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So, by the way; what was rs in my stochastic case? So, how was that? It was like 𝐴𝑠
𝑇𝜃∗ + 𝜖 

right in a stochastic case that was the model. We are going to observe a noisy reward in 

every round. 

The noise we assumed some sub Gaussian noise, but what remained fixed throughout is; 

this 𝜃∗ because of this my rewards are all correlated across. But here when I come to 

adversarial setting that need not be the case what we allowed is; so, in adversarial setting 

you have actually get rid of this noise yes there is no noise. 

But this 𝜃∗ could be adversarial selected by the environment, it is under environments 

control and unknown also it could be in adversarial it could be changing. 

In the stochastic case this one also 𝜃∗ ar also selected by environment, but it held fixed 

throughout. What we are observing only the noisy versions of the rewards ok. 
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Now, let see how to adopt EXP3 for adversarial case for ok. So, the algorithm goes as 

following oops. So, input are action set A, learning rate 𝜂, exploration distribution 𝜋 and 

then exploration parameter 𝛾 . 

(Refer Slide Time: 03:00) 

 

So, γ and π where we are used here; when we try to construct these exploration 

distributions ok. Now, you do the following for t = 1. 
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So, when I wrote here I just say like this is it does not depend on time right; it is like one 

fixed which I am using throughout. 

So, this algorithm takes the actions at and the learning rate η we will see how to set this 

learning rate η and then the exploration distribution and the exploration parameter γ. So, 

in each round it is going to have this distribution defined for each the probability 

distribution, probability defined for each of this action in this fashion which is nothing, but 

the linear combination of this exploration distribution plus, what are the exploration the 

distribution we have through this estimates ok. 

So, notice this I did not explicitly mention the case what happens initially. Like because 

initially I will not have these terms right when I start with t = 1 round; this set is this 

summation is empty. So, we will just assume they are all uniform in the first round the 

way you usually do ok; for t = 0 round this quantity is nothing, but 1/|A| that is the uniform 

distribution. Then subsequently we are going to sample an arm At occurred for from the 

distribution Pt; you play this action At you are going to observe a loss for that action At. 

Once you will observe the loss we are going to compute this  𝑌̂𝑡, the loss vector you are 

going to compute. So, sorry 𝑌̂𝑡  is what this is the estimation for the loss. 

Student: (Refer Time: 05:21).  

I mean the vector that the adversary or the environment would have selected. Once you 

estimate it in this fashion we are just discuss that this is going to be an unbiased estimate 

are of that vector Yt. 

Now, you go back and see what happens what is the loss you would have incurred for each 

of the possible actions. So, notice that for this particular At you have already know that 

this is the loss you are observed, but you are not going to take that loss for action At. 

Whatever that this is going to give for the estimated value of Yt that is what you are going 

to take; like the way we did it in EXP3 and then you are going to repeat this process.. 

We are going use it in the statement of the regret for this algorithm is generic it works for 

anything right. Like I mean even if it is this algorithm as of now only if you can compute 

this for A even if my capital A is uncountably many that is fine this algorithm as of now. 

So, where is the issue in this algorithm if a happens to be uncountably many terms actions? 
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Student: (Refer-Time: 06:52) from the. 

This I cannot define properly right because this sum could be summation over infinitely 

many terms. So, we will look into that aspect how to handle the case where a is uncountable 

or it could be a continuous set, but as long as my a is finite this is fine right everything 

works here. And now let us see and coming to this exploration distribution that is given to 

me π and the same one I am going to use it in every round ok. 

Now, the question is; how to choose this exploration distribution? Right. Naturally if we 

are going to change the exploration distribution for that may be the performance of this 

algorithm may change ok. So, now, first we are going to say that; there exist some good 

exploration distribution that will help us give a sub linear regret. And then we will see how 

whether indeed such an exploration distribution exist and if at all how to get it. 

