C17	
	Pairwise Pearson Sample 1 Arsenic in Arizona C1 Modified Morter L 16.85	Correlations Sample 2 Arsenic in Phoenix C2 Jinmodified Morter 16.62 16.75 17.37	10	-0.224 (-0. C4 Catalyst A 91.50	C5 Catalyst B 89.19	0.535 C6	C7 Arsenic in Phoenix 7	Arsenic in Arizona 48 44 40	C 9	C10	C11	C12	CI3	C14	CIS	C16	C17	
	Pairwise Pearsor Sample 1 Arsenic in Arizona C1 Modified Morter U 16.85 16.40 17.21 16.35	Correlations Sample 2 Arsenic in Phoentx C2 Jamodified Morter 16.62 16.75 17.37 17.12	10	-0.224 (-0. C4 Catalyst A 91.50 94.18 92.18 95.39	C5 Catalyst B 89.19 90.95 90.46 93.21	0.535 C6	C7 Arsenic in Phoenix 7 7 25 10	Arsenic in Arizona 48 44 40 38	C 9	C10	C11	C12	C13	C14	C15	C16	C17	
	Pairwise Pearson Sample 1 Arsenic in Arizona C1 Modified Morter U 16.85 16.40 17.21 16.35 16.35	C2 Sample 2 Arsenic in Phoenix C2 Jinmodified Morter 16.62 16.75 17.37 17.12 16.98	10	-0.224 (-0. C4 Catalyst A 91.50 94.18 92.18 95.39 91.79	CS Catalyst B 89.19 90.95 90.46 93.21 97.19	0.535 C6	C7 Arsenic in Phoenix 7 7 25 10 15	Arsenic in Arizona 48 44 40 38 33	C 9	C10	C11	C12	C13	C14	C15	C16	C17	
	Pairwise Pearsor Sample 1 Arsenic in Arizona C1 Modified Morter U 16.85 16.40 17.21 16.35 16.52 17.04	Correlations Sample 2 Arsenic in Phoenix C2 Jamodified Morter 16.62 16.75 17.37 17.12 16.98 16.87	10	-0.224 (-0. C4 Catalyst A 91.50 94.18 92.18 95.39	C5 Catalyst B 89.19 90.95 90.46 93.21	0.535 C6	C7 Arsenic in Phoenix 7 7 25 10	Arsenic in Arizona 48 44 40 38 33 21	C9	C10	C11	C12	C13	C14	CIS	C16	C17	
	Pairwise Pearsor Sample 1 Arsenic in Arizona C1 Modified Morter U 16.85 16.40 17.21 16.35 16.52 16.52 16.52 16.52 16.52 16.52 16.55 17.56 16.55 1	Arsenic in Phoenix Sample 2 Arsenic in Phoenix C2 Janmodified Morter 16.62 16.75 17.37 17.12 16.98 16.87 mple T test.mwx	10	-0.224 (-0. C4 Catalyst A 91.50 94.18 92.18 95.39 91.79	CS Catalyst B 89.19 90.95 90.46 93.21 97.19	0.535 C6	C7 Arsenic in Phoenix 7 7 25 10 15	Arsenic in Arizona 48 44 40 38 33	C9	C10	C11	C12				C16	C17	
	Pairwise Pearsor Sample 1 Arsenic in Arizona C1 Modified Morter U 16.85 16.40 17.21 16.35 16.52 17.04	Arsenic in Phoenix Sample 2 Arsenic in Phoenix C2 Janmodified Morter 16.62 16.75 17.37 17.12 16.98 16.87 mple T test.mwx	10	-0.224 (-0. C4 Catalyst A 91.50 94.18 92.18 95.39 91.79	CS Catalyst B 89.19 90.95 90.46 93.21 97.19	0.535 C6	C7 Arsenic in Phoenix 7 7 25 10 15	Arsenic in Arizona 48 44 40 38 33 21	C9	C10	CII	C12	CI3		CIS	C16	C17	

So, then we go to the basic statistics and correlation we can check between these 2 data set then we can test the p-values over here.

