
Quality Control and Improvement with MINITAB Prof. Indrajit Mukherjee Shailesh J. Mehta School of Management Indian Institute of Technology, Bombay

Lecture - 13 Process Capability

Hello, everyone and welcome to session 13 of our course on Quality Control and Improvement using MINITAB. I am Professor Indrajit Mukherjee from Shailesh J. Mehta School of Management IIT, Bombay.

(Refer Slide Time: 00:40)

So, earlier session, we have just started about Process Capability. So, we are talking about C_p index. So, from there onwards we will continue in this lecture. So, let me just recap what we have told. So, capability index what we mentioned is that it is a index which shows that ratio between voice of the customer and voice of the process.

So, how do we express voice of the process? Voice of the process is 6 multiplied by standard deviation of the process and which is to be estimated and this sigma estimation is also known as within sample variability. So, in this case MINITAB; MINITAB

expresses this variability as sigma equals to $\frac{\overline{R}}{d_2}$.

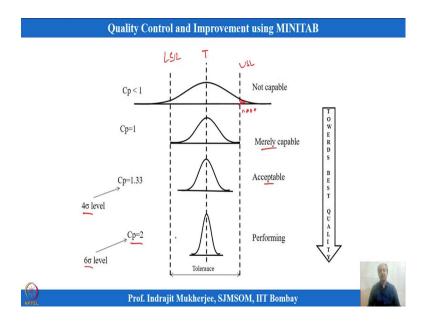
So, this formulation what you see over here is basically within sample variability over here. So, this is calculated based on statistical process control chart. So, this is estimation of the sigma over here, can be done by if we are drawing the X bar R chart in that case.

And, we have also told mentioned that this process capability we estimate whenever it is under natural variation; that means, common cause variability is only and the processes is stable. So, in that case we apply this one.

So, this will be the $C_p = \frac{\Delta}{6 \times \hat{\sigma}}$, and this estimation what you see is given over here in this estimation because and this is the subgroup size based on which I can define d_2 values.

So, this subgroup size is also known to us when we are collecting the samples. So, whenever the process is in statistical control immediately we can calculate the C_p index over here. So, this is $\frac{\Delta}{6 \times \hat{\sigma}}$ because 6 is the common spread that we have assumed that 99.73 of the observation will be falling in case it is a normal distribution.

So, the underlying assumption over here is it is the CTQs follows normal distribution and for that I am assuming this making a simple assumption over here and we are also assuming over here that the centering of the process is perfectly on the target. So, there is no variation from that and so we can calculate a capability index which is known as C_p index over here ok. So, and MINITAB does it automatically for you.

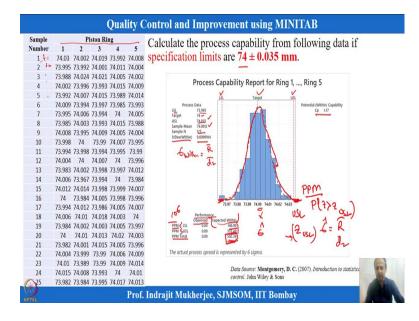

So, you have to only mention that whether how to calculate the sigma you mention that one and MINITAB will calculate for you. So, then also we mentioned that just capable process, if voice of the customer and voice of the process. So, this is the voice of the customer and this is the voice of the process, and the ratio is equals to 1 means I am consuming full tolerance basically. My variability of the process is consuming the full tolerance.

So, in other words; that means, that if this is the specification and upper specification limit and lower specification limit. So, completely I am consuming the total variability which is spread across from USL to LSL. So, this is not an industry standard that equals to one condition just acceptable like that. So, if you have to improve that one you have to go to 1.33 and beyond for not so critical items, but if it is very critical maybe we go about to 1.67 or 2 as the process capability for specific CTQs like that. We want to reach that level of now capability like that.

So, if it is a 6σ process, it is linked with C_p value of 2 and then we have other index over here $C_p = 1.33$, about 4σ and $C_p = 1.67$ about 5σ . This way we can link with C_p values and also with sigma level of a process like that.

But, that is not the right way we will see another way of defining the and linking with the sigma levels like that ok and MINITAB gives you some options to do that ok.

(Refer Slide Time: 04:33)


So, in this case what will happen is that so, I can calculate this and also we have to remember that this is for both side specification. So, C_p can be calculated whenever USL and LSL is given; when we have one sided specification in certain scenarios, one sided tolerance, in that case C_p cannot be calculated and MINITAB also does not reveal any such calculation of C_p whenever I give one sided specification let us say LSL or USL.

So, with some example we will try to see. So, here you can see like that what I explained last time also say if it is not capable in that case rejection some will be outside the USL condition and this is the LSL condition what you see. So, many many data points will fall over here outside responds. So, there will be rejections like that and let us assume this is the target value so, what we are getting over here ok.

So, this is merely just capable what we told and this is $C_p = 1.33$, 4σ level what is written over here. So, some companies may accept may be considering this as the acceptance level of C_p values, but excellent performance we always say that C_p value should be equals to 2 which is equivalent to 6σ level.

So, towards excellency if we are moving for quality we should look for C_p close to 2, and at least more than 1.33. Many of the industries follow 1.33 as a basic standards of accepting a CTQ performance.

(Refer Slide Time: 05:52)

So, based on this we are just taking an example. Last time we showed that in MINITAB how we are going to do that. So, I am taking a piston ring example which is having 25 observations and each of the observations has 5 subgroup size over here and at a given time point t_1 .

So, this was collected at t_1 , so, this will be collected at t_2 . So, t_1 , t_2 observations like that and we have t_{25} observations which are at certain gaps the observations are collected at certain pre-decided intervals and can be calculated also how much should be the interval.

We are not going into that details, but that is possible. And, how many subgroup size to be taken that is also rational sub grouping is another concept which is used to define that one. So, if that is correct in that case we can analyze the data and we can analyze it using control chart techniques.

So, I am taking the same example the specification is given as 74 ± 0.035 . So, tolerance is about 0.07 if you see from USL and LSL and this is the total Δ that we have or voice of the customer that is given.

And, if it is within this distribution over here what we will see is that this is MINITAB output so, this is LSL, this is USL this target I have defined let us say 74 is the target value over here and C_p index is calculated 1.17.

So, LSL is 73.965 and USL is 74.035. This we have to enter MINITAB and target is 74 we have mentioned. Sample mean is this total observation what you are seeing over here 125 and 25 observations. So, 125 observation. So, overall mean $\overline{\overline{X}}$ is 74.0012.

125 observation and you see standard deviation within is calculated over here this is based on MINITAB will ask you what basis I will calculate σ within. So, we have mentioned over here that you calculate from control chart and the formula to be used is \overline{R}/d_{γ} or from sample range chart you calculate the response.