(Refer Slide Time: 08:14) 

 

So, this is the statement I am going to say there exist an exploration. So, just I do not know 

there is the name no name is do not say I am just going to call this EXP3-Lin this is just 

like our notation. We are going to say that regret of EXP3-Lin is upper bounded by 

𝑅𝑇(𝐸𝑋𝑃3 − 𝐿𝑖𝑛) ≤ 2√3𝑑𝑇 log 𝐾. We can specifically set 𝜂 = √
log 𝑘 

3𝑑𝑇
. 

So, what this saying that see the now this is the regret this theorem requires that to state 

the it requires that your action space spans your Rd and it says that there exist an 

exploration distribution π. And if you are going to set η to be like this and γ have not 
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specify how we will see then the regret that your algorithm EXP3 Lin is going to achieve 

is going to be of this form. It is going to be what? This is going to be sub linear in T and it 

looks very similar to what we had for EXP3 algorithm, but what is the difference now? 

What is that? In just the regret bound. 

So, the d coming into picture right like the dimension. Earlier it was just like square root 

of T. 

So, it is not that number of arms actually mattering us, but the number of dimensions that 

we have to figure out because, now we have linearized the rewards. So, now, what matters 

is in what dimension the unknown parameter lies. So, once I know that how many are 

number of arms I can figure out the reward for everybody right. So, as long as I can find 

out those d dimension the d parameters I have knowledge of all the arms. 

Now, how is this distribution? 𝜋 right while we just said is there exist a π such that this 

holds. So, for that it is bit involved we are going to just again this comes from some other 

result which guarantees existence of such a π ok. So, let us briefly discuss that part. 

So, I am not going to the proof of this part you can just look into the book. This is again 

most of the time it is going to be very similar to what means they we have done it in EXP3, 

but of course, with little jugglery of the estimations the new kind of estimations we have 

bought into picture here. 

So, to understand this existence of how does this π looks likes. So, we had to look into 

some design of experiments. Have you any of you gone through in any of the courses you 

have taken the design of experiments is covered? Ok. So, design of experiments could be 

like as simple as; if you want to estimate some parameter with high confidence and every 

time you are going to play an action let us say the reward is going to be linear in this 

unknown parameter. 

So, for time being assume that the reward is going to be 𝑋𝑇𝜃∗. If you are going to choose 

x the reward the thing you are going to observe is 𝑋𝑇𝜃∗, but plus noise added. So, we 

already noticed that when we had; this is exactly the set up of linear bandits right we had. 

Now, there what we wanted we wanted to ensure that how to quickly get a good bound on 

this. 
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So, what would we say for this? We say this we have vt here and what would you say we 

had. So, we said this upper bound by some quantity with high probability right what would 

we say. 

So, we actually said that before this we said if I am going to take θ* and  𝜃 and some and 

some arm a. So, we did this argument right like we did not exactly show this under very 

generality, but under some assumptions we did show such a thing is possible right the 

probability that the projection of this error on a particular arm is upper bounded is it. 

Yeah this being larger than some number is going to be very small a probability 𝛿. So, 

now; so we want to achieve such a thing; suppose we you want to achieve such a thing 

that I keep on observing my rewards by playing a particular action that reward is going to 

be simply let us say 𝐴𝑠
𝑇𝜃∗ + 𝜖 I am going to get. Now, the question how should I be 

choosing a sequence of as I am going to play such that as quickly as possible this is 

achieved? 

So; that means, I have been able to estimate my 𝜃 good very fast right. So, what is this v 

inverse here? 

Student: (Refer Time: 15:27) data we have. 

This is the depends on the data we have been gathering. How should I be using my data to 

make the observation such that my estimation error quickly falls down ok. So, this is then 

just this is the question about how should be I designing my experiments so that I quickly 

able to estimate my under lighting parameter well right. Now, if you just going to randomly 

select in every round some s may be that is not a good idea. What you want to do is; you 

want to always select some actions such that the all the dimensions all the directions in 

this θ* are well expert. 

