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Introduction to Pure Exploration and its Lower Bounds 

 

We are going to start looking into another setup in multi arm bandits called pure 

exploration today. So, where we do not care about regret or what is the reward I am going 

to accumulate till some point or it may be the case that what I only worry about is whether 

finally, the arm you gave me is the optimal one or not ok. So, let us consider an example. 

So, you all know that like before all these drugs are tested on in a laboratory in a lab on 

some animals, let us say mouse let us say or on mice. So, what they will do? They will 

have set of drugs they want to test and finally, identify which is the drug which is most 

efficient. 

When they are doing these trials, they will not worry about how many mouse or mice they 

killed right like because some of the drugs what they want is at the end I whether I identify 

the best drug or not, so that when I apply on humans the risk are minimal or that is the 

most effective drug. But, while I am applying on testing it on the mouses or mice I do not 

really care. 

So, what for me there matters is whether did I identify the most efficient drug or not. So, 

during the exploration I am not worrying about like how many mouses I really saved. It is 

fine like as long as that that experiment is helping me in identifying which is the good drug 

I have full freedom. 

And, similarly let us say you want to; you want to identify which is the best restaurant in 

surrounding area of Powai what you could just do is if you do not care about the money 

you are going to spend you just go and eat in every place every time and at the end you 

have to recommend to some one of your friend or let us say your parents have come and 

you have to take them, then you are going to say ok, so, let us go for this I have already 

explored and let us go to this restaurant. 

So, when you are exploring you did not care whether you are to get the best or not, but 

what you are trying to do is just identify which is the best one. So, in this setup in a way 

651



you are not worried about the regret right what is happening, what is the cumulative reward 

or loss you are going to incur some time. 

Now, such problems are usually called as pure exploration problems and in that also there 

are different-different versions ok. So, we are going to start with the case of simple regret 

ok. 

(Refer Slide Time: 03:29) 

 

Let us recall our standard stochastic multi arm bandit case. So, in the standard stochastic 

multi arm bandit case, how did we put our criteria? We evaluated the performance based 

on the regret we are going to incur. How was the regret defined there? 

In the stochastic we defined regret of an algorithm   over an environment   as I could 

write it as  
*

1

( , ) [ ]
t

T

T I

t

E XR   
=

 
= − 

 
  or let me just write it as 

*

1

( , ) [ ]
t

T

T I

t

ER    
=

 
= − 

 
  

So, this is the reward sample you got when you played tI  arm, I am just took the 

expectation, but tI  still a random quantity that is why because that depends on all the past 

observations. 

So, we are going to look at this. Let us take a particular time t, what is this quantity here? 

This quantity we can treat it as the loss of the regret instantaneous regret I incurred in 

round t and the regret is what? It is sum of the instantaneous regret you are going to incur 

in each of these rounds. 
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Now, instead of worrying about what is the instantaneous rounds and, how they 

accumulate over a period of time suppose let us say I am only worried about what is the; 

what is the regret I am going to incur of. So, 
1TI +
, what is 

1TI +
? This is the arm that is 

recommended by this algorithm at the. 

Student: (Refer Time: 05:57). 

After the T-th round that is in the (T+1)th round, you are worried about this. You whatever 

in T rounds you wanted to do let us say you did it, but now you wanted to worry about this 

quantity and let us worry about the expected value of this quantity. And, now this we are 

going to call it as a simple regret. Simple regret I am going to write it as simple of what 

our term   you are going to have. 

So, till first T rounds whatever I got I do not care, but now my performance is defined in 

terms of what would I have got in the (T+1)th round and my goal now I am going to set it 

as minimize this quantity. This is (Refer Time: 06:58). So, anyone has simple algorithm 

to minimize this simple regret what could be simple way? 

Student: Arms equal number of time. 

Ok. 

Student: And then choose the arm like mean will be maximum. 

Which has the highest mean. 

Student: Highest mean. 