And, also you will find that performance index will be provided over here. There is a term which is known as PPM < LSL and PPM > USL and PPM total. PPM means parts per million. So, number of items that will fall outside USL and fall below LSL that will be given as performance over here.

So, over here the dataset will be plotted over here and MINITAB we will see if something is going beyond the tolerance and that will be counted then those counts and that will be converted into PPM (10^6) . So, this will be converted into that number how many fall out in this much. So, in million how much it is, so, that will be calculated as observed.

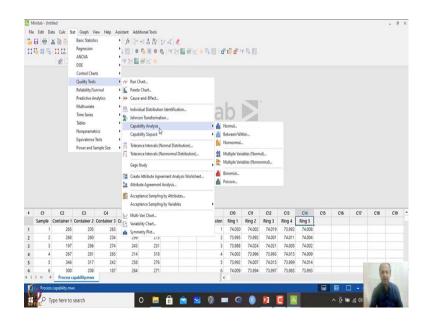
An expected performance what you will find is that MINITAB will place a normal distribution curve over here what you can see dotted line and so, if this is the and based

on certain mean that we have $\overline{\overline{X}}$ and we can always calculate that corresponding to USL. So, USL will be converted into a Z value.

So, Z_{USL} over here and based on that it will find out that what is the probability of Z greater than Z values for USL over here and that will give me a fraction on confirming over here and that will give me the PPM that is falling outside. So, a normal distribution assumption will be used over here to see what is the expected performance.

And, also the standard deviation calculation that will be used for Z conversion will be $\overline{\mathbb{R}}/d_2$ that. So, corresponding to value of \overline{X} and standard deviation $(\hat{\sigma})$ over here what I can do is that I can calculate Z_{USL} over here and from there I can reach to this PPM level over here on this side I also I can reach on this side.

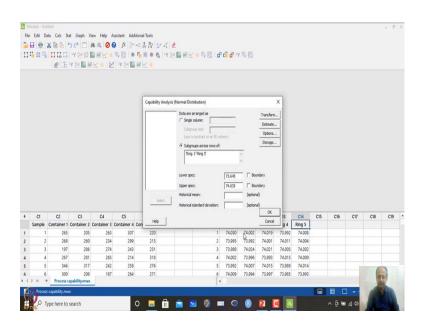
So, expected within performance is shown over here how much will be less than this. So, probability and then accordingly convert to PPM and here also we can do that. So, expected within an expected PPM more than USL also.


So, this is the expectation in case you are just superimposing and thinking that this is a perfect normal distribution with the mean and standard deviation that is calculated from the data set how much will be the fallout from LSL and USL like that and total summation of these two will give you the total values that you see over here, ok.

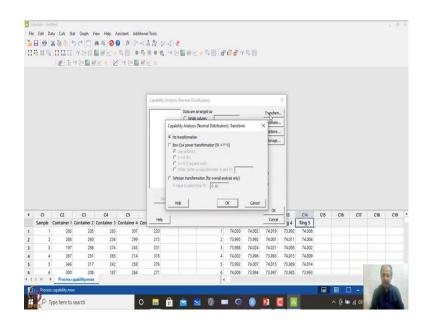
	Copy path Paste shortcut To - Copy to - Copy to - Copy Corganize	New item *	Properties • Open Open	Select all Select none Invert selection Select			
• 🕂 * 🕆 📙 « NPTEL	Feb 2020 > Final Video and Other Details Decemb	er 2020 > Weekwise Final	Slides for Lecture > W	eek 2 > nptel MINITAB fil	es Week 2 18nov	~ Ö	
📰 Pictures 🛛 🖈 ^	Name	Date modified	Type	Size			
nptel MINITAB files V	C-chart	18-11-2020 11:40	Minitab Worksheet	3 KB			
OM II 2021	Control Limit Vane Data SPC Montgomery	03-01-2021 10:46	Microsoft Excel W	12 KB			
Recommendation M	Data Transformation	24-12-2020 11:15	Minitab Worksheet	3 KB			
Week 2	Flow Width X-bar R Calculation	03-01-2021 22:13	Microsoft Excel W	12 KB			
	1-MR Charts	04-01-2021 14:00	Minitab Worksheet	4 KB			
OneDrive	😭 np Charts	03-01-2021 10:36	Minitab Worksheet	4 KB			
This PC	P-chart	18-11-2020 11:40	Minitab Worksheet	3 KB			
3D Objects	Process capability	18-11-2020 11:40	Minitab Worksheet	4 KB			
Desktop	🔛 U-chart	18-11-2020 11:40	Minitab Worksheet	3 KB			
Documents	X-Bar R & S Charts	03-01-2021 10:42	Minitab Worksheet	5 KB			
Downloads		0					
Music		•					
Fictures							
Videos							
Local Disk (C:)							
- New Volume (D:)							
- New Volume (E:)							
INDRAJIT (G:)							
INDRAJIT (G:)							
							100

(Refer Slide Time: 10:37)

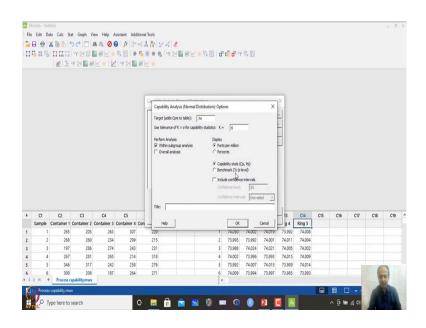
So, what are the options that we that we use over here? So, I will just show you the options. So, I will go to the dataset and in this case what we will do is that we will use process capability dataset and we will try to illustrate the same thing so that we can see how we are.


(Refer Slide Time: 10:52)

So, this data set is already I have created. So, a Minitab file I am opening. This is the observations of one dataset, this is the other observation which we will analyze now sample pistons – ring 1 to ring 5; 5 sub groups and these are the observations over here.


So, I go to Stat on top and what I do is that I go for Quality Tools and over here Capability Analysis. And, what I will do is that Normal capability because I am assuming normality over here.

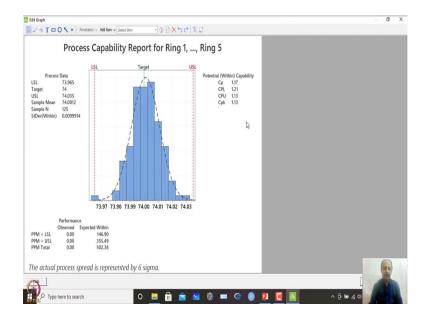
(Refer Slide Time: 11:17)


So, let us assume the data follows normal. So, I am using Normal capability. Then Subgroups across row I will use and because all observations are in different columns like that. So, I will use from here to here and then I will say select this one. Then lower specification I will write this is 73.965 upper specification is 74.035

(Refer Slide Time: 12:13)

And, then here you will find that transformation or no in case it is non-normal in that case what is to be done we will see. So, this is we are assuming normality. So, I will not click anything over here.