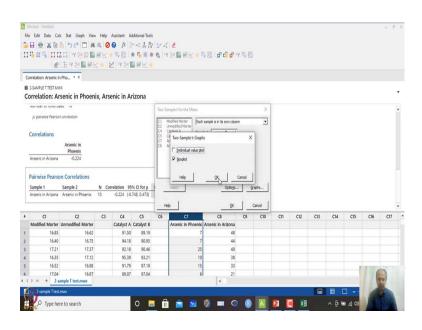
And what we see over here p-value is also not significant, that means, there is no high correlation between these 2 data set; that means, they are independent data sets.

(Refer Slide Time: 25:58)

I see the Pearson correlation which is coming out to be 0.535. So, this paired Pearson correlation is coming out to be 0.535. p-value is more than 0.05. So, nothing significant correlation that. And it is correlation you can see is -0.224.

And anything more than 0.7, I told should be significant, but here -0.224. So, in this case, it should not come out to be significant over here. So, that is what is reflected over here in the p-value. So, 0.535 that is the value we are getting.

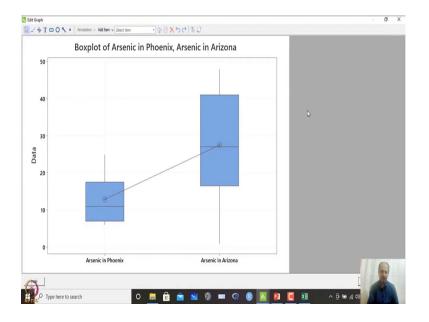
Fiel Eath Das Gat Start Graph View Help Austrate Additional Bools コロック・ロール Additional Bools コロッロック・ロール Additional Bools ロロッロック・ロール Additional Bools コロッロック・ロール Additional Bools コロック・ロール コロック コロック・ロール コロック・ロール コロック・ロール コロック・ロール コロック・ロール コロック コロ コロック コロック コロック コロック コロ ▲ IIYNESK* MANESK Arsenic in Pho... 2-SAMPLE T TEST MW Correlation: Arsenic in Phoenix, Arsenic in Arizona Two-Sample t for the Me ple is in its Sample 1: rsenic in Phoenix Correlations -0.224 Pairwise Pearson Correlations Sample 2 Options... Graphs... elation 95% CI for p -0.224 (-0.748, 0.473) Sample 1 C4 C5 C6 CI C12 C13 C14 C15 C16 C17 Catalyst A Catalyst B 91.50 89.19 94.18 90.95 92.18 90.46 16.62 16.75 17.37 91.50 94.18 92.18 95.39 91.79 89.07 93.21 97.19 97.04 16.3 16.98 16.87 16.5 🔞 🔳 🥥 0 📄 ~ R f


(Refer Slide Time: 26:49)

(Refer Slide Time: 26:57)

Fil	8 8 × 8 ∿ ∎ 5 □:	ic Stat Graph View ⓑ S C □ A S C □ Y ≥ Ø ■ ↓ Y ≥ Ø ■	M O) () fx 3 + ≒ () ·		ビジャ		9K * #	🗴 d' 🖏 d''	Y 称 昭								- B	×
C	orrelation: Arsenic li	n Pho Y X																	
=	2-SAMPLE T TEST MI	VX																	
C	orrelation: A	senic in Phoen	ix, Ars	senic in A	rizona														٠
	p: paivuise Pearso Correlations Arsenic in Arizona Pairwise Pearso Sample 1 Arsenic in Arizona	Arsenic in Phoenix -0.224	N Co 10	orrelation 95 -0.224 (-0.		800200	Confidence lev	t: Options sample 1 mean) vel: 23 difference: 0.0 pothesis: Diff	Constant of the	Cance									*
4	CI	C2	C3	C4	C5	C6		C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	T
	Modified Morter	Unmodified Morter		Catalyst A	Catalyst B		Arsenic	in Phoenix A	Arsenic in Arizona										
1	16.85	16.62		91.50	89.19			7	48										
2	16.40	16.75		94.18	90.95			7	44										
3	17.21	17.37		92.18	90.46			25	40										
4	16.35	17.12		95.39	93.21			10	38										
5	16.52	16.98		91.79	97.19			15	33							-	1.	-	
6 H (16.87 ample T test.mwx		89.07	97.04		1	6	4					-				R	
	2-sample T test				0		1	M () 🔳 🤇				X		× @ ٩	 • <i>(</i> , 40			

