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So, now the question is, fine. I went from cardinality of log(x) to log of cardinality of h. 

Maybe I can do further, maybe like type just gave you two algorithm, right. Then, if then 

we may ask the question is it possible like I will get something better. 
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Maybe something better could be just like I can say, instead of log2 |𝐻| is it like 
1

2
log2 |𝐻| 

if I can get that algorithm is still better, right. That is giving that is making smaller mistake. 

Now, the natural question when we have this, this algorithm better, this algorithms is used 

to be still better, still this algorithm to be still better. So, how much better we can do? Is 

there a limit to that? So, that limit will be decided by what? Of course, but who is you are 

the one who is picking. There is an environment and you are learner, right. You are 

learning an environment. 
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If the environment become more and more, more and tougher, right. So, as I said earlier if 

I have not put this realizability condition, there is no way you could have gotten all these 

things, right. You would environment could have made you incur loss in every round. So, 

of course what kind of bounds we are going to get it depends on how tough our 

environment is. We had restricted our environments capability by putting this realizability 

condition here, ok fine. 

Even once we have put this realizability condition and we are restricted the power of 

environment, we missed one to say, under this scenario what is the best I can do, what is 

the best bound I can achieve, is it that log2 |𝐻| is the best I can do or something I can go 

beyond this, ok. 

So, to do this let us introduce some notion and notice that this bounds I am giving you is 

irrespective of how the environment is choosing xt s, ok. Even though I have said that there 

is a fixed h* that is going to assign label I have not made any assumption that how this h*  

itself is chosen. The h* chosen could be very complicated and because of that you would 

may not easy for you to figure out what is that h*, ok. 

So, to understand that what is the best we can do, maybe if we can give a lower bound on 

this. If we can say that, no matter what algorithm you are going to use you will be going 

to incur at least this much of loss that means, that is like a dead end for me, right. Like no 

matter how intelligent I am how best my algorithm is I will be going to suffer this much 



of loss. Then, we will see that if at all we can derive that then we will see that whether 

whatever the upper bound I got was that how good it was compared to the lower bound, 

ok. 

So, to do that we will just formally introduce the notion of mistake bounds and online 

learnability, ok. 
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Let us say this is one sequence from the environment you faced, where in round in the first 

round environment generated this pair, x1 and the associated label h*(x1) like that and in 

the nth round this was the one.  

So, notice that this is not the same sequence you are going to face every time your in 

algorithm, if you are going to restart your algorithm the sequence seen by you or algorithm 

could be altogether different, ok. So, I am just saying let us say this is one sequence that 

your algorithm faced. 

And let me denote 𝑀𝐴(𝑆) denote the maximum number of mistakes sorry, the number of 

mistakes your algorithm made on this sequence S, ok. So, for all my talk all our discussions 

were going to fix this small n. We are going to assume that my algorithm is for run for 

some fixed number of rounds that is going to be n. What my interest is the number of 

mistakes I am going to make.  



And now I do not want to I will be not interested in giving a bound on a particular sequence. 

I would like to give a bound which is irrespective of what sequence I am going to see, right 

because I do not know what is the sequence my algorithm is going to face, ok. So, then I 

am going to denote. So, this is the mistake my by my seen made by my algorithm A on a 

sequence S. 

Now, I am saying that I am putting it against all possible sequences and see what is the 

maximum number of mistakes it is going to make on any of this sequences. So, whenever 

I am going to take the worst case scenario here, right. I am looking at what is the toughest 

sequence you faced so far.  

So, toughest sequence is the one on which you made the largest number of mistakes. So, 

that I am going to denote by 𝑀𝐴(𝐻). So, H is my hypothesis class, A is my algorithm. So, 

this is the number of maximum number of mistakes made by my algorithm A while 

learning my hypothesis class H. 

Let me rewind this I said that taken S which has this n points in this and I am going to call 

this 𝑀𝐴(𝑆) to be the number of mistakes made on sequence S. And now I am going to take 

this supreme or S to be the maximum number of mistakes I made in any sequence.  

And here I do not need to restrict my S to be of size n, this could be of arbitrary length. 

You may have run it for n equals to 100 or you may be you may have run it for n equals 

1000 or may be n equals to 1 million. 

Now, we are going to say that this hypothesis class is online learnable, if there exists some 

algorithm A. I do not know what algorithm is this for which I should be able to bound this 

guy. What is this guy? This is the maximum number of mistakes I am going to make on 

any sequence, if I can bound it by some B which is a constant and finite if that is the case 

then I am going to say online learnable, ok. 

Now, my two algorithms like consistence algorithm and my halving algorithm were they 

online using them if I have a finite hypothesis class H, can that final hypothesis class be 

made online learnable using this algorithms, ok. So, like put alternatively if I have a 

hypothesis class which is finite in size, is it online learnable according to this definition? 