(Refer Slide Time: 12:22)



Estimation over here, so, within capability estimation which method I will follow for subgroup size greater than 1. So, here it is written that you see within subgroup standard deviation how do we calculate. So, you have to mention Pooled standard deviation, S method, R method. So, I will use the R method because R control chart we have seen X bar R.

So, used unbiased constant we will keep this one as default over here. So, and also in case subgroup is 1. So, in my case it is not true. So, this area you can ignore like that. So, I will click Ok like that. So, over here an Options; over here Target is let us say assume 74 is the target like that and within group analysis we are doing. So, Overall analysis we are not considering over here.

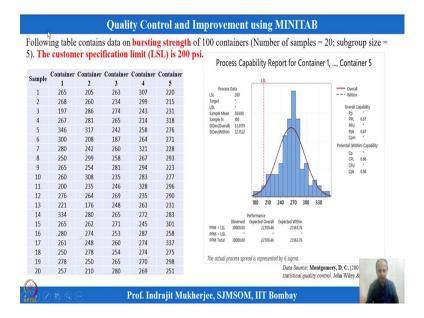
So, then Capability C_p values I want to see and Parts per million also I want to see other than that we do not understand now at this current time point. So, we will just click Ok and K value is taken as 6 because 6 standard deviation we are keeping over here and I click Ok.

(Refer Slide Time: 13:26)

What will happen is that, I will get this analysis what you see over here and you see that LSL I have given target I have given. So, USL is given, sample mean is calculated based on number of observation, which is 125.

Standard deviation within is calculated as from $\overline{\mathbb{R}}/d_2$ formulation. So, this is calculated as range average and from that d_2 is taken from number of sub group size that is 5. So, based on that this is calculated and PP observed and expected performance is shown over here same thing what I explained like that Z it is converted into Z and from that we calculate what is PPM < LSL, what is PPM > USL.

So, total PPM parts per million that will fall outside the specification is basically 502 and then C_p index is 1.17. So, at this time point we are not concerned about C_{pl} , C_{pu} and C_{pk} . So, let us assume the C_p is the only measure we know. So, 1.17 and that is the value I am looking for. So, C_p 1.17 is not enough. So, 1.33 I told maybe the standard many industries follows; that means, improvement is needed over here ok.


So, that gives you some basis when we have existing scenarios and whether to you take improvement initiatives or not for a CTQ that we can define from here. So, C_p values is less than 1.33 let us say and in that case improvement is needed. So, in that case I have to

reduce the variability. You see the measures of C_p index says that I cannot do anything on the tolerance I cannot do anything on the tolerance.

So, this measure what I have to do is that I have to reduce the sigma level. So, if you can; if you can reduce the sigma over here what you see over here. So, if I can reduce the sigma values that is coming over here then my C_p will go it is inversely proportional to this. So, this will go up like that ok, variation reduces C_p index goes up. So, in that case so, my variability reduction is the target over here from the formulation that we see.

So, but scenario is maybe one sided specification we are having. So, let me take this is the next example over here.

(Refer Slide Time: 15:47)

And, we have an example over here that is container over here. So, here in this example what you see is that 5 container subgroup size is 5, but LSL is only given 200 over here. So we have 20 samples with 5 observation. So, total 100 observations we are having 5 subgroup size. So, total 100 observation and lower specification limit is given as 200 psi.

If you see on the right hand side, it has not calculated potential within capability you see C_p is not calculated and star is given over here. So, when I do this one so, let us let us go to the MINITAB file and let us close this one and I will this is the sample observation C1

to C6. I go to Stat and what I do is that Quality Tools and in this case Capability Analysis, Normal capability analysis over here.

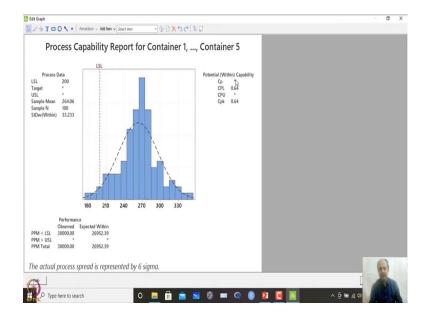
(Refer Slide Time: 16:34)

Pro	tess Capabil	Ity Report f	×00 ×00	8K*3 (* 12 -	Y 🔀 🖬 🖗	雅 兼 我 い ☆ ★	⊻∎⊌⊻★작품	o" t <mark>a</mark> o"	Y 🌣 🖺		×						
	Pro LSL Target USL Sample Me Sample M StDev(With	cess Data 73.965 74 74.035 2an 74.0012 125	LSL	ability I	Report f	Select	Data are arranged as C Single column: Subgroups sterm: (see a construct or a Subgroups across re Container 1-Cont Lower spec: Hotorical remark: Hotorical standard devi	wes of: ainer 5 200	⊂ Bour Coptiona (optiona	ndery () () OK		C14	C15	C16	C17	C18	C19
	Sample C	Container 1 Con				Help				Cancel	94	Ring 5					
ľ	1	265 268	205	263	307	220		1 74.030	74.002	74.019	73.992	74.008					
		200	260	234	299	215		3 73.988	73.992	74.001	74.011	74.004					
	2	107			245	318		4 74.002	73,995	73,993	74.005	74.002					
	2	197	281	265					10.990	19/332							
	2 3 4 5	267	281	265				5 73 007	74 007	74 015	73 080	74.014					
	2 3 4 5 6		281 317 208	265 242 187	214 258 264	276		5 73.992	74.007 73.994	74.015 73.997	73.989 73.985	74.014				6	1

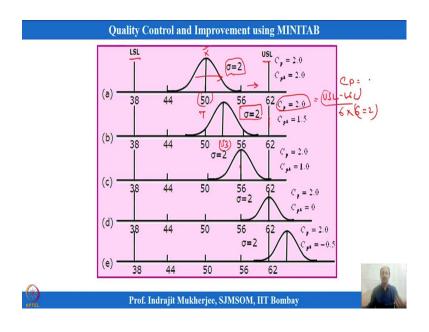
And, I I want Container data to be placed over here and LSL is given as 200 over here and upper specification limit is not there.