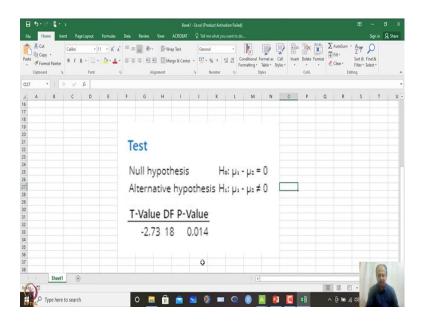
So, data sets are independent. So, in that case, the final test what we have to do is that all checks we have done. So, two-sample t-test we will do. And in this case only data set I will change. So, I will just take Arsenic, and then second one Arsenic is Arizona


(Refer Slide Time: 27:09)

(Refer Slide Time: 27:13)

	Ainitab - Untitled																- 1	8)
File	e Edit Data Ca	alc Stat Graph View	Help	Assistant Ad	Iditional Tools													
-	8 8 8 9	10 5C □ #	40	0 fx 3	一日日	21 2	2											
									YAR									
		LYNBEL																
Tee	vo-Sample T-Test a																	
-	2-SAMPLE T TEST MI			Dhami			-inc											٠
IV	vo-sample i	-Test and CI: Ar	senic	in Phoeni	x, Arseni	c in A	rizona											
	Method																	*
		an of Arsenic in Phoenix an of Arsenic in Arizona																
	Equal variances an	re assumed for this analysi	5.															
		4.4																
	Descriptive Sta					13												
	Descriptive Sta Sample	N Mean StDev	SE Me			3												
	Descriptive Sta Sample Arsenic in Phoenia	N Mean StDev x 10 12.90 7.17		2.3		3												
	Descriptive Sta Sample	N Mean StDev x 10 12.90 7.17				3												
	Descriptive Sta Sample Arsenic in Phoenia Arsenic in Arizona	N Mean StDev x 10 12.90 7.17 10 27.5 15.3		2.3 4.9	6		a	68	69	610	(1)	(12	Cl	CH	(15	615	(17	¥
	Descriptive Sta Sample Arsenic in Phoenix Arsenic in Arizona	N Mean StDev × 10 12.90 7.17 10 27.5 15.3 C2		2.3 4.9 C4	C5 Catabest B	C6	C7 Arsenic in Phoenic	C8 Arsenic in Arizona	C9	C10	C11	C12	C13	C14	C15	C16	C17	¥
•	Descriptive Sta Sample Arsenic in Phoenix Arsenic in Arizona	N Mean StDev × 10 12.90 7.17 10 27.5 15.3 C2 VInmodified Morter		2.3 4.9			C7 Arsenic in Phoenix 7		C9	C10	C11	C12	C13	C14	C15	C16	C17	¥
•	Descriptive Sta Sample Arsenic in Phoenix Arsenic in Arizona Ct Modified Morter	N Mean StDev × 10 12.90 7.17 10 27.5 15.3 C2 r Unmodified Morter 16.62		C4 Catalyst A	Catalyst B			Arsenic in Arizona	C9	C10	C11	C12	C13	C14	C15	C16	C17	v
+	Descriptive Sta Sample Arsenic in Phoenix Arsenic in Arizona Ct Modified Morter 16.85	N Mean StDew × 10 12.90 7.17 10 27.5 15.3 C2 r Unmodified Morter i 16.62 16.75		C4 Catalyst A 91.50	Catalyst B 89.19			Arsenic in Arizona 48	C9	C10	C11	C12	C13	C14	C15	C16	C17	¥