Empirical mean right ok. So, that is what is that is what similarly we actually did in explore 

and commit algorithm also right, but there we also worried about the entire regret, but let 

us say I apply the same algorithm here and evaluate my simple regret ok. 
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(Refer Slide Time: 07:50) 

 

So, whatever the algorithm you set that is like let us call that as a simple uniform 

exploration. What this algorithm is going to do is simply the first T rounds it is going to 

spread along each the arm equally and then it is just going to play the best one at which is 

best in the sense that which is empirically best. So, for. So, here k is the number of arms 

and then. 

So, what is ˆ ( )i T , is this is the empirical estimate of arm I you have gotten till round T 

fine. So, you are just doing this then the question is how what is what will be the simple 

regret for this simple algorithm. How to bound this? Ok. Let us try to get the bound for 

this we already have done it the bound we are going to get is very similar to what we did 

it in the explore and commit algorithm. 

I am going to denote by 
*

i i  = − ; 
*

  is the mean of the optimal arm and i  is the just 

like mean of the i-th arm. Now, let us say 1TI i+ = . So, let us say I happen to choose 1TI +

equals to i-th arm, what does this mean? It means that. 

Student: maximum. 

It should be ok. So, I am going to assume that arm one is the optimal arm ok. So, I am just 

without this is without loss of generality algorithm does not know, but for unless point of 

view just assume that arm one is the optimal arm. Now let us say. 
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So, in this case if I have chosen i-th arm then it must have happened that the mean of this 

would have been at least equal or greater than the mean of the optimal arm ok. Then we 

want to bound what is the probability of this. By the way how many times each arm is 

sampled in this? 

Student: T by k. 

T/k. Let us say T/k is a integer for time being, now how to bound this? Ok. We know this 

what is this quantity this is nothing but so, or I am going to just write it as 

µ µ
1{ ( )r ( ) 0P }i T T −  . This I am going to simply write it as I want this to be greater than 

or equals to 0 ok. 

I did some manipulation here. I know that µi  has been obtained by averaging T/k samples 

of i-th arm right. And, similarly µ1  is nothing, but T/k. I have so, average of 
iX  averaged 

over T/`k number of rounds. 

Student: sir shouldnt like the floor to keep the (Refer Time: 13:48). 

Floor of what? 

Student: Floor of T/k. 

So, the number of samples I am going to get for both of them. 

Student: Because total number of times we are going to place T. 

T yeah. 

Student: So, it should be less than t by (Refer Time: 14:07). 

Let us keep it like that let us say the everything for us goes through and I am just not 

writing the indices here, but these indices are this sum is assumed to be over T/k number 

of samples. And, I know that iX  has mean i  and 1X  has mean 1  and the difference 

between their means is i  that is what I added on both sides ok. But, the difference here 

is i− . 

Student: 1 i − . 
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Yes,  
1 i −  is 

i , but that is fine this is the expectation of this is going to be. 

Student:  (Refer Time: 14:58).  

i− . But, if you look into this, is this a zero mean random variable? Yes, right it is a zero 

mean random variable. Let me make one more assumption that assume that the each of the 

arms have sub Gaussian distribution and specifically we are going to assume that they are 

all one sub Gaussian. So, that the sigma square parameter is 1 and they are independent 

across the arms. So, now, in that case what is the distribution of this going to look like? 

Yeah? 

Student: Root 2 sub. 

(Refer Slide Time: 15:55) 

  

It is going to simply 2 sub Gaussian. Now, if I am going to apply. So, if I am going to 

apply µ µ
1{ ( )r ( ) 0P }i T T −  . Now, if I am going to apply the property we have for a sub 

Gaussian noise this is going to be 
2

exp
4

/ * iT k 
 
 

. So, in the denominator we usually got 

2 2 right, but 2  is what here? 

Student: 2. 

It is going to be 2. So, it is going to be 4 now. Notice that the when you are going to do 

the averaging right the number of samples are fixed. The number of samples are no more 
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random because I know that after T rounds I would have had each the number of samples 

is this floor of T by K. So, this quantity is a deterministic in this case. That is why I could 

apply my result that I have for the sub Gaussian case ok. 

Now, once I have this I am now going to bound my regret sorry my simple regret. What is 

my simple regret? My simple regret is this is nothing, but probability that and what is this 

probability? Probability that 
1TI +
 equals to i is upper bounded by what? By this quantity 

right because this probability that 
TI  equals to 1 is exactly this condition and we have 

bounded that probability. 