Let us assume this, this right now we are in that realizability assumption. Is this online 

learnable according to this definition? 



Student: Yes. 

So, what was B for my consistence algorithm?  

Student: Cardinality of H (Refer Time: 10:59) H (Refer Time: 11:00). 

If H is finite then cardinality H is finite and I can take that value has to be my B, right. So, 

I have a bound which is independent of what was my sequence length and for the halving 

algorithm, I got log2 |𝑣| which I can take it to be B. So, that is why it is taken. 

So, as long as I have a hypothesis class which is finite in size and good. According to this 

definition I am learnable. It is not like if I continue to use that algorithm forever I will 

make an large number of errors, at some point you stop making errors because your 

number of mistakes is bounded by a finite number. After that you are going to make no 

more mistake.  

Or just think of like if I have an algorithm you start applying on it, and you keep on 

applying it forever, after some point that algorithm will not make mistake, right because 

you have ensured that its mistake bound is finite. 

So, now you have to now answer the question what is the best we can do, right. Is this 

whatever B we got earlier like |H| and log2 |𝐻| is that something better than we can do 

better or if that is the case what is the what is that we should aim for.  

So, for that we now look a lower bound on the number of minimum number of mistakes 

that the environment can force on me because the environment is the one against whom 

we are learning, right. If the environment becomes complicated maybe it can force more 

errors on me.  

But what is the maximum number of errors it can force on me? And can I also ensure that 

whatever it can force maximum number of errors I will not make more errors than that. 

What are been enforced on me which is unavoidable, ok, fine, that much errors I will make, 

but no more than that, ok.  
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So, then we will talk about what we call as. So, any questions so far about this algorithms 

and the notion of whether hypothesis class is online learnable?. So, see how we are stating 

this results under what assumption like, if we do not have this realizability assumption 

these are all incorrect. We will, in the next class we will relax that assumption like, if we 

do not have that realizability assumption what is that we should look for, ok.  

So, to understand this what is the lower bound we are going to get on this mistake, we have 

to understand what is the power the environment has. So, the power environment has we 

should think it in an adversarial manner; so, what is the best mistakes that the environment 

can force on it, right.  

So, I mean sometimes we sit in some sports, right tennis and all. If you are playing against 

a very tough player he can force a lot of error on you, right. Like I mean you can make self 

errors, but the opponent is very strong he can hit it in some spots which will make you 

error. So, it depends on what is the power of your enemy. 

Now, here let us treat the environment to be in a similar fashion let us say environments 

aim is to just make sure that you make lot of errors; he want to win against you; how much 

errors he can force on you, ok. So, in that way we are always going to treat this interaction 

between environment and the learner as a game. One guy is you are trying to play trying 

to learn your opponent and up by making minimum number of mistakes and maybe like 

opponent let us say he is trying to enforce a more number of mistakes on you, ok. 



Now, the question is you have ensured that through this bounds; however, tough is your 

enemy or however, tough your opponent I will not going to make more than this mistakes. 

You have ensured this. But now let us ask from the opponent’s point of view or from your 

enemy point of view how much mistakes he can at least enforce on you that will be his 

question, right.  

So, for that we are now going to understand what is the power of environment and what is 

the power of your opponent. And remember we are going to look at the power of your 

opponent or environment, still under the restriction that he has to follow the realizability 

assumption. We have I will set up a rule for this game which is realizability assumption. 

He has also has to show his power under this rule.  

So, to understand this we will consider little bit of this tree structure. So, consider a binary 

tree of depth n, ok. So, if I have a binary tree of depth n, how many nodes it is going to 

have? 2n+1-1 nodes(if depth starts from zero) , right. So, let us consider for simplicity. Let 

us take the case of simply 3 nodes; when sorry; depth to, I have a depth to 2 here and I 

have 7 nodes here, ok.  

Let us call this to be v1, v2, v3. Now, let us say I will come up with, I am going to look at 

for these points I mean these v1, v2, v3 they are basically sample points which we denoted 

as xt earlier, ok. These are the ones. So, v1 is the first point, v2 is the second point, v3 is the 

third point like that. 

So, let us say the adversary tries to follow, do the apply the following strategy. Here 

initially throw you v1. Let us forget what the learner is doing, let us only think of from the 

adversary point of view or the environ point of view. He will start with v1 this is the root 

node here and then let us say he is going to apply assign some label to this.  

If he applies label like 0 label, he is going to move towards its right child and in the next 

round he is going to use this has his sample. If he gives label 1, he will move to this point 

and then he is going to use this as the next sample like this. He keep on doing that.  