4 1 2 3	Descriptive Sta Sample Arsenic in Phoenia Arsenic in Arizona C1 Modified Morter 16.85 16.40	N Mean StDers × 10 12.90 7.17 10 27.5 15.3 C2 Unmodified Morter 16.62 16.75 17.37		C4 Catalyst A 91.50 94.18	Catalyst B 89.19 90.95		Arsenic in Phoenix 7 7	Arsenic in Arizona 48 44	C9	C10	C11	C12	C13	C14	C15	C16	C17	¥
+ 1 2 3 4	Descriptive Sta Sample Arsenic in Phoenix Arsenic in Arizona C1 Modified Morter 16.85 16.40 17.21	N Mean StDew × 10 12.90 7.17 10 27.5 15.3 Unmodified Morter 16.62 16.62 16.75 17.37 17.12		2.3 4.9 C4 Catahyst A 91.50 94.18 92.18	Catalyst B 89.19 90.95 90.46		Arsenic in Phoenix 7 7 25	Arsenic in Arizona 48 44 40	C9	C10	C11	C12	C13	C14	C15	C16	C17	
	Descriptive Sta Sample Arsenic in Arizona Ct Modified Morter 16.85 16.40 17.21 16.35 16.52 17.04	N Mean StDer × 10 12.90 7.17 10 27.5 15.3 C2 C2 Unmodified Morter 16.62 17.37 17.37 17.12 16.68 16.68 16.67		2.3 4.9 Catalyst A 91.50 94.18 92.18 95.39	Catalyst B 89.19 90.95 90.46 93.21		Arsenic in Phoenix 7 7 25 10	Arsenic in Arizona 48 44 40 38 33 21	C9	C10	C11	C12	C13	C14	C15	C16	C17	•
4 1 2 3 4 5	Descriptive Sta Sample Arsenic in Arizona Ct Modified Morter 16.85 16.40 17.21 16.35 16.52 17.04	N Mean StDer × 10 12.90 7.17 10 27.5 15.3 Unmodified Morter 16.62 16.75 17.37 17.37 17.12 16.98		2.3 4.9 Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19		Arsenic in Phoenix 7 7 25 10 15	Arsenic in Arizona 48 44 40 38 33	C9	C10	C11	C12	C13	C14	C15	C16	C17	
4 1 2 3 4 5 6	Descriptive Sta Sample Arsenic in Arizona Ct Modified Morter 16.85 16.40 17.21 16.35 16.52 17.04	N Mean StDer × 10 12.90 7.17 10 27.5 15.3 C2 C Unmodified Morter 16.62 16.75 17.37 17.17.12 16.68 16.68 16.67 17.87 17.12 16.68 16.67 16.87 16.87		2.3 4.9 Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19		Arsenic in Phoenix 7 7 25 10 15	Arsenic in Arizona 48 44 40 38 33 21	C9	C10	C11	C12	C13		CIS	C16	CI7	•
4 1 2 3 4 5 6	Descriptive Sta Sample Arsenic in Phoenia Arsenic in Arizona C1 Modified Morter 1685 1640 1721 1663 1652 1724 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N Mean StDer × 10 12.90 7.17 10 27.5 15.3 C2 C Unmodified Morter 16.62 16.75 17.37 17.17.12 16.68 16.68 16.67 17.87 17.12 16.68 16.67 16.87 16.87		2.3 4.9 Catalyst A 91.50 94.18 92.18 95.39 91.79	Catalyst B 89.19 90.95 90.46 93.21 97.19	C6	Arsenic in Phoenix 7 7 25 10 15 6	Arsenic in Arizona 48 44 40 38 33 21		C10	CII	C12			-	C16	CIT	