So, this is going to be like. So, now, to tighten this bound what we are going to do is let   

be some quantity whatever you choose delta be some quantity. Now, I am going to split 

this sum as maybe like before this I will do this not here. 

(Refer Slide Time: 19:07) 

 

So, I am going to split this sum as 1 1P { } {r }Pr
i i

k k

T i T iI i I i+ +

   

+=  =   . I have split it into 

these two format based on what is the delta I have chosen ok. So, I know that my now this 

is going to be 0d  this is somewhere 1 , this is going to be 2 all the way up to this is going 

to be somewhere k . 
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I have chosen somewhere   here and that is why I could split it. I mean it may happen 

that delta is beyond this point also. In that case in this case it is going to be simply one 

sum, the second sum will not arise, but as of now I have chosen this   arbitrarily. 

Now, this quantity here I know that this   is upper bounded by so, the   is upper bounded 

by this quantity   I find, then I will going to pull it out. Then this is nothing then it is 

going to be the sum of probabilities for which this condition holds, but I know that there 

is some probabilities can be at most 1. So, that is why I am going to upper bound it as  , 

but the other quantity is going to still written like this, but in the other quantity yeah, I am 

going to I am going to. 

 So, this one I cannot bound it in a way I have done here because   is a lower bound on 

i  here. 

Student: Probability. 

Yeah? Yeah, but I will use the probability term here bound on the probability. But, here 

this 2

i  I have this   I know that this is lower bounded this   is lower bounded by this 

  right. So, if I replace this 
i here by   will I still get an upper bound? So, I will do that. 

Now, the way I have chosen this   here is arbitrary right. I have just said there is some 

0  . So, if I am going to do instead of this min over all these quantities such that 0   

it is bounded still a valid bound ok. So, this is what we are going to state as a result now 

what we have just proved. 

658



(Refer Slide Time: 23:16) 

 

So, I am going to use this notation (1)k

sgò , this means this is the class of distributions which 

are sub Gaussian with sub Gaussian parameter 1. So, when I say this   belongs to this 

means each of the arm is sub Gaussian distributed with parameter 1 and k denotes already 

the number of arms in that. 

Then for all T greater than or equals to K what we have just showed is 
TR  simple regret 

of this guy uniform exploration is upper bounded by what? min over (Refer : 24:31). Now, 

what does this bound tell us? So, if you look into this how does the T coming into picture 

here the number of rounds? It is coming as negative exponential in this it is coming as a 

negative part in this exponent, that is if I increase T this term is going to vanish 

exponentially fast right. 

So, this uniform exploration is going to be asymptotically optimal in that sense right 

because as I let T goes to infinity, this term is going to vanish and minimization I am going 

to take it toward equals to 0 and then this is going to say upper bounded by 0. I know their 

simple regret is already non-negative quantity. So, it is going to be 0. So, this simple 

algorithm is going to give us a simple regret that is going to be falling exponentially fast 

in the number of rounds. 

Student: (Refer Time: 26:15). 

Central limit theorem what do you want to say? 
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Student: T is approaching to 0 we will get the empirical mean close to the? 

Yes. So, he is claiming like if I am letting T go to infinity there also I am getting the right 

means right. So, I should not be making any mistake. The same thing is also being said 

here yeah. 

So, when I said this is going to go to 0, this simple regret exponentially fast that is for a 

you fix a environment and then you increase the number of rounds ok. But, now let us say 

if I fix the number of rounds to T and if I keep changing and am applying. So, let us say I 

will give you the I will give you fixed T and I am now asking you to apply it on different-

different environment. So, how is that?  

In that case if I fix T and if I am going to change this environment that is the 
i  are 

changing what could be the bound on this? So, you see that this guy here if I increase   

this guy is falling exponentially fast, but it is also there is an increasing parameter 
i  here 

that because that is going to increase the regret. So, let us see and also there is a   here. 

So, let us see if I am going to fix T and let us try to get a problem independent bound here 

that irrespective of whatever   is what is the regret I am going to get? One thing you can 

do is suppose I set environment and let us say if I am going to set my I will going to choose 

my   such that; so,   I said is arbitrary right it is just going to be greater than or equals 

to 0 in this I am going to choose a particularhere in this part here. 

