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So, first thing the way we did, now drawing parallel with multi armed bandits; how we 

did, how you go about it? We constructed, we had two things there right; for every arm 

we maintained an estimate and the second thing we maintained a confidence interval 

about each arm. 

So, we are going to do a similar thing here. First thing is, based on my past observation, I 

am going to estimate my theta star and then I am going to maintain a confidence interval 

around it. So, in the standard multi armed bandit, what did my confidence interval tell? 

My confidence interval told, within this region of the estimated value, your mean is 

going to be lie with high probability that is what we did. 

So, there for each mean we did that. So, there the interval was, there we looked at 

interval; because I was trying to estimate the real numbers. So, on a real numbers, so I 

maintained an interval there. But, now I am trying to estimate a theta star which is a 

vector. 

So, now what we will do is, we will try to maintain a ball around my whatever estimate, 

such that my theta star lies in that ball with high probability. So, because there earlier it 

was a real number, I used to just maintain a interval. But now I have a vector, so I am 

going to maintain a ball around it, ok. 



(Refer Slide Time: 02:11) 

 

First thing and then. So, I want to do these two things. So, first focus on estimating theta 

star. So, what is a good way to do estimation of theta star? 

Student: Gradient descent. 

Gradient descent; no just estimation, not like optimizing estimation, I am talking about 

estimation. So, yeah. 

Student: Maximum less. 

Yeah. 

Student: (Refer Time: 03:10). 

Maximum less, one thing we could do is maximum likelihood do it; but this is like a 

linear case right, that do you see any simpler thing. So 

Student: (Refer Time: 03:26). 

You guys know regression; linear regression? Can we do linear regression here, because 

it is just like a linear function, right. So, how to do a linear regression here? 

Student: (Refer Time: 03:40) parameter. 



Yeah. So, theta star is my parameter, I want to estimate. I am asking, how to do, how to 

go about it? How you pose it? How you are going to set it up? 

Student: (Refer Time: 03:48). 

What is the formula that gives you theta star or how you obtain it? 

Student: We do not have a (Refer Time: 03:57) and. 

I want you to give me the current estimate. I want you to give an estimate in every round, 

yeah. 

Student: (Refer Time: 04:04). 

How, I mean, instead of giving close now just tell me; how you got it? 

Student: Differentiate with respect to (Refer Time: 04:13). 

Differentiate. 

Student: With respect to theta I (Refer Time: 04:16). 

Yeah. 

Student: (Refer Time: 04:18). 

What you are going to differentiate? 

Student: Mean square (Refer Time: 04:21). 

Mean square. 

Student: (Refer Time: 04:23). 

Ok. Mean square error, you want to differentiate. What is the mean square error in this 

case? 

Student: So the actual (Refer Time: 04:31) actual reward (Refer Time: 04:34). 

Yes. 

Student: And the. 



Observed. 

Student: (Refer Time: 04:36). 

What you actually observed? 

Student: (Refer Time: 04:40)? 

And how that observation is related to your parameter? Ok. So, you note that every time 

you are observing r t that actually depends on theta star. So, r t contains the information 

of theta star ok; but only thing is r t you are going to observe, it is perturb by this noise, 

ok. So, how we could do; one possibility is, go with regularized least square estimator. 

So, what is this regularized least square estimator? So forget regularizer. What is the 

least square estimator, how it is going to look like? So, the least square going to, it is 

going to define the loss over period; let us say over time t, you have observed rs by 

playing dt let us say. You know that you observed rs, but all you know is it has actually 

come from. 

Student: (Refer Time: 06: 06). 

Ds theta star, we do not know this. We are going to, for if you do not know right now 

theta star, right. Let us say you are assuming for some theta, things are going on. You are 

getting this over apriority, but this whatever value you are is getting is this is nothing but 

this value; but this value is a noisy version of this. 

Now you want to see which is that theta, which best approximates your observations r s? 

You will see that, what do you want to do? You want to take this squared error, this is 

the error right; want to take the square error and want to minimize it over? You want to 

minimize it over theta. But, if you just do this kind of minimization, there could be some 

issues like this theta hat you are going to get as an estimate out of it; it may not be unique 

always, ok. 