(Refer Slide Time: 16:47)

Ministab - Unitstied File Edit Data Calc. Stat Graph View Help Assistant Additional 3 Stat Stat Graph View Help Assistant Additional 3 Stat Stat Graph Stat Stat Stat	12 12 14 de
Process Capability Report f × ×	
PROCESS CAPABILITY MWX	
Process Capability Report for Ring 1, Ring 2, Ring	J Dina A Dina C
	Capability Analysis (Normal Distribution): Options X
Due sees Canability Depart (Target (adds Cpm to table):
Process Capability Report f	Use tolerance of K × o for capability statistics K = 6
US Target US 73,045 Target 72,045 Samph Kan 74,012 Samph Kan US Stopev(Within) 0,009994	Perform Analysis Delays Delays Analysis Participant Coveral analysis Copadary ratio (Cp. Pp) Coveral analysis Copadary ratio (Cp. Pp) Conference Netting Conference Netting Conferen
• a a a a a a	- 13 C14 C15 C16 C17 C18 C19
Sample Container 1 Container 2 Container 3 Container 4 Con -	Heb OQ Cancel g 4 Ring 5
1 1 265 205 263 307	220 1 74,030 74,002 74,019 73,992 74,008
2 2 268 260 234 299 3 3 197 286 274 243	215 2 73,995 73,992 74,001 74,011 74,004 231 3 73,988 74,024 74,021 74,005 74,002
4 4 267 281 265 214	318 4 74,002 73,996 73,993 74,015 74,009
5 5 346 317 242 258	276 5 73.992 74.007 74.015 73.989 74.014
6 6 300 208 187 264	271 6 74,009 73,994 73,997 73,985 73,993
H 4 b H + Process capability.mwx	(
Process capability.mwx	
O Type here to search	
NPTEL V Type nere to search	🔜 🖬 🖬 🗐 🔍 🔍 🔍 🙋 🛄 👘 🛆 🖗 🖉

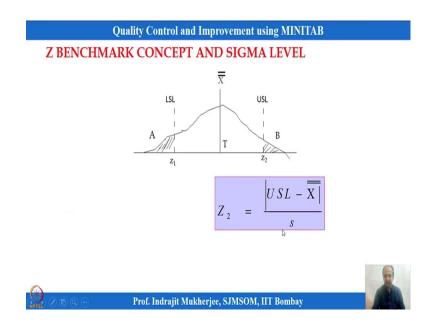

And, Options over here Within that is fine, target we have to change options, Target we will remove because this is a another example.

(Refer Slide Time: 16:58)


File	CESS Capabl	a Calc Stat	C ■ # Y ≥ 0 ■ Y ≥ 0 ■ Y ≥ 0 ■	** Ø 8K* K* Ø	istant Additiona	1. 四) ※ 未 利 ☆ ★	- 4 D	- - 8			0 ³¹	6 <mark>0 d</mark> a -A	5, El		×						- 8	×
	Pro LSL Target USL Sample M Sample M StDev(Wit	xcess Data 73.965 74 74.035 ean 74.0012 125	LSL	ability	Report f	Me Cecc Cecc	thods of es for subgrou Rbar Sbar Doled sta for subgrou Average n Median me Square ro	stimating w up size > 1 andard dev up size = 1 moving range oving range oving range oving range	ithin subg) iation) ge e	roup stan	dard de Jse unb moving	nation of St viation lasing consta range of len ndard deviat	ants gth: 2									*
+	CI	C2	63	C4	CS	-	Help					OK	_	Cancel	13	C14	C15	C16	C17	C18	C19	4
	Sample (ontainer 4 Con										g4	Ring 5						
1	1	265	205	263 234	307 299	220					1	74.030	74.002	74.019	73.992	74.008						
2	2	268	260	254	299	215					2	73.995 73.988	73.992	74.001	74.011	74.004						
3	3	197		2/4	243							73.988	74.024			74.002						
4	4		281			318					4			73.993	74.015	74.009						
5	5	346 300	317	242	258 264	276					5	73.992	74.007	74.015	73.989	74.014				6	1	
Hd	6 1 H +	900 Process capa		187	204	2/11					6	74.009	73.994	73.997	73.985	13.993					0	
1	Discourse	capability.mwx	and postation of the second se			-	-	-	-	-			-	-	-	-		III (no.	
No. P	1	pe here to se	arch		0		-	Ê	1	0	-	Q	8	8				∧ ĝ %				

So, estimation we mention \overline{R} . So, it will do like that.

(Refer Slide Time: 17:02)



But, what you see is that when I click this one results what you see C_p star information is given over here. So, star means it cannot calculate that one because this is one sided specification. So, if it is one sided we cannot calculate C_p values for that something else has to be done ok. So, this cannot be done. So, because I cannot see Δ over here so, in that case in case you have Δ then target values and in that case can be calculated, but we are not looking into that. So, one sided specification we will assume that C_p index cannot be calculated for that. So, some other index has to be done for those scenarios like that ok.

(Refer Slide Time: 17:43)

(Refer Slide Time: 17:44)

So, that I wanted to mention. So, then let us go back and see these diagram over here. So, this is the concept that is will be used by MINITAB. So, Z conversion of this. So, Z

conversion I mentioned that \overline{X} will come from control chart and then σ will be known which is S over here.

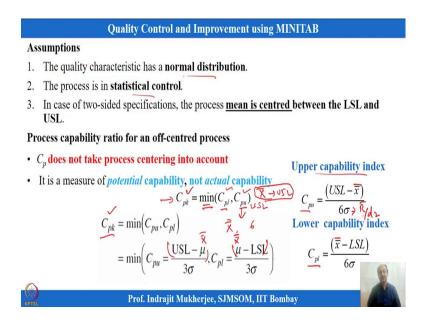
So, when I get these values what I can do is that what is the B probability of this area over here, B can be calculated, A can be calculated and based on that we can also calculate a Z benchmark concept which is used in calculating the sigma level of the process like that ok. And, MINITAB gives you this option we will discuss more about this ok.

But, what I am trying to say is that we can calculate capabilities and we can also calculate that what is the performance expected performance for that some Z conversion is required. So, Z and corresponding to this Z what is the probability that can be converted into PPM on both the sides like that.

So, this area and this area can be calculated and then that can be converted into PPM and that is what you see in MINITABs expression what you see over here. So, expected performance over here this is the portion what you what you can see.

So, in case this is normal, what is the expected performance in median. So, in long run what do you expect. So, if this is normal so, in population what do you expect? This is sample information. Sample information is giving you a performance observation is around 0, no fall out over here, but if you see if we consider the normality assumptions over here then in that case some fall outs are expected that is around 502 ok.

So, that is the; that is the idea of placing this expected within performance like that in PPM. So, some idea you will get how much PPM fall out will happen ok parts per million. So, this is the way they calculates and but what you see is that σ is 2 over here which is freezed and this is the specification what you see upper controlling with line and lower controlling with line over here.


And, in that case what you see is that σ is kept same over here, but the distribution is shifting. So, location was here which is the target value let us assume T, but it has moved from here to somewhere over here. So, this may be 53 let us say. So, mean is shifting basically. So, \overline{X} was somewhere over here which is on the target so, specifications was like this.

