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Lecture – 54 

Adversarial Linear Bandits 

  

So, when we looked into the contextual bandits initially; especially the stochastic version 

we made an assumption that, my mean rewards are all linear in the context right and we 

then try to solve that problem by building an algorithm that especially uses the confidence 

ellipsoids. So, the main problem there was, how to construct the confidence ellipsoid. 

So, in that problem, what we assumed in the stochastic case? We assume that there was a 

fixed parameter 𝜃∗ and if you are going to if you see if you are play going to play an arm 

x. So, arms were there like vector. So, if you play some x, you said the mean reward you 

are going to get is x transpose θ*, right. So, we said that the rewards were linear in some 

unknown parameter θ*. 

Now, we will move to the adversarial version of that, in which that this θ* need not be 

fixed and unknown. Yes, like it is unknown; earlier in the stochastic case it was fixed, but 

now we are going to assume we are going to consider set of where, this θ could be selected 

by an adversary in an arbitrary fashion. So, then how what could be the learning set up, 

ok. 

(Refer Slide Time: 01:53) 
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So, we are going to study adversarial linear bandit. So, what we are going to assume is like 

let say you have an action set A which is a subset of Rd and this is how the game setup in 

whatever the in each rounds, is that fine? So, the sequence of yt is we selected by the 

environment, and now you have to select an arm in that round and by selecting an arm At 

you are going to get a reward, which is the inner product of this At and yt ok. 

So, just to compare and of and naturally your goal is to maximize your reward; cumulative 

reward. So, I am just going to consider the loss setting here let me call this as loss. So, this 

is like loss. So, this is what? If you know the sequence of let say y1, y2 … yT, what does 

this give you? 

So, this will give you the best loss you would have incurred in hindsight right, if you have 

known all y1, y2 you are now looking for, what is the action I should be playing.  

So, that over this sequence I get the smallest loss and what is this part? This part is like 

you are playing some At in round t and this is the loss actually you are incurring, and this 

is the total loss you have incurred ok. So, this is for a given sequence y1, y2 all the way up 

to yt. So, then I have why this expectation here? So, the learner could select this At’s in a 

random fashion ok. So, the randomization this could be randomly selected. So, now we 

are interested in this set up, where I want to minimize this regret, ok. 

(Refer Slide Time: 05:02) 
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So, let say initially my A is finite, that is my set of actions is finite and let say further as a 

special case, let say I am going to set A to be e1, e2 … ed. If I have this set up, what is this 

set up then? In every round, the adversary is going to assign a reward. So, here I am saying 

this is the vector right like in the k arm, adversarial setting we had we said that the 

adversary is going to assign reward or loss to each of the arms, whichever you are going 

to pick you are going to observe only the loss from that arm others you are not going to 

observe. 

So, here we are going to pick a particular At, that is one of this unit vectors then you are 

only going to observe that component of yt and the and that is the loss you are going to 

incur.  

And, this is simply which is the single best arm you want to pull in hindsight right, because 

A’s are all coming from that unit vectors that is just an which is the single best arm I should 

be. 

So, this in that way this is just like a generalization of your k arm adversarial setting ok, 

but now you are allowing the environment anyway it is going to choose a vector yt, but 

now I am allowing the learner to play this actions At which are not just unit vectors. It 

could be any subset of Rd.  

So, for time being henceforth, I am going to only focus on the case when |𝐴| < ∞; this is 

finite, then we will discuss what happens when this is not the case. 

So, before we continue we are going to make the following two assumptions: one for any 

𝑦 ∈ 𝑅𝑑 , sup
𝑎∈𝐴

|< 𝑎, 𝑦 >| ≤ 1. So, what this says? Take any y that is y that is selected by the 

adversary or the environment. For playing any action, the reward you are or the loss you 

are going to see is bounded by 1. 

So, this is we are just making sure that, their losses are the rewards they lie in the interval 

[0,1] ok. So, this is like equivalent to like when we did stochastic case, we assume that the 

means are in the interval [0,1], right. So, the, are the supports are in the interval [0,1], so, 

we are making just the same assumption. 