If I am going to choose a particular   in this fashion can you quickly plugin this   into 

this equation and see what is the value you are going to get? So,    is going to be in that 

case this quantity is going to be   is this plus what is this going to do? It is going to if I 

square it just let me plug in myself here. So, T is going to be this is going to be 4 right one 

4 get canceled, this guy get canceled I am going to get. 

Student: Minus minus one. 

( )exp 2log k− , I am just going to written it and this is going to be simply i . 

Student: Sir we get 0.  

Will not only this 2 get canceled with this 4 here?  
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Student: Sir (Refer Time: 29:55). 

is it that? Let me just cross verify with calculation. So, if I do del square here 

Student: (Refer Time: 30:01). 

 it is going to be 4 into 2 log k divided by this quantity. So, 4 and 4 get canceled. Is it not 

because of this 2 this 2 will complete? 

Student: no its two root log k because  

2 2 log k. 

Student: (Refer Time: 30:16) written something (Refer Time: 30:17). I think that delta.  

I say did I fine. So, it is not like that this is (Refer Time: 30:22) right in that case it is 

simply going to be what? 2. 

Student: Plus. 

Log k one whatever this term T/k, this is going to be 1/k;  and how many terms here at 

most? k times will be there, right and if we are and what is this 
i ? 

Student: Bounded sub Gaussian bounded. 

Yeah, it is sub Gaussian right we do not know like whatever ah, but let us let us write it 

whatever it is a fixed content right. So, this is going to be k*(1/k)  it is simply going to be 

in that case is 
i is this. 

/ ( / )2 /
i

ilogk kT k
 

+   

Student: one by (Refer Time: 31:16). 

1/k I multiplied there is at most this sum can be at most K, right? 

Student: Yes. 
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I just I removed the summation ok that is summation is to be ok, if I am going to keep that 

ok. Now, let us see if I want to make it independent of this quantity fine. So, this we do 

not know like really what is the value of 
i  right, but we know that these are some finite 

quantities ok. I mean they are not at least infinity rights and so, that this 
i  are what the 

difference between the means. So, they are further bounded ok. 

So, if you are going to assume that all this means are all some finite then this is going to 

be just a constant right. So, this summation is going to be some constant in that way. So, 

then I have I will just write it as if I assume that the support is between [0,1]. 

Student: (Refer Time: 32:23). 

They are all be bounded by 1 that is fine, but here if I if when I started saying that I have 

just said that this guy belongs to a class of sub Gaussian distributions. So, I have not 

specified about where the support is if the support is in the interval [0,1] it is still true and 

everything I can bound it by 1, this is going to be a constant. 

If not I can always assume that this means are some finite value. For this entire class I can 

assume that for this whatever my entire class it is there right. I can assume that the means 

are some finite, once I know that is finite then this quantity is going to be bounded in terms 

of that constant value ok. So, suppose assume that you have you are dealing with the class 

of sub Gaussian noise right. 

Student: Sir, you do not know how many terms have 
i right? 

No, I know they are at most k terms in this. 

Student: So, then it know obviously counted by k times the   max right. 

  max yes, but what is that   max? 

Student: So, you can (Refer Time: 33:26) if you are (Refer Time: 33:27) about the mean 

it is not then (Refer Time: 33:28). 

So, that is indirectly right, if I bound memax is already bounded. 

Student: Yes, you do not need to (Refer Time: 33:34) indirectly, you can directly bound 

that (Refer Time: 33:35).  
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So, I am trying to make sure that instead of writing max, delta looks like a problem 

dependent quantity right. I want to just write it down as a constant which depends on the 

entire class, not for that particular distribution. So, as I am like when I want to trying to 

write this I want to come up with a bound which is problem independent. 

  max could be depends on the particular problem instance, but I do not want it to a 

problem instance dependent. I want it to be a parameter which depends on the entire class 

not on the particular instance. 

Student: (Refer Time: 34:18). 