So, if you just happened to randomly places an actions may be you may end up only 

exploring certain directions. And also if you just do randomly you may happen to explore 

all the directions, but on none of the directions you have good information. But if you are 

going to design your experiment may be in adaptive fashion such that as you go on you 

feel that some directions are not explored well, I will choose my action such that in those 

directions I get better information so whatever. 
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The point is the way you are going to select actions in each round matters and linear bandit 

exactly did this they try to select actions in each round such a way that you get a better 

your estimates improve from each step to the next step ok. So, to exactly to come up with 

this distribution π we are going to state a result from this design of experiments that tell 

that indeed such a π exist I mean some good π exists and how to compute that. 

(Refer Slide Time: 17:32) 

 

So, let say I have this π which is a map from my A to [0,1) and such that my ∑ 𝜋(𝑎)𝑎∈𝐴 =

1. Now, let me define this Q(π) =  ∑ 𝜋(𝑎)𝑎∈𝐴 𝑎. 𝑎𝑇. And then I am going to define 𝑔(𝜋) =

max
𝑎∈𝐴

||𝑎||
𝑄(𝜋)−1

2
. 

So, if you now map it to our scholastic bandit problem. So, let us say this is about I want 

to come up with a sampling distribution π such that my confidence bounds become tight. 

So, if my confidence bounds are tight can I do a curve with a better algorithm? Yes right 

because we already know that the confidence bounds really play important role right. If 

you have a tighter bonds then ah the when I select my action when I am going to order 

them may be like optimistically based on just the what are the estimation plus the 

confidence term I have. So, if my confidence terms are tight may be the probability that I 

make error is also smaller yeah. 
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Let us say I am just going to now I want to sample my actions and observe the loss in the 

linear setting and now I want to estimate quickly what is the confidence I have in this arms 

about the reward. This quantity g of π here in a way corresponds to that. 

So, it tells you how much confidence you have or like how much confidence or how much 

amount of the information you are going to gather by playing a particular action a anyway. 

What you want eventually is as you keep on playing the actions from this particular 

sampling distribution π; you want this quantity to be get smaller and smaller. 

So, what is this let us say if I am going to think this as a confidence term and this is the 

largest confidence among all. Now, if I want to have a good experiment like if I want to 

do a good selection of my sampling through this particular π I want this to be eventually 

fall start quickly falling down right. So, in the design of this experiments in that 

terminology this usually this π is called this design and then minimizing g(π) is called G-

optimal design problem. 

So, just think as this as a separate problem. So, you want to now come up with a you are 

looking for a distribution π such that it minimizes this. And what is this 𝑄−1(𝜋)? 𝑄−1(𝜋) 

is just defined like this it is nothing but the Q(π) =  ∑ 𝜋(𝑎)𝑎∈𝐴 𝑎. 𝑎𝑇. So, this is just a 

problem like we will see how it connects to what we want to do. Now, the question is what 

is a good π that minimizes this? Right. 

So, this is like as of now there is no iteration here right round one round two like I am not 

going like this. It is just think of like one shot I want to do I want to sample my arm such 

that; whatever this quantity here which I am calling the g of that sampling distribution is 

minimized. As I said this quantity I can interpret it as the confidence term; corresponding 

to that action a and I want this to be smaller. So, this is called the minimizing g(t) or G 

optimal design problem in the statistics or in general in the optimal experimental setup 

problem. 
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Now, for this we have one result called Kiefer Wolfowiz ok. So, we are going to the 

theorem uses the result from this theorem he says that; assume a span(A) = Rd. So, this 

result may be just of independent to interest to you may be you may want to use it in some 

other analysis also; the following are equivalent ok. 

So, what this result says? It says these three statements are equivalent ok; it says that if π* 

is the minimizer of that g here. So, we said that we are interested in minimizing this g 

function right it is same as saying that at that π* the g(π*)is exactly equals to d. If this is 

the case it says that this π* can be also is the maximizer of this quantity here. So, this 

algorithm. 