So, σ remains same and in this case, but the mean is shifting over here towards upper specification line. So, it will move to over here, but C_p index you see remain same

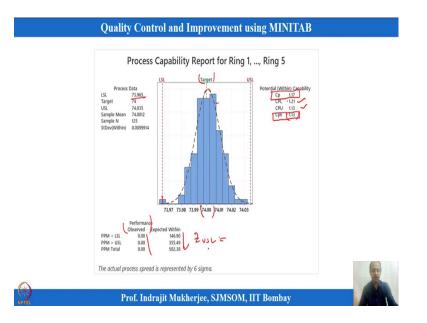
because $C_p = \frac{(USL - LSL)}{6 \times \sigma}$. So, standard deviation remains 2. So, it is not changing and USL this is also freezed, but the whole distribution is moving from this end towards this on the higher upper specification side.

So, accuracy part is not considered in this formulation what you see of C_p . So, what we have to do is that we have to revise this formulation, so that we will penalize if it moves to the upper specification or lower specification limits like that. So, even if C_p remains 2, we can expect that this is deteriorate our performance is deteriorating, but that is not captured in C_p .

(Refer Slide Time: 20:50)

So, what they do is that they uses another index which is known as C_{pk} index what you see over here which is the minimum value of C_{pl} and C_{pu} . This MINITAB will calculate automatically. So, this is for USL how much is \overline{X} from the USL and how much is \overline{X} from LSL.

So, if the difference between these two comes down, and then this C_p index also comes down like that. So, whichever way you move it will basically penalize the C_p values like that ok and minimum of these value is taken so as to ensure that we want to improve the minimum one.


So, in this case so, C_p index takes care of this centering concept of where is $\overline{\overline{X}}$. So, not only sigma is considered, $\overline{\overline{X}}$ is also considered over here. The formulation is USL minus $\overline{\overline{X}}$ we can think of over here and this is $\overline{\overline{X}}$ assuming that is the population average what we are getting.

So, minimum of these two values what you see will give you the C_{pk} index over here. So, the I want to penalize if it is moving away from the target. So, that is the objective over here and upper capability index is calculated C_{pu} . This MINITAB automatically calculates for you because average is known to us and in that case we can calculate $\sigma = \frac{\overline{R}}{d_{p}}$. So, in this case this is also not a problem to calculate.

And, then the MINITAB will calculate C_{pu} and C_{pl} and based on that minimum value it will report C_{pk} index over here ok. But, the assumptions over here what is considered is one of the assumptions is normal distribution assumptions that is taken; process is under statistical control that we told that only assignable. Assignable cause is not there so, under control. So, everything is stable and the mean is centered over here, then only we can calculate C_p index like that ok.

But, if mean shifts in that case we need to consider this formulation which is revised one and it is measure of potential capability what is mentioned not actual capability. So, in this case just an short term capability you can think of. So, in this case what we can do is that.

(Refer Slide Time: 22:48)

And, this can be calculated. So, here when you give the command over here you will find a C_{pk} index that is shown over here 1.33. C_p index what we have seen is 1.17 and it will calculate C_{pl} which is based on the previous formulation what we have shown.

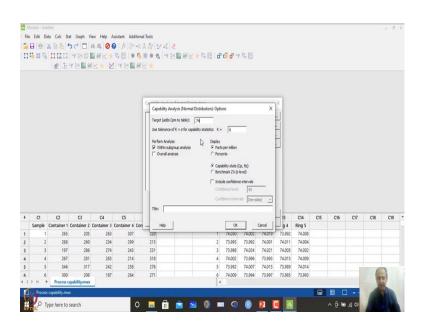
So, that can be calculated and this is shown over here what you see C_{pu} and minimum of these two is taken as 1.13. So, histogram is drawn over here with the overlapping normal distribution this is the target which was placed at 74 and this is the upper specification limit with 74.035 and this is 73.965 lower specification limit.

And, you will see performance, observe not a single observation falling outside this one as per the real data. And, but if you superimpose this and convert into Z and Z_{LSL} and Z_{USL} like that and that some probability we are getting and that can be converted into PPM and this is the number that we get ok.

So, how do you calculate C_{pk} index over here? So, I am just taking you to the same example that is given over here and we will delete other things. Then go to I am showing you again Stat, Quality Tools and Capability Analysis, Normal capability analysis.

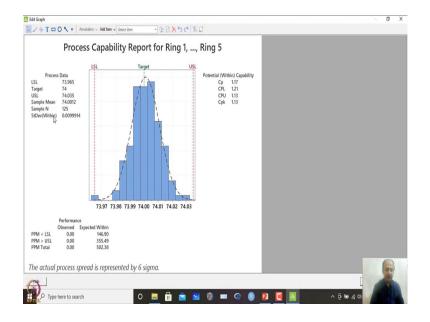
(Refer Slide Time: 24:27)

					ssistant Addition $f_x \mid \exists^{\alpha} = \exists$		14	E.											
1					時間 # 16				*卷图1	i ⁿ til d ^{n u}	Y构图								
		1 E	4Y 🖂 🛄 🗑	K \star 12	Y 🖂 🖬 📾	**													
						Capabili	ty Analysis	(Normal Dis	tribution)				x						
								Data are	arranged as			Transform.	1						
						11		(Single		_		Estimate							
						11			oup size:			Options	- 1						
						11			oups across rows o			Storage							
						11			1'-Ring 5'		A								
						11					×								
								Lower spe	ec:	73.965	□ □ Box	indary							
								Lower spe Upper spe		73.965	□ □ Box								
									RC:	_		indary							
							ielect	Upper spr Historical	RC:	_	□ □ Box	andary al) al)							
	CI	2	G	64	G			Upper spr Historical	nc: mean:	_	(option	andary al) al) OK	13	C14	C15	C16	C17	C18	c
		Container 1	Container 2	Container 3	Container 4 Cor	Hel		Upper spr Historical	nc: mean:	74.035	(option	andary al) OK Cancel	g 4	Ring 5	C15	C16	C17	C18	c
		Container 1 265	Container 2 205	Container 3 263	Container 4 Cor 307	Hel		Upper spr Historical	rc: mean: standard deviation	74.035	(option (option 74.002	andary al) OK Cancel 74.019	g 4 73.992	Ring 5 74.008	C15	C16	C17	C18	c
		Container 1 265 268	Container 2 205 260	Container 3 263 234	Container 4 Cor 307 299	220 215		Upper spr Historical	rc: mean: standard deviation: 1 2	74.035	(option (option 74.002 73.992	andary al) OK Cancel 74.019 74.001	g 4 73.992 74.011	Ring 5 74.008 74.004	C15	C16	C17	C18	c
		Container 1 265 268 197	Container 2 205 260 286	Container 3 263 234 274	Container 4 Cor 307 299 243	220 215 231		Upper spr Historical	rc: standard deviation 1 2 3	74.035 74.030 73.995 73.988	74.002 74.024	andary al) OK Cancel 74.019 74.001 74.021	g 4 73.992 74.011 74.005	Ring 5 74.008 74.004 74.002	CIS	C16	C17	C18	ci
		Container 1 265 268 197 267	Container 2 205 260 286 281	Container 3 263 234 274 265	Container 4 Cor 307 299 243 214	Hel 220 215 231 318		Upper spr Historical	ec: standard deviation 1 2 3 4	74.035 74.030 73.995 73.988 74.002	74.002 73.992 73.995	andary al) OK Cancel 74.019 74.021 73.993	9 4 73.992 74.011 74.005 74.015	Ring 5 74.008 74.004 74.002 74.009	C15	C16	C17	C18	c
	5ample 1 2 3 4 5	Container 1 265 268 197 267 346	Container 2 205 260 286 281 317	Container 3 263 234 274 265 242	Container 4 Cor 307 299 243 214 258	Heb 220 215 231 318 276		Upper spr Historical	ec: standard deviation: 1 2 3 4 5	74.035 74.030 73.995 73.988 74.002 73.992	74.002 73.992 74.024 73.996 74.007	andary al) Салсе! 74.019 74.021 73.993 74.015	g 4 73.992 74.011 74.005 74.015 73.989	Ring 5 74.008 74.004 74.002 74.009 74.014	CIS	C16	C17	C18	cı
		Container 1 265 268 197 267 346 300	Container 2 205 260 286 281 317	Container 3 263 234 274 265	Container 4 Cor 307 299 243 214	Hel 220 215 231 318		Upper spr Historical	tc: mean: standard deviation 1 2 3 4 5 6	74.035 74.030 73.995 73.988 74.002	74.002 73.992 73.995	andary al) OK Cancel 74.019 74.021 73.993	9 4 73.992 74.011 74.005 74.015	Ring 5 74.008 74.004 74.002 74.009	CIS	C16	C17	C18	ct