So, just to avoid those cases you are going to regularize it. And by this kind of 

regularization you can verify this; this function is a strictly convex function in theta. So, 

once it is a strictly convex function in theta, what we know? 

Student: (Refer Time: 07:55). 



It is going to have an unique optimal value. So, let us call that as theta t hat. And what is 

this solution is going to look like, theta t hat? It is going to look like. I am going to this 

lambda is some number positive. 

So, now, you should do this, it has a closed formed solution which looks like. So, this is 

one of the natural estimator, right. So, in the multi armed bandit, what was the natural 

estimator for that? We just average the samples, we have observed for that arm, ok. But, 

here what we are doing? We are just fitting our observation to what we are supposed to 

have gotten, ok. 

So, we are just trying to, in other words we are trying to minimize this least square error 

and try to find a theta which turns out to be having this close form solution, fine. So, we 

how one thing now, we have an estimate now. So, the next question for us is. So, this is 

just theta hat we have obtained right, based on our observations so far. 

So, what have been, we have been observing? We have been observing the reward I have 

got in that round. So, this is only t, small t and also do not confuse by prime I mean 

transpose. Sometimes I also for transpose, I may end up writing t. 

So, I have been observing ds for all s 1 to t till round t; that is the one actually I played 

right, and I have observed the corresponding rewards. I have all this information, from 

that I have estimated this. But this was based on a some set of samples. See this rs is still 

a noisy quantity, it has noise in it. So, theta hat itself is a random quantity now, right. So, 

I need to have a confidence about this noise estimate which is a noisy. So, how to 

construct a confidence ball around it, so that this theta hat lies in that confidence with 

high probability? 

Student: Travels which shown (Refer Time: 11:15) before. 

No, we fix it, we up priory choose it something and then fix it; right now we have not 

saying anything like this is a some tuning parameter. You can just take some lambda and 

you will see that the purpose of choosing this lambda is just to make sure that it is theta 

hat is unique or that this theta hat is invertible. 

Student: (Refer Time: 11:46). 

Yeah. 



Student: (Refer Time: 11:50). 

Sorry yeah this matrix is invertible; hat you have chosen lambda to be 0, I was now we 

we are not sure this guy is going to be invertible. But now given that we have used this 

regularizer term lambda here; it is just for that technicality that we want to ensure that 

this matrix is invertible. So, you can choose lambda to be some very small number. I 

mean I do not see like there is a any optimal value that you can choose, you can 

optimally choose lambda here. 

Now, in all the stochastic linear bandits, the big thing is about constructing these 

confidence balls. So, if you remember in multi armed bandits; the we have seen two 

algorithms mainly right, which we studied a bit. What are those? One was UCB and 

another was what  

Student: (Refer Time: 12:43)  

KLUCB right, we saw KLUCB. 

So, UCB how did we derive its bound or how did we find it its confidence interval? That 

came from Hoeffdings inequality, right. And in KLUCB, how did the confidence 

intervals come from? 

Student: Sir, some Chernoff. 

So, it was bit a better version of a Chernoff. What was that Chernoff Hoeffdings 

inequality or just we said Chernoff? 

Student: (Refer Time: 13:13). 

Yeah I think it was Chernoff, for a special case of Bernoulli, right. So, for a Bernoulli 

case we had a tighter confidence bound and we exported in coming them. So, all those 

algorithms depended on how you constructed this confidence ball. So, here also now; 

how we are going to construct the confidence bounds that is going to change how your 

algorithm is going to perform? Ok. So, right now we will talk later about how we are 

going to choose this confidence bounds and how the parameters involved them and 

chosen. 



(Refer Slide Time: 13:57) 

 

But right now, let us assume a generic structure. Let us say I am going to assume a 

generic structures; some C t confidence interval that I am going to construct using my 

observations so far. That is my x, how I am denoting my d1 and how did? 

So, this is my action right; d1. I played d1, I observed r1; I played d2, I observed r2 all the 

way up to dt-1, rt-1. So, whatever I have observed till t till round t minus 1 based on that I 

am going to construct a confidence ball. And