Student: Ok. 

Actually tries to construct such a π because as I said this π here is the one which is going 

to minimize which is this term here which is an equivalent of a confidence term for me. 

And in every round as I go on from one round to another I want this confidence term to be 

smaller.  

So, it is going to start choosing in every round it want this to be smaller and it is going to 

try to come up with an π such that it kinds of minimizer this term. And this is as we said 

this is for one round here, but we have multiple rounds. How we does that? It is going to 

use that using the set whatever I have a a transpose and using the knowledge of 𝑄−1(𝜋∗). 
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So, how exactly that overall π is come up; it is based on this idea. As of now I am just 

telling you this exploration exist, so it need to be exactly constructed. And I will leave it 

to you to look into the proof what is the exact π that is the algorithm is using. So, what it 

is? What they make sure is at every this π is such that it is trying to minimize this quantity 

every time ok. So, you know right now you see that the way this minimization problem is 

different it is only in terms of the what are the actions that I have. And now it is going to 

define based on the norm of this. 

So, I am not sure like this whatever this is happening this is the π exactly the one this 

algorithm is claiming which exist, but I think it is some tweak question of this; its not 

necessarily whatever. So, fine if that is the case how to compute such a π? The π 

computation is already given here right it is the maximizer of this quantity which is easier 

to compute all you need to do find the determinant of that and take the log and try to see 

which is that π it minimizes this sorry that maximizes this. 

So, we know such a π there are some good π’s which was going to give us this G-optimal 

design problem or in a way they are trying to try to shrink your they are going to give a 

tighter confidence terms. So, the exact π is going to be based on whatever the π* we are 

getting here based on that; exactly how it is I will just leave it to you to look into the proof 

ok. 

Ah so, the last point what is it says is whenever such a π* exist it support is bounded by 

this quantity; supp stands for support. So, we understand what is support π star means? 

Student: (Refer Time: 29:14). 

So, the number of places where it is going to put non zero values. And that is going to be 

at most d(d+1)/ 2. I mean this term is used only the analysis it is to upper bound this. So; 

that means, what? It is actually not putting mass and all the actions right as we said the 

number of actions could be much much larger than the dimension ok; like my dimension 

could be 10, but the number of actions could be 1000, but what it is saying is, but this π* 

is has to be defined on all possible actions right; yeah this π is defined on all possible 

actions it is saying that. 

So, suppose if you just take d equals to 10 what are these quantities 10 into 11 by 2? 10 

into, so some 55 right even though you could have 10 into 11 yeah even though you could 
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have like 1000 actions it is only going to put some mass on some 55 actions. So, its not 

necessary that it has to put it will ask you to act go on exploring all the actions ok. 

So, fine so it is saying that as long as you can come up with a good exploration distribution. 

And this is the standard tweak like right like the η parameter to be set like this and also I 

think you can I can look into that I do not have the exact value here what is the value for 

γ I think it is somewhere submerged in the proof. So, some γ I think it should be some 

function of η like once you have this η, γ could be set in terms of that. 

So, once you set it you can get a regret bound of this form and we know it is you know we 

have a sub linear regret ok. So, before we conclude on this part I just want to highlight one 

more aspect of the studies. Suppose in this setup what if the entire yt that has reveled to 

you in every round. 

(Refer Slide Time: 32:05) 

 

So, what I said right now in every round if you are going to take action At what is reveal 

to you is <yt, At> from this you are going to estimate. 

Suppose let us say the environment is nice to you and it reveal to you exactly yt itself. You 

play whatever At action you wanted to play and you actually incur this much loss after this 

the environment actually reveal to you what is yt; would you have been in a better position 

like you can come up with a better algorithm? 

Student: (Refer Time: 32:39). 
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Yeah. 

Student: Now, we want (Refer Time: 32:41). 