And, what do you do is that you Ring 1 to Ring 5 and select this one, then I change the specification as 73.965 and this is 74.035.

(Refer Slide Time: 24:45)

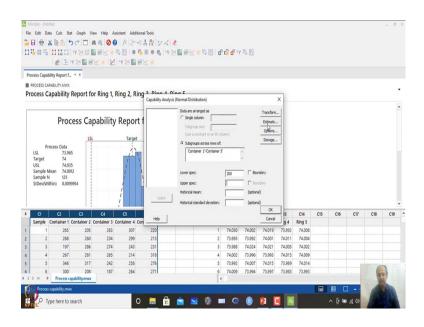
File		Data	Calc St	b¢⊡ Y⊠Ø	fiew Help / 共共 0 日 日 1 1 日 日 1 1 日 日 1 1 日 1 1 日 1 1 日 1 日	0 方 lin 時間 #		#a •¥ }	× 🛯 8	▶★ 登 話 Nstribution)	ď	ניי מיי יי	5 B		×							8 ×
								Methods of 6 (for subgro Sbar Pooled st (for subgro Average Median n Square n Use unbi	stimating wit up size > 1) andard devia up size = 1) moving range oving range soot of MSSD	ition 🖓	ndard de Use unt	eviation swasing const range of ler indard devia	ints gth: 2									
+	CI		C2	G	C4	CS		Help				OK		Cancel	- 13	C14	C15	C16	C17	C18	C19	1
	Samp	e c			Container 3		con	_	-					-	g 4	Ring 5						
1		1	265	205							1	74.030	74.002	74.019	73.992	74.008						
2		2	268	260							2	73.995	73.992	74.001	74.011	74.004						
3		3	197	286							3	73.988	74.024	74.021	74.005	74.002						
4		4	267	281							4	74.002	73.996	73.993	74.015	74.009						
5		5	346	317							5	73.992	74.007	74.015	73.989	74.014				6	7	
6 H (D H	6+	300 Process of	208 apability.mwx		264	271				6	74.009	73.994	73.997	73.985	73.993						
	Pro Pro		apability.mv pe here to				0 🗔	ŝ	â	M 🕲		•	8	1				⊞ (^@%				


And, then Estimation over here \overline{R} is the estimation that we will use, other things remains same.

(Refer Slide Time: 24:50)

And, Options over here target value let us say is 74, we can just mention about observation like that. And, Parts per million will be reported and Capability index will be reported over here, we will concentrate on that.

(Refer Slide Time: 25:03)


And, click Ok. What will happen is that you will get this information and this is the graph that will be reported over here and you see standard deviation is calculated. This is

the standard deviation that you observed over here and this is 0.0099, this is the within standard deviation; that means, $\frac{\overline{R}}{d_2}$.

And, this is the C_p index 1.17 and this is the C_{pk} index. C_{pk} is minimum of C_{pl} and C_{pu} that is the formulation we have and minimum is 1.13. So, a MINITAB is reporting C_{pk} value 1.13 what is as per the theories that is expected that is the theory that is expected ok. So, within performance is also given over here.

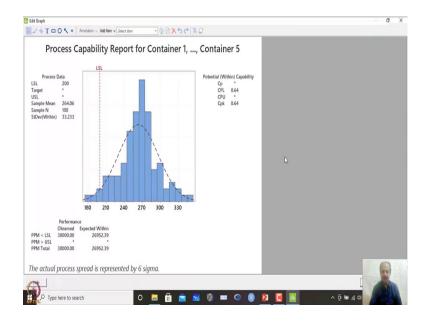
The actual process spread is represented by 6 standard deviation that MINITAB is expressing because the MINITAB has used 6 because I have given 6 as the option to calculate this one. So, that is reported over here. And, we can take the second example. So, if one sided specification, what will happen?

(Refer Slide Time: 26:13)

So, this example is has a one sided specification. So, I will go to Quality Tools and then I will go to Capability Analysis, Normal over here and then I will give Container this example up to this point and I will select those and in this case I will only mention 200. I will not mention the Upper capability Upper specification.