See like one thing is you have this 
i  you can choose max over 

i  and call it as 
max  

Student: (Refer Time: 34:26) sir even  if you let the supposed to be 0 1 or (Refer Time: 

34:31). 

That I agree. So, there when I say support to be [0,1] right? 

Student: Yes. 

That is not the property of the instant that is the property of my entire class. 

Student: Suppose it is 0 1, then how do you (Refer Time: 34:42). 

So, if I do this in this case irrespective of what is my problem instance this 
i  are always 

going to be in [0,1]. 

Student: Yes. 

That is why 
max is going to be at most 1. 

Student: Yes, assuming just (Refer Time: 34:54) k times 1, right? 

In that case yes. 

Student: So, there is no need of the entire analysis you already knew we already knew it 

was less than 1. 

It is less than 1, right. I am only trying to do deal this part separately. 
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Student: but, sir mu star minus mu i t plus one obviously, be less than 1 equal to (Refer 

Time: 35:12). 

 that is fine I know this if the support is in the [0,1], I know this is already between [0,1]. 

Student: Yes. 

But, that I am taking I am not making that assumption right initially. 

Student: (Refer Time: 35:25). 

I am saying the support can be an anywhere. 

Student: Problem dependent all I agree, but I am asking what is that (Refer Time: 35:30) 

problem independent. 

That is what I am saying like when you want to go for problem independent bound. 

Student: Yes, sir. 

Let us say that this class is such that the means are bounded. 

Student: Ok [0,1] ok. 

 Whatever like [0,1]. 

Student: (Refer Time: 35:47). 

Which is that is something, but whatever that value is it is bounded. In that case I know 

that this 
i  are bounded. 

Student: Yes. 

So, then it is going that is going to give me some universal constant 
max that is only 

depends on the on this class not on a particular instance. 

Student: Yes, sir what I am saying is (Refer Time: 36:04). 

Yeah. 
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Student: So, some of if you bound 1/ T by some 
max . 

Ok. 

Student: And, if you can say 
max . 

 Ok. So, you are saying that R max is any way upper bounded going to be 
max  if you are 

going to. So, that is fine. What I want to write it here is in terms of. 

Student: And, sir we are (Refer Time: 36:27). 

In terms of number of rounds, yeah? 

Student: Yes. Then the bound we are getting is weaker than what we have already got 

initially. 

Fine let us figure out that. So, what I am going to get if I upper bounded by 
max whatever 

right. So, that is /i k into some part which is not at k. 

Student: Yes. 

So if that that is all k agree then it becomes in 
max  that is a trivial bound I have here. 

Student: Yes. 

But here I right now do not know that is the case. 

Student: (Refer Time: 36:57). 

Because so, that the other part is also there ok. 

Student: Yes. 

I think this needs a bit more refined argument. So, let us see if we can argue that bit later, 

but fine anyway. So, if we are going to like how the sub Gaussian noise and let us say we 

have some parameter which defines how large this delta i's are in terms of that then I can 

treat this as a constant. And, what I have is here a simple regret bound which is of the order 

log what is this log K divided by square root of this is what is this sorry this is floor of T 

by K ok. 
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Then what I want to write this as so, this is like order if I just do this manipulation which 

is going to be ( )/2 klogko T . I have just taken this k in the numerator. So, this is K log 

K divided by T if I am going to read this as a constant here in terms of the problem class 

dependent constants. 

So, what we have done here is we have an upper bound on this simple regret where that is 

growing that is falling exponentially fast, but this problem is this bound is like problem 

dependent like it depends on the particular one. So, now if I make it get rid of the problem 

dependency by bounding its all the parameter, now I have a constant here where regret is 

like falling like the simple regret is falling like inversely in T. 

Student: Sir, can we actually say.   

But, this is any way constant right like I mean I am not changing this is not changing with 

time. I am only talking with respect to time how it behaves. 

Student: Yes sir. 

Only time. So, this is going to if you are going to fix whatever the problem instance you 

and then you are going to increase T what is this is saying is your simply regret is going 

to 0 exponentially fast. But, if you are going to treat it across all parameters irrespective 

of a particular instance, it is saying that there could be a worst case if you are going to treat 

where it can make you go like only like order like 1/ T . 
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