At this point after he, suppose in this point if he has assigned label 1 to this, let us say he 

moved here and at this point he assigns label 0 he will move towards his left side and if 

we which is, this is; when I see this let us say this is my, right and this is my left. So, when 



is here when he applies 0 label he will going move towards, right and then he is going to 

take left he is going to assign label 1 and like that he keeps branching like this, ok. 

So, now if we have 2n+1 -1 nodes(these are the nodes that we can label if depth starts from 

zero), I am going to enumerate them as {𝑣1, 𝑣2, 𝑣3, … , 𝑣2𝑛+1−1} . So, these are the node 

choice he has and using these node choice he has constructed a binary tree like this, ok. 

So, now, as I said his strategies going to be, he is going to choose x1 to be v1 to begin with, 

ok. Now, right away let us at round t, let us do at round t. Let us say at round t is at it is his 

current node, ok. At something like let us say it is this current node. 

Now, from this node if he is going to assign a label 0, he is going to go to the next child 

node which is towards his right and if he is going to assign value label 1 to the point at it, 

he is going to move towards his left, ok. So, let us say how to write. So, let us say if we 

choose xt equals to vt, I think I have to use this slightly different label to be consistent, ok. 

I will I will just flip the labels here. 

We go to left child if this is going to and then v go to right child if yt =  1. So, let us try to 

define just this strategy of when whatever this construct like this and then we will see that 

how the adversaries going to use this to inflect what kind of damage he can inflect on the 

learner, ok. 

If this is the case at it-th round he is going to either right or left depending on whether your 

label is going to be yt = 0 or yt = 1. And I have labeled my nodes in this fashion v1, v2, v3, 

if I have further down I will label it as v4, v5, v6, v7 then v8 v9 like this, ok. 
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Then, if it is this case what is it+1 is going to be? It is going to be 2it+yt. So, I am going to 

one stage down, going to next stage. Can I write this in a iteration fashion the node 

numberings? So, let us say let us take the simple case, let us say I am in this node, this is 

my it. Let us say I have made a label 1 and I came here. What is this value is going to be? 

Student: 6. 

So, it is going to be 6, right. So, 3, it is 3 to the 6. 

Student: Sir, (Refer Time: 24:19) label 0, 2 times 3 plus 0th (Refer Time: 24:22). 

Right. So, when I said it is going to come this is going to be 0, right yt is 0 in this case, it 

is going to be 3 into 2, 6, we are going to get. So, like that I can iteratively write this. So, 

this is it+1 written expressed in terms of it. I can do the same thing, right I can replace it 

here by it-1. If I keep on doing this repetition what I am going to get, you can verify this. 

So, he can write it+1 in terms of the labels. So, finally, what I have? it+1 expressed in terms 

of the labels I have seen till time t - 1, right.  

No, I am saying that let us say my environment is just going to use this strategy. He is 

going to start with this node. He will assign a label to that based on whether he assigned a 

0 or 1, he will go to the next one and he can continue to do this. No, this is j running from 

1 to t - 1. 



. So, how many of you are already know the notion of VC dimension? You know VC 

dimension. Which course? 

Anybody else. So, in machine learning especially in the supervise learning setting those of 

you know what is VC dimension. I mean those who do not know about VC dimension 

kind of VC dimension tells you what is the complexity of your hypothesis class how tough 

it is and based on that we determine what is how many samples we need to get. So, that 

we can guarantee certain number of error on your risk basically. 

We are going to use a similar notion of something VC dimension, we will come to that. 

But as always like before we decide define the notion of VC dimension there is something 

called shattering, right. So, we will just introduce the analog motion of that then I am we 

will just discuss that in the next class. So, those who do not know that notion of VC 

dimension.  

So, just read it before you come to the next class. In the supervise learning set up when 

you look into basically if you look into the learning theory of supervise setting, you will 

definitely come across this term shattering and VC dimension.  

So, as I said we constructed basically this decision, binary decision tree using this 

instances, right. So, let us say you have the sequence of instances which forms a decision 

tree of depth d. We are going to say that this decision tree here whatever we have is going 

to be shattered if there exists a hypothesis class H such that you give any kind of sequence 

of labels.  

So, you have this points, you give any arbitrary labels set of labels of d, upto d then v 

should be able to find a hypothesis class h such that all this points here will be getting a 

label yt according to this strategy that we adopted. That is the it
th node will be selected in 

this fashion, and when we select that it
th node the corresponding node on that will get the 

label that you want. 

So, basically we are saying that this decision tree like this is going to be shattered if I can 

come up with a hypothesis such that you for any given you give me this sequence of labels, 

labels series, right. So, this labels you are going to see. I will reproduce that label by taking 

this path. You understand this, ok. 



So, we will bit discuss this more this notion of shattering. It will be easier for you to digest 

this concept if you look into what we what is VC dimension in supervise learning, ok. We 

will revisit in the next class. Please do read that book notion of VC dimension.  

 