(Refer Slide Time: 26:20)

File		ta Calc St X6 🕲 🏠 🖣		14 00 BK×	ssistent Addition	古 (1) 服 来 #			≤ ★ 約	i d	° til d ° ''	/英国								- 8	×
		PABILITY MWX																			
				r Ring 1,	Ring 2, Ring	2 Di-	AD	s (Normal D	intribution					×							•
	Pro LSL Target USL Sample N Sample N StDev(Wit	ocess Data 73.96 74 74.01 1ean 74.00 1 125	55 35 012	pability	r Report	ecc recc	(for subgro Rbar Sbar Pooled st (for subgro <i>kverage</i> t Median m Square ro	stimating with up size > 1) andard devia up size = 1) moving range oving range soit of MSSD asing constan	ton	Use u	deviation nbiasing const ng range of le tandard devia	ngth: 2									Ŧ
	CI	62	G	C4	CS	_	Help				OK		Cancel	13	C14	C15	C16	C17	C18	C19	P
	Sample				Container 4 Cor	-		-					-	g 4	Ring 5						
1	1	265	205	263	307	220				1	74.030	74.002	74.019	73.992	74.008						
2	2	268	260	234	299	215				2	73.995	73.992	74.001	74.011	74.004						
3	3	267	280	2/4	243	318				3	73.965	73,995	73.993	74.005	74.002						
4	4	346	317	205	214	276				4	73,992	73.990	74.015	73.989	74.009						
6	6	340	208	187	250	270				6	74.009	73.994	73.997	73.985	73.993				6	1	
4 4 1	н +		apability.mwx	107	204	2/11						10.994	1.0097	131903	10.335				1		
10	Process	capability.mw	a	-		-	_	_									I IIII	1		1	
NPT	1.	pe here to			0		-		N	۰ 🔇	•	8	8				∧ ĝ ₩	0 /4 40	1		


And, then in Estimation we are mentioning \overline{R} formulation.

(Refer Slide Time: 26:24)

File	Decess Capabil	Calc Stat		# 00 8k** <* 2	stant Additiona : fx 3° -2 : ∰ : # % ·Y ⊠ ■ # ing 2, Ring	5日 ジス 単単化 ○ ≤★		8 ⊻ * ×	/ 11 d'	c <mark>o</mark> d ^o 44	48								- 6
		Proce cess Data 73.965 74 74.035 29an 74.0012 125	ss Cap		Report f	Capability Target (ad Use tolerar Perform Ar	Analysis (No ds Cpm to tabi ice of K × o fo alysis subgroup anal	le): Transferrer (apability st	atistics K = Display @ Parts C Perco @ Cape C Benc C Benc T Indu Conf	6	evel) intervals	X aded *	×						
+]	ci	62	63	C4	G		1				_		- 13	C14	C15	C16	C17	C18	C19
	Sample C	265	205	263	ntainer 4 Con 307	Help	_			0K	74.002	Cancel 74.019	g4 73.992	Ring 5 74.008					
2	2	268	260	234	299	215			2	73.995	73.992	74.001	74.011	74.004					
3	3	197	286	274	243	231			3	73.988	74.024	74.021	74.005	74.002					
4	4	267	281	265	214	318			4	74.002	73.996	73.993	74.015	74.009					
5	5	346	317	242	258	276			5	73.992	74.007	74.015	73.989	74.014					
6	6	300	208	187	264	271			6	74.009	73.994	73.997	73.985	73.993				6)
4	D H +	Process capal apability.mwx	ality.mwx					_	4										

And, then Options over here, the Target value I am not giving; Within subgroup analysis we want to do and Capability I want to report.

(Refer Slide Time: 26:32)

So, if you keep one sided specification what happens is that you do not get values of C_p over here and what you get is C_p lower C_{pl} , C_{pu} is not there. So, C_{pk} will be just C_{pl} over here ok. Similarly, if upper specification is given in that case here LSL was given as 200. So, that is why you are seeing this one.

But, if only upper specification is given it will calculate C_{pu} and that will be the value of C_{pk} basically. So, one sided specification; C_{pk} will be reported. But, C_p will not be reported like that and C_{pk} is the index that we will consider over here. So, that is the way we are doing capability analysis.

(Refer Slide Time: 27:28)

_			eport fo	r Contair	per 1 Contai															
					ier i, conta	Capability Six	opack (†	Normal Dist	tribution)	Contain			×							•
		cess Ca	ipabilit		ort for Co			C Single Subgr (use a	arranged as a column: roup size: a constant or an ID o roups across rows of:			Transform Tests Estimate Options								*
Sam		200 * an 264.06 100						Ring Lower spi Upper spi		73.965	~									
			-		EN	Select		Historical	mean: standard deviation:		(optional									
+ Ct Sam		C2	C3	C4 Container 3	C5 Container 4 Cor	Help						OK Cancel	13	C14 Ring 5	C15	C16	C17	C18	C19	
1	1	265	205	263	307	220			1	74.030	74.002	74.019	73.992	74.008						
2	2	268	260	234	299	215			2	73.995	73.992	74.001	74.011	74.004						
3	3	197	286	274	243	231			3	73.988	74.024	74.021	74.005	74.002						
	4	267	281	265	214	318			4	74.002	73.996	73.993	74.015	74.009						
4		346	317	242	258	276			5	73.992	74.007	74.015	73,989	74.014						

Another option you have in quality tools is that capability Sixpack. Here also there is a Normal. Here we you will get one more information that is Control Chart information also you can see. Control Chart let us say Ring 1 Ring this is the one and I give specification over here 73.965 and this is 74.035.

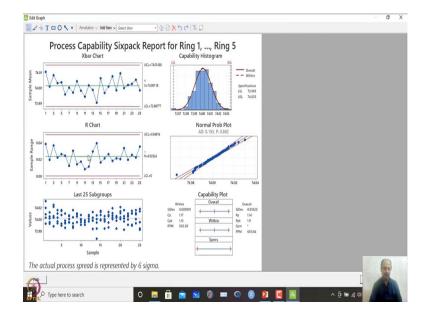
(Refer Slide Time: 27:39)

File	8	ata Calc Si X 🖻 🏠	५ ८ □ ५ ≥ ∅	n n 10 1 8 k 1	Assistant Addit	< 古 沿 ◎ 雅 兼			l K * \$	11 da	co d a -1	14 E								- 8	2
Pr	ocess Capa	bility Report f	• x																		
	PROCESS C	APABILITY.MWO				_															
Pr	Pr	OCESS C	Capabil		port for the second sec	Cop	Methods of 6 Capability St (for subg C Sbar C Sbar C Pooled (for subg C Median C Square Use unbiasin Within su	estimating w atistics roup size > assindard de roup size = e moving ran root of MSS g constants bgroup	tviation 1) nge ge	standard di Contro (for C SI C P (for C SI C P (for C SI C P (for C C M	eviation il Charts r 1 < subgrou bar subgroup si bar subgroup si bar subgroup si verage movin ledian movin	up size ≤ 8) rd deviation ze > 8) rd deviation ze = 1) ng range		×							
+	CI	C2	G	C4	CS		Use moving r	and after	oth: 2	_			+	13	C14	C15	C16	C17	C18	C19	
	Sample				Container 4	ion	out noring i	a ye o an	And In				-	94	Ring 5						
1	1	265				2	Help	1			OK		ancel	73.992	74.008						
2	2	268				2		_						74.011	74.004						
3	3	197				23				3	73.988	74.024	74.021	74.005	74.002						
4	4	267				318				4	74.002	73.996	73.993	74.015	74.009						
5	5	346				270				5	73.992	74.007	74.015	73.989	74.014			-	6	7	
6 H d	D H ··	300 Process of s capability.ms	capability.mwx		264	27				6	74.009	73.994	73.997	73.985	73.993				-	-	
NP	01	Type here to	search		() 📮	:		M (Q	8	0				^ @ %	<i>a</i> 40	1		

And, then I do Estimation same method over here. I keep it as it is. So, subgroups size it is not one. So, Within capability analysis. So, I am doing that one.