If this is not the case, then you just scale everybody appropriately, so that you bring down 

the rewards at every any round to be in the interval [0,1]. So, if this is not the case your 
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algorithm will just scaled by whatever is the maximum loss you are going to incur  in any 

of the rounds ok, this is fine. 

Other thing, I am going to assume is, the action set spans Rd or I am going to assume that 

A is the basis for forms a basis for my Rd, ok. So, I will see that we are going to use this 

assumption when we when we are going to have a derive the regret bound for the setup. 

So, this will just like this assumption also make sure that, since it spans Rd I want to like. 

So, this helps me to explore all possible directions of my yt vectors whatever I am going 

to see. Like, so in each of the terms I want to explore well, that is why that will if this is 

the case I can achieve that target, fine. 

So, now is the set up clear for this adversarial linear bandit? This is the setup we have, 

under this assumption now what is a good algorithm to minimize this regret. Now, what is 

that? So, can you think of any algorithm, any generalization of the algorithms we already 

know? We already know when this special case when my action sets are all just the unit 

vectors, we already know how to solve this problem right. I am going to simply use like 

EXP 3 or EXP 3 IX.  

Now, we have just a generalized version of this, what could be a good algorithm? So, when 

we studied this EXP 3 there the main thing for us was how to estimate the losses of each 

of the actions in every round, right.  

Like the for some actions which I actually played I observe the reward or loss for the once 

which I did not observe, I did not have any information, but still in that round I want to 

estimate the losses for each of the arms in that round. 

Now, the arms have been replaced by my action set here, similarly I want to do like the 

same thing in every round I want to estimate the loss I would have observed for each of 

my actions. And, that is possible for me, if I can estimate what is the yt that would have 

occurred in round t.  

So, if you somehow figure out what is possibly potentially the yt in round t, you could just 

go and find out for each action, what is the loss you are going to incur, and from that you 

can go to play a one which has the smallest loss right. 
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But, the question now boils down to how you are going to estimate that yt in any given 

round ok. So, for that if you want to estimate we also want to ensure that whatever we are 

estimating is unbiased, the way we did it in using the importance sampling method. So, 

now we are going to now discuss about how to do this. 

Suppose, you could figure out. So, let this denote the loss the estimated loss for action a in 

round S. So, this an estimated value in round S, for the loss incurred for action a. Suppose, 

if I can estimate this for all the actions a; so, then what would be how you are going to 

play an arm in that round? So, we can do that exponentially weighted distributions right. 

So, in that case we know that it has a better properties right like we have been using it 

many times in our EXP 3 algorithms. So, then we want to construct a function in round t 

that will give me a probability distribution and we know that one particular way to do this 

is.  

So, this is what like the exponentially weighted probability distributions we have, provided 

we could estimate, the losses I am going to incur for each of my actions in that round. 

Student: Sir. 

Yeah. 

Student: Sir, it is action set with span r d. 

Yeah. 

Student: We can do a; we can do a transformation such that the like a space of this vectors. 

Yeah. 

Student: Basically, they will get transformed into like orthogonal vectors like yeah 

basically, basis orthogonal basis functions and then we can the reward this yt what we have 

whatever we are getting we can separate it out into components in these directions, and 

then would it be, would not be this because similar set of (Refer Time: 15:35) ok. 

So, it again so, like saying if you have this action set if that can span? 

Student:  They may be correlated these actions may be correlated.  

631



Now actions is could, but you are saying I can always come up with. I will transform them 

and try to get this basis vector. 

Student: Yes. 

But, then you can map the losses one to one in that case. 

Student: Yes (Refer Time: 16:00). 

So, suppose let us say I have some action a and I. And, let us say this  𝐴̂ is your transformed 

basis. 

Student: Sir, cardinality of the actions it is d or is it more? 

It could be more. 

Student: It could be more. 

Only dimension is d. 

Student: Fine. 

It could be large. 