(Refer Slide Time: 27:15)


So, in options what we can do is that assume equal when that condition is satisfactory 95 percent that I have taken. The difference should be equals to 0 and not equals to condition will be the what I want to test. And graphically we can see the box plot. And I click ok over here all that. And in this case what happens is that you can see the box plot over here which will give you some idea of the data set.

So, in this case what you see this is the average value, this is the average value what you get. So, mean value is 12.9 over here. And the mean over here what you see is around 27.5. So, there is a huge difference of slope you can understand that there is a huge slope between these 2 values over here. So, this should be prominent, that means, there is a significant difference between location of the mean of this and this over here. And the median value is also we can see a significant difference exist between these two.

So, our hypothesis testing should be able to identify this difference and it should reflect that there is a significant difference between the Arsenic content over here as compared to the Arizona content that we are getting. Box plot also reflects that fact. (Refer Slide Time: 28:10)

	finitab - Untitled																- 6	
le	Edit Data Calc	Stat Graph View	Help Assist	tant Ad	ditional Tools													
	8 8 X 0 6	50 - 4	00	fx 3	-2.4.22	21	10											
		I Y XO D	RK + W	- EE 14	F To III #	光 4		d" 🖏 d" - Y	收回									
		LY MERK																
	vo-Sample T-Test and	1: * X																
	2-SAMPLE T TEST MWX																	
N	vo-Sample T-T	est and CI: Ars	enic in P	hoeni	x, Arseni	c in A	rizona											
•	Arsenic in Phoenix	10 12.90 7.17	2.3															
	Arsenic in Arizona	10 27.5 15.3	4.9															
1	Estimation for Di	ference																
		95% CI for																
,	-14.60 Poolec	11.98 (-25.86, -3.34																
	-14.00	11,98 (*25.80, *3.34	9															
-			-															
1	Test		B															
	Null hypothesis	He py - py = 0																
	Alternative hypothesis																	
	T-Value DF P-Va																	
	C1	C2	G	C4	CS	C6	C7	C8	C 9	C10	C11	C12	C13	C14	C15	C16	C17	ŝ
1						CO	Arsenic in Phoenix Arse	CS	69	CIU	cii	CIZ	CIS	C14	CD	C10	Cir	
	Modified Morter Un	modified Morter	Cat	abst A				nic in Arizona										
	Modified Morter Un 16.85	modified Morter 16.62	Cat	91.50	Catalyst B 89.19		Arsenic in Phoenix Arse	nic in Arizona 48										
			Cat				Arsenic in Phoenix Arse 7 7											
	16.85	16.62	Cat	91.50	89.19		7	48										
	16.85 16.40	16.62 16.75	Cat	91.50 94.18	89.19 90.95		7 7	48 44										
	16.85 16.40 17.21	16.62 16.75 17.37	Cat	91.50 94.18 92.18	89.19 90.95 90.46		7 7 25	48 44 40										
	16.85 16.40 17.21 16.35	16.62 16.75 17.37 17.12	Cat	91.50 94.18 92.18 95.39	89.19 90.95 90.46 93.21		7 7 25 10	48 44 40 38										
4	16.85 16.40 17.21 16.35 16.52 17.04	16.62 16.75 17.37 17.12 16.98	Cat	91.50 94.18 92.18 95.39 91.79	89.19 90.95 90.46 93.21 97.19		7 7 25 10 15	48 44 40 38 33										
4	16.85 16.40 17.21 16.35 16.52 17.04 2-sam	16.62 16.75 17.37 17.12 16.98 16.87 96e T test.mwx	Cat	91.50 94.18 92.18 95.39 91.79	89.19 90.95 90.46 93.21 97.19		7 7 25 10 15	48 44 40 38 33 21										
	16.85 16.40 17.21 16.35 16.52 17.04	16.62 16.75 17.37 17.12 16.98 16.87 96e T test.mwx	Cat	91.50 94.18 92.18 95.39 91.79	89.19 90.95 90.46 93.21 97.19		7 7 25 10 15	48 44 40 38 33 21										

(Refer Slide Time: 28:19)

So, to prove that one, we have to go to the what is the value that we have got in hypothesis testing p-values over here. So, I am just copy pasting the p-value analysis or final hypothesis testing that we have results that we have got. And I will paste it over here.

And I will just enhance this one, so that you can see. And what you see over here is the p-value is 0.014, that is less than 0.05. That indicates that and the T-value is around - 2.73, and this is not close to 0, this is not close to 0.

So, in that case, our basic interpretation this p-value is less than 0.05. So, in that case what we can assure is that this two values are statistically different these two values are statistically different and in that case you need to be cautious when it is content of Arsenic. So, Arsenic content over here you see 27. So, Arizona it is about 27 mean average value. So, it is much higher as compared to the as compared to Phoenix. So, there is a statistical difference that exists between these two ok.

So, this is what we wanted to emphasize this is two-sample t-test where I can just compare before improvement and after improvement. So, before we have implemented some measures before we have done anything. So, what, what is the existing scenario? So, in quality what happens is that we try to see existing scenario. And then we do some improvement and then prove that this improvement has real effects and that is statistically different like that.

So, first phase of experimentation is that at one condition is it different from a second condition? So, to prove improvement happened or not happened, what required is that we need to do this type of hypothesis testing. And two-sample t-test is the most important hypothesis testing which is used in quality basically.

But that may be the starting point, but we need to know two-sample t-test and there are many other lectures where you can see two-sample t-test like that. And this is the way we do it in MINITAB, and the interpretation I have already told. So we will discuss about paired t-test also after this which is also very relevant where to use to sample t-test, where to use paired t-test like that that difference we should know and based on that.

We can go ahead with the experimentation where we do real improvements like that. So, we will discuss about analysis of variance concept like that which is the fundamental or pillars of design of experiments like that ok. We will stop over here and we will continue with paired t-test in our next lecture ok.

Thank you.