(Refer Slide Time: 27:51)

File	8 2 3	ea Calc Se X 🗎 🔂	C ⊂ I	14 0 (18 k *	ssistant Addition	古台) 雅泰王			8K *	科問	ď	ca a n -y	英国								- 0
Pro	cess Capat	oility Report f.	- × ×																		
		PABILITY MWX apability	Report fo	r Contain	ner 1, Conta	Capabin	Conto ty Sixpac	inor 3	Distributi	on)	1 0	ontain			×						•
È					_			Data	are arran	ped as				Transform							*
		cess Data 200 * Mean 264.0 4 100	16		ort for C		Number Target I Use tole Display (* Cap	lity Sixpa- of subgro (adds Cpm rance of K sebility sta chmark 25	ups display to table): × o for ca s (Cp, Pp)	: Last pability st	25	_	Cano								·
+	CI	C2	G	C4	C5	i	_		-	-	-			ОК	13	C14	C15	C16	C17	C18	C19
	Sample	Container 1	Container 2 C	Container 3	Container 4 Co	n <u>He</u> l	>				_			Cancel	g 4	Ring 5					
1	1	265	205	263	307	220					1	74.030	74.002	74.019	73.992	74.008					
2	2	268	260	234	299	215					2	73.995	73.992	74.001	74.011	74.004					
3	3	197	286	274	243	231					3	73.988	74.024	74.021	74.005	74.002					
4	4	267	281	265	214	318					4	74.002	73.995	73.993	74.015	74.009					
5	5	346	317	242	258	276					5	73.992	74.007	74.015	73.989	74.014			-	6	3
6 H (D H +	300 Process c capability.mw	208 apability.mwx	187	264	271					4	74.009	73.994	73.997	73.985	73.993		III (1	2
NP	1	pe here to			0		i ii		-	1	-	0	8	23	1			∧ ĝ ₩		1	


And, then what I do in options what I do is that I do not add Targets over here because we do not need to calculate C pm. So, that we are not interested into.

(Refer Slide Time: 28:10)

Proc	ess Capab	K Report f	Y ≥ 0 Y ≥ 0	n 4 0 8 k * k * 1 k	(Y X8 8	占吾 ジベ 雅★哉 w ピ★	binor 2 (Container 4-C				x						
	Prod LSL Target USL	cess Data 200 •		ity Rep	ort for Co	C Perform al C Perform n C Choose sp C One pc I Nine 2 Six poir F Six poir F Fourter T Two ou	o tests secific tests to pr point more than 3 gints in a row on ints in a row, all in en points in a row at of three points ut of five points	erform standard deviations fro same side of center line noreasing or all decreasi w, alternating up and do smore than 2 standard do	ng wn deviations fro rviation from	center line (
	Sample N Sample N StDev(Wit		3		FT.			within 1 standard deviat one than 1 standard dev										
	Sample N		3 C3	C4						nter line (ei		13	C14	C15	C16	C17	C18	C19
	Sample N StDev(Wit	thin) 33.23 C2	G		CS Container 4 Corr	F Eght p			lation from ce	nter line (ei	ther side)	13 g 4	C14 Ring 5	C15	C16	C17	C18	C19
	Sample N StDev(Wit	thin) 33.23 C2	G			F Eght p			lation from ce	nter line (ei	ther side)	13 g 4 73.992		C15	C16	C17	C18	C19
	Sample N StDev(Wit	C2 Container 1	C3 Container 2	Container 3	Container 4 Con	F Bightp		ore than 1 standard dev	lation from ce	nter line (ei	her side) Cancel	_	Ring 5	C15	C16	C17	C18	C19
	Sample N StDev(Wit	C2 Container 1 265	C3 Container 2 205	Container 3 263	Container 4 Con 307	F Bight p		ore than 1 standard dev	lation from ce	nter line (ei	ther side) Cancel 74.019	73.992	Ring 5 74.008	C15	C16	C17	C18	C19
	Sample N StDev(Wit	C2 Container 1 265 268	C3 Container 2 205 260	Container 3 263 234	Container 4 Con 307 299	☐ Bight p Help 220 215		ore than 1 standard dev	(ation from ce (0) 74.030 73.995	74.002 73.992	Cancel 74.019 74.001	73.992 74.011	Ring 5 74.008 74.004	C15	C16	C17	C18	C19
	Sample N StDev(Wit	C2 Container 1 265 268 197	C3 Container 2 205 260 286	Container 3 263 234 274	Container 4 Con 307 299 243	220 215 231		ore than 1 standard dev	74.030 73.995 73.988	74.002 74.022 73.992 74.024	Cancel 74.019 74.021	73.992 74.011 74.005	Ring 5 74.008 74.004 74.002	C15	C16	C17	C18	C19

So, in this case K equals to 6. Test over here what I see one point going outside see sigma that is the condition in control chart that it is asking. So, we are doing that one. Either all 8 tests that is defined western electric we are not doing that. So, we are taking only one condition over here or other patterns we are not considering.

Any point going beyond plus or minus 3 standard deviation, that we are considering as abnormal scenario. So, I click Ok.

(Refer Slide Time: 28:31)

And, what will happen is that you will get this type of Sixpack many things you will get over here. So, in this case what you will get control charts X bar, R chart is plotted over here everything is in control and based on which upper specification lower specification is given. So, within specification C_p value 1.17 and C_{pk} is 1.13 that was the value we have calculated earlier and this shows any abnormality in the 25 subgroup size any observation that is very peculiar ok from the central line.

So, nothing peculiar is observed over here. So, and in this case random samples we can say. So, these are there is no problem over here. You will also find a normal probability plot that I told that we use for seeing whether the data set is normal or not. So, in these case what is observed from this dataset we have not gone into that details over here. But, we will discuss that in our next session in that.

And, we need to see how to check normality assumptions and over here you will find a value which is mentioned as p and that p value we see to check whether the normality assumption is violated or not because C_p and C_{pk} index depends on whether the data set is normal or not and what we are seeing is that data follows normal over here and all the

information in one go Sixpack means all the information in one go you are getting over here.

So, you can use that one as the option to see whether X bar, R is satisfactory then only we will go for C_p , C_{pk} index and then we will see whether to improve the process or not to improve the process like that. So, what we will do is that we will stop here we will start our next session from here and we will try to see some more information on sigma level and out calculate that one.

Thank you for listening to this lecture. We will return back in the next lecture with this topics to continue here.