Now, its a full information case like once you know yt you have information for loss of all 

the arm all the actions you have. So, this is exactly what we started in the first class first 

of couple of classes right. So, this is like when a label is revealed suppose. So, if you are 

if you look into the classification problem we have a set of hypothesis; if a label is revealed 

at the end of the instance you already know how what is the loss you would have incurred 

by applying any of the classifiers. So, that is exactly this. So, in this case what algorithm 

you would have like to use if yt is revealed at the end of each round? 

Student: Weighted majority. 

You would have like to use weighted majority right. In general there are both class of 

algorithms which we will not have time to look into that, but they called follow the 

regularized leader. I am not talking about this case where we have this full information 

case; what they do is in every round try to play an action that is the best so far. What I 

mean by that? So, if you yt is revealed in every round right; let us say y1, y2 … yt-1 till round 

t - 1 this you have been revealed to you. 

So, what you are going to do in the next round? One possibility you want to do is; you 

want to would you like to do this? 

Student: (Refer Time: 35:01). 

And play an action in round t you want to play the action that is like arg min of this. So, 

what is this? y such that reveal to you in every round so far, but yt is not reveal to you in 

round t yet, but you have to make an action for that round; what you are going to do? You 

are going to see that for all the things I have observed so far which action would have 

given me the best possible loss. And then whatever that is you may want to play that. 

This is I am regularized. But you can show that even if you just do this case there are some 

instances where you may be get stuck to some bad actions. But the general one could do 

this to avoid that you may want to make this a bit smooth, but bringing in the regularizer 

terms and one possibility for that is you may want to include a regularizer here and which 

is now the action. 
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Student: (Refer Time: 36:16). 

The action; for each action you are going to define a function H. Now, you want to 

minimize this and play the action. And one can so you can make sure that, but properly 

choosing this regularizer you should be able to get a good performance. So, one particular 

choice of this regularizer which is often used is the entropy function. 

So, I am right now assuming that this action sets are now probability vectors for me ok. 

So, in that case we already know that this is nothing, but a i log 1 by a i whatever how 

many are there ok. 

So, did you notice did you realize this formulation like where did you see this. So, now, if 

you take this entropy exactly like this what is that you are going to get? What is this a star 

is going to be like; this is a distribution right how does a star is going to look like?It is 

going to look like my exponentiated weights further. 𝑎𝑡𝑖
=

𝑎𝑡−1 𝑖 exp(−𝜂𝑦𝑡−1 𝑖)

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
 component 

exponential what are the loss you have observed for that particular i in the previous round 

and divide it is just a normalization. This is just what we had observed in the weighted 

majority algorithm right. 

So, if you have this entropy we are going to get this weighted majority correspondence. 

And in that we already know if once we have this kind of distribution we already know 

what should be the good value of η right. Like because when we use the weighted majority 

we started with we will start with such a distribution we use this distribution and then 

further optimize my regret by tuning this parameter η. So, once my distribution result in 

this I know what is already from my knowledge of weighted majority algorithm how 

should be I tuning this parameter η. 

So, there are class of algorithms based on this idea this regularization entropy is just one 

function you could think of other functions ok. And like people have use something like a 

divergence I mean not the (Refer Time: 39:56) divergence, but there is another notion 

called Bergman divergence and all. So, by using different regularization you will get 

different performance ok. 

So, you may also want to look into that one chapter one such regularized. So, this is called 

follow the regularized leader FTRL algorithm. 
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So, there are this itself because such FTRL or FOREL algorithm give a very good 

performance. So, people have been using different playing with different different 

regularizers and coming up with different different bounds. So, you may also just want to 

look it. So, I am not going to be for to define other regularizers we need to kind of a 

divergent to some other topics. So, we will not going to that. 

So, as you see that we started like looking into specific cases, but thing can be studied in 

more generality. Like what we stated as weighted majority algorithm is nothing, but this 

regularized. So, why is called follow the leader? 

Student: (Refer Time: 41:07). 

Because we are trying to play the leader right till that point. Till that point whoever is the 

leader you just want to play it. But it is just like taking a regularized version of that. 
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