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Lecture - 50 

Adversarial Contextual Bandits – I 
 

So, so far we have been studying stochastic contextual bandits. We just observed that this 

stochastic contextual bandits can be considered as a special case of stochastic linear 

bandits when we assume the main rewards are linear. In the last class, we discussed some 

algorithms and we just discussed the broad sketch of how the proof goes about and there 

are some assumptions and then, we said using some special techniques we should be able 

to relax those assumptions and prove the regret bonds whatever we claimed.  

So, we will just left it there. Now, that was the part for the stochastic case and in the 

assignments you are going to look into some problems on that and also, you are going to 

look into some algorithms for this stochastic bandit case. 

So, now we are going to move to the case when my setup can be adversarial. So, so far my 

rewards were all stochastic, but I could as well consider the case when my rewards are 

adversarial, right. So, how does my contextual bandits work for the adversarial case? 

(Refer Slide Time: 01:50) 
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So, the setup is same as earlier except that when you have a context, the reward associated 

with that context from an arm need not be coming down from a fixed distribution. It could 

be chosen in an arbitrary fashion and in particular that could be selected by an adversary. 

So, we will consider the following setup. I am going to denote C to be the set of context, 

for t equals to 1, 2, 3,… following happens. So, C is set of context is assumed to be fixed. 

It is some set from which the contexts are drawn in every round ok. So, the learner observe 

context from that. So, let us say there are k arms. 

So, the learner observe observing this ct context he is going to select a distribution on this 

k arms and let us say samples It from Pt, he is going to play an arm and for that he 

correspondingly learner observes Xt which is nothing, but XtIt.  

So, let us go through this. We are saying that in every round t learner observes the context 

and the environment assigns the reward vector in that round to each of my arms and then 

learner select a distribution Pt on this arms. So, what does learner, how does he select Pt?  

He observes the context in that round t and based on that he is going to come up with a 

distribution, but he does not see the rewards assigned by the environment in that round and 

then whatever he going to sample an arm according to the next distribution and he is going 

to get a reward that he actually played in that round. So, XtIt is the reward that is assigned 

to arm it in round t and this is what his reward in that round t, ok. 

Now, so this is how the interaction between the learner and the environment is happening 

here. Now, our goal is as usual to compare the performance of a learner against the best 

reward I would have got if I knew all the reward assignments. 
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(Refer Slide Time: 06:54) 

 

So, then we are going to define regret or the expected regret as of a policy whatever policy 

𝜋 we have expected value of now notice that. So, ok; what we are doing here? What is this 

quantity here? This quantity says that suppose you fix a context. So, for time being assume 

that this is finite. 

Now, take a context and look which is the arm that gives the maximum reward for that 

context, and then sum it our all possible context, right. So, notice that when I am saying 

this I am only looking at all counting, adding the rewards for which the contextual round 

t is c. So, this is for a particular c. This is giving me the total reward accumulated when I 

saw particular context c and now this is the total reward I would have accumulated over t 

periods. 

And now this I am comparing against the reward I would have collected by playing my 

policy π. So, how does this π effect this Xt? So, according to that policy π that policy π is 

going to tell how I am going to choose my distribution in every round and accordingly I 

would have drawn some arm, I apply that arm and for that particular arm I am going to 

receive the corresponding reward. 

So, all these Xt’s are governed by my policy π and that is why this is the total reward I 

would have accumulated over a time period t and this is what I would have gotten. So, 

here we are looking. So, this is what we would have got. Now, what we are comparing this 

against is a benchmark; this is my benchmark in this I am saying I am looking for the best 
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reward I would have got for each possible context, right. So, I am going to take a context 

and I am going to see what is the best reward I would have got here. Yeah? 

Student: There is the summation over c on which sum it the context (Refer Time: 10:19).  

No, I do not care it. I why should I have write it about like you whatever you do, you are 

saying it c t, it is maybe up to you want to use it or ignore it.  

Student: You has the (Refer Time: 10:39) so. 

Let it be in whatever way it is. I am just want to this is my total reward I would have got 

and this is what my cumulative reward is. 

Student: But the total reward is (Refer Time: 10:56) context in that case the (Refer Time: 

10:59). 

Where do I am saying it is for single context? It is you take c, but you only look those 

rewards in which the context is c out of like this 100 that particular c may have occurred 

only 10 times only. For those 10 times, you would have now looking for which is the best 

arm you would have like to pick. We have a vector assigned for each arm. 

If this is the total reward I am going to get over time period t and here I am looking at for 

every possible context, what is the best reward I would have gotten. Is this fine or if this 

ok fine. 

Now, suppose there is only one context. So, there is only one context means this 

summation there is no, this summation I do not need to worry about, right in every time c 

t equals to c. Is this the standard adversarial setup I have? 

Student: Yes. 

So, there I am looking at the best single best arm against what I would have got, but now 

that I have different possible context now I am looking at for every context what is the 

best I would have obtained. 

So, now, so what it is saying is basically see like I as of now I know that like my optimal 

arm could depend on my context whenever that context I observe, I want to see over the 
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duration wherever I have observed this context what is the best action I would have taken 

in hindsight. 

So, what is this part doing? Wherever I saw context c, it is give me the total reward you 

accumulated whenever I you saw that c. Now, max over ik is telling that in hindsight if you 

know all those Xti’s for that corresponding c, what is the best action you should have 

played and what is the best corresponding reward you have gotten? And now this is for all 

possible contexts and now you are trying to compare it with what is the cumulative reward 

you would have got, fine. So, now obviously you want to minimize this. 

Now, let us start thinking about suppose for a particular context what is my regret? My 

this is our all possible context right for a particular context I am going to write it as and 

then ct equals to this particular context and then I am going to write xti. Now I am going to 

write it inside this. 