Student: Ok. 

I only said A is a subset of Rd. I did not say. 

Student: (Refer Time: 16:25). It has exactly d elements in it. This is just a special case. 

Student: (Refer Time: 16:31). 

Where it had exactly d elements in it, ok. So, I do not see like how you can just restrict 

any of these action space to a particular to a basis and then, you still be able to do a one to 

one mapping between the loss for a particular action from this and loss and map it to a 

particular action in the transformed space, ok. 

So, I do not see that, but let us see how to just do with whatever we are given. So, we are 

given an arbitrary subset of Rd and we this is this constitute our action set. So, now we 

know that, if we go with such a probability distributions, we have already seen that even 

632



though it gives us that unbiased estimation like in the in the EXP 3 setup I am talking 

about, but we saw that its variance could be very bad. 

So, the way we handled that bad variance how did we handle that? In we introduced 𝛾 

otherwise we also deliberately include an exploration term there right, ok. 

(Refer Slide Time: 17:54) 

 

So, let say so, one thing we can possibly do is I can come up with instead of just going 

with like this we can go like. So, 𝜋𝑖 is going to be my exploration distribution we will 

specify, how it looks like. 

So, once we could do this then I am going to once I can construct like this I am going to 

simply pull an action At which is drawn from this distribution play it and observe whatever 

the reward in that corresponds to that. So, fine, now what remains is, how to estimate this? 

If I have this, I can do everything now, how to do this. 

One possible way estimate my yt in round t is that, is in this I am going to estimate and yt 

and what is  𝑌𝑡̂? yt is the loss ok. So, let me just write y ok. So, let see this suppose I am 

saying that let say in in round t you played an arm At and you observe this reward yt, ok.  

So, once you play going to At whatever been observed, whatever been the selected by 

adversary yt you are going to observe the inner product of this let us call this At. 
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So, if I want to make estimate my 𝑌𝑡̂ based on this, now what is unknown for me is this Rt 

is a thing which is not specified here. Now, how can I make this 𝑌𝑡̂  unbiased? What how 

should be I choosing my Rt?  

Suppose, now let say let me take expectation of suppose 𝑌𝑡̂ given all the things we have 

observed all the thing should. So, A1 …. At1t -1 is the action you have already played till t 

- 1. This we already know. This we have done before time t. Conditioned on this. 

Student: Sir, what is At? At arm we are taking? 

Yes. 

Student: So, what is At Yt? 

This is a scalar right. 

Student: Yes. 

This is a vector and now, I am want to construct a matrix Rt. 

Student: So, At is the learner selection (Refer Time: 21:12) ok. 

At is what? The learner selected in round t right. 

Student: Sir, distribution or the d (Refer Time: 21:22). 

It is the actual action, the actual action played in round t.  

Student: (Refer Time: 21:26).  

Yeah, the d dimensional action. So, he is going to select an action At from A right,  

according to some distribution. 

Student: Ok. 

He has selected, but he has selected that. 

Student:  It is just a scalar.yt is just a scalar because it is just a inner product. This is scalar 

that is fine; that is fine. What I am saying is, now this RtI want to come up with this is 

going to be what yt is d dimensional right let me say 𝑑 × 𝑑. How should I select my Rt 

634



vector in round t, so that this guy conditioned on what have been I have observed so far 

this becomes an unbiased estimate of my yt. See, 𝑌𝑡̂ is what? This is an estimate for yt, I 

am just trying to estimate this quantity yt. This is the estimate for entire yt. 

This is for each action right. This is 𝑌𝑠̂(𝑎). So, this is for one particular a, this is the 

probability of selecting a, with this; this is proportional. So, if you want to exact you can 

just normalize which happens to be the just sum of all these quantities. 

So, now suppose I take this Rt, now what is random here? At ok. So, before I write this. 

So, if I have just simplify this, this is going to be 𝑅𝑡𝐴𝑡𝐴𝑡
𝑇𝑦𝑡. So, I just replace this whatever 

yt that I am going to observe in round t, but by it is definition, ok. So, now this quantity is 

nothing but, Rt. 

Now, expectation of whatever random quantities at this point is 𝐴𝑡𝐴𝑡
𝑇𝑦𝑡 right. So, right 

now I am not yet specified, I am just whatever it is I am going to choose this Rt 

deterministically in round t. We will see what that is going to be and the expected value of 

this 𝑌𝑡̂ this estimate condition on this is simply going to be Rt into this because the 

condition so, ok. 

So, this condition this quantity is conditioned that I am so, when I say t this means this I 

have already conditioned on all the quantities I have observed so far. So, this quantity here 

Rt I am going to write it as  𝑅𝑡[∑ 𝑃𝑡(𝑎)𝑎. 𝑎𝑇
𝑎∈𝐴 ]𝑦𝑡.  

So, conditioned on A1, A2 all the way up to At - 1, I already know what is my quantity this 

probabilities Pt(a) and then, this quantity is then nothing expectation of this quantity is 

nothing but, you just take their values and multiply with the corresponding probabilities, 

right. 

So, I am just now for this 𝐴𝑡𝐴𝑡
𝑇  I am just placing for particular 𝑎. 𝑎𝑇  and I am now going 

to consider an expectation with respect to the distribution Pt (a). So, a is what? a is the 

action one of the action in my action set A. I am just looking for all possibilities of 𝐴𝑡𝐴𝑡
𝑇. 

I am going to pick them according to this distribution Pt(a). 

This is conditioned on that because Pt of a depends on all these observation, but this does 

not yt and as I said, Rt I am going to choose deterministically in that round, I have not yet 

specified. Now if I want to make this estimate here 𝑌𝑡̂ and I unbiased estimator of this 
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quantity yt, how should I will be choosing Rt? So, then if I choose Rt to be just an inverse 

of this matrix, then, this estimate becomes unbiased estimator for yt right. So, let us choose 

this quantity to be I am going to denote this as. So, as we said this Pt quantity here could 

depend on the exploration distribution I have set.  

So, let that is why let me call this as this whole quantity as Q(𝜋), then if I set my Rt to 

equals to 𝑄−1(𝜋) inverse then, my expectation of  𝐸𝑡[𝑌𝑡]̂ is going to be t. 

So, when I say expectation means subscript t; that means, conditioned on this quantity. So, 

I am just. So, now you have kind of have built up an estimator for your yt, if you have kind 

built an estimator for yt we have done this job now. Now, you can just repeat the process, 

right ok. So, now let me write down the exact algorithm now. So, this is the general idea. 

This particular form, this is basically coming from the intuition of what we did it in the 

least square regression, right. How did the least square regression work what was the 

estimate? We estimated  𝜃 to be what v inverse of? So how did our  𝜃𝑡 workout in the 

stochastic case? 

𝜃𝑡 = (∑  𝐴𝑠𝐴𝑠
𝑡
{𝑠=1}

𝑇
)

−1
∑ 𝐴𝑠𝑟𝑠

𝑡
{𝑠=1} . So, this is our estimator in the least square regression 

right. So, this was what As is the action you played in round s. Now, we know that in this 

case what we have a fix θ* from which all these rewards the, are correlated through, ok.  

So, that is why we all these rewards are correlated. So, we use all the information we will 

have till round t all from S 1 to t. So, now, what? When I have going to use adversarial 1 

there may not be correlation across θt that the adversary is selecting. So, the θ* need not 

be the same, right? It could be changing in every round. 

So, I may only focus on one round that is what we I do not have summation here and for 

that just try to use this idea. So, now if you just ignore for all of them then for a single one 

it is going to look like (𝐴𝑠𝐴𝑠
𝑇)

−1
𝐴𝑠𝑟𝑠 right, if you have to deal with only one term here 

that is exactly what we have used.  

But, instead of directly writing it like this we just wrote like this and just saying that to get 

an unbiased estimator of my 𝑌𝑡̂ the way you have to choose Rt is like this, ok. 
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