So, now I am only focusing on those instances where I have observed my context c. I have 

fixed my context c now. Now, I am seeing what is the regret I am going to incur for that 

particular context. The best I could have got for that context is this sum and minus this is 

the reward I would have accumulated whenever I saw that particular context. 

Student: So RT(π) is the sum of all these term. 

Yes. So, in that case what is RT(π) is going to be simply going to be the sum of all these 

term as long as I assume that my contexts are finite, ok. Now, let us focus on this how you 

will going to deal with each context? Yes there are multiple contexts, but if you focus only 

on particular context, you already in a known territory right, you are what is that? That is 

the standard adversarial bandit setting you already you know, ok. 

So, do you like whenever now you can what you can do? For each particular context you 

can run an EXP3 algorithm. Yes like EXP3 algorithm was maybe like the that is the. So, 

the standard adversarial setting was a special case of this where it is assumed there is only 

one context. 

Now, that we have multiple contexts, so I could run different EXP algorithms for each of 

these context. Anyway I know this context, I know how many contexts are there. For each 

context I would like to run a different EXP algorithm. Now, if I do that what is the regret 
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I am going to get for this particular context c? Can I write a bound on this? So, let us say 

this I am now want to write RTC where I am going to use my policies EXP3. 

What could be the bound I am going to get? So, my context particular C is appearing only 

at some points. It is not like it is appearing in every round, at some point it is appearing. 

Let us say out of 100 rounds I ran, only 10 times this particular context C appeared. Now, 

if I have that information can I write what is the regret bound I could get on this if I apply 

EXP3 algorithm? What is that? 

So, what is the general. So, what is the for the standard setup, what is the regret bound we 

get by applying EXP3? So, we get something like a 2 times square root k t log k right. 

What was t there? 

Student: Number of time of they have played.  

Number of times you have played, but that t is the same t you are going to get here. 

Student: No. 

No, right. What is that t is going to be? 

Student: Number of times the (Refer Time: 18:33). 

Number of times you have observed the context, right. So, in that case can I write it as 

𝑅𝑇𝐶
(𝐸𝑋𝑃3) ≤ 2√𝑘 log 𝑘 (∑ 1{𝐶𝑡=𝑐}

𝑇
{𝑡=1} ); can I write it like this? So, what is this? This is 

basically telling you the number of times my context c has been observed right under which 

this is the bound, but notice that we got this bound in EXP3 by assuming that we knew the 

time horizon, right. So, in EXP3 we needed to tune a parameter η right that parameter 𝜂 

dependent on what? 

Student: t. 

The time horizon, but in when I going to apply EXP3 on this setup, I apriori do not know 

how many times I am going to see this particular context c, right. It may appear on all the 

rounds or it may never appear or it may appear only on few of the instances. Now, how 

you are going to apply EXP3? Yeah. 
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So, you could use the case where we do not know the time horizon, then what we do? We 

are usually do the doubling trick, but with a doubling trick we know that we almost get the 

same regret bound with some constant factor loss in the regret bound, right. So, fine we 

can still do this, then I will just keep doing the doubling trick and with that I am going to 

get this as my regret bound. 

So, then my RT(π) is nothing, but summation 𝑅𝑇(𝜋) =  ∑ 𝑅𝑇𝐶
(𝜋)𝑐∈𝐶  and if I am going to 

use my EXP3 kind of algorithm. Let us say I am going to get is. So, we have this regret 

bound if I get it. So, now but somehow this upper bound here appears like it depends on 

what is the sequence of context I observed, right. 

So, let us try to get rid of that what is the sequence of context I observed. Let us try to get 

an bound here which is independent of the sequence of context observed. So, can you 

apply a Cauchy Schwarz inequality on this and see what is the bound you are going to get? 

We have been doing this trick many times, right. So, treat this as. So, let us say there is a 

1 here, this is 1 into some quantity treat it as a product of Ai into Bi, where Ai are all 1 Bi 

are all changing for each context. 

(Refer Slide Time: 22:55) 

 

So, now if you apply on this Cauchy Schwarz inequality, what is the bound you are going 

to get? So, keep the constant outside if I do that. So, I am going to get summation i is 

equals to summation 𝑅𝑇𝐶
(𝐸𝑋𝑃3) ≤ 2√ ∑ 12

𝑐∈𝐶 𝑘 log 𝑘 (∑ 1{𝐶𝑡=𝑐}
𝑇
{𝑡=1} ) . 
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So, what I will do now is? So, this is cardinality of C (|C|), the first term is simply 

cardinality of C, ok. So, is this correct if I just apply Cauchy Schwarz inequality on this? 

So, now just what is this term is going to be? 

This term is going to be simply T, right. So, this is, so what has just happened is if you are 

going to simply apply each context as a separate for each context you are going to think it 

as a separate adversarial bandit problem and apply maintain an EXP algorithm for each 

context, then this is the regret you are going to get and how this regret has scaled compared 

to the single contextual bandit? By √|𝐶| square root of cardinality of c. This much of. 

So, as long as your contact size is finite that is cardinality is finite for C, you could a apply 

C EXP3 for maintaining it separately for each context and we are going to still get a sub 

linear regret like this. It is this regret is still sublinear, right. 

Student: If this cardinality of C is around capital T, then? 

But as long as fix it I mean this is about fix. 

Student: Right. 

You are not going to vary your variables here are T other quantities you have to fix 

whatever C you are going to choose and that is fix for cardinality C, then it is sub linear in 

t,  

Student: Yes sir. 

Ok fine. Then the question is what if this cardinality of C is large, then this regret bounds 

can be very bad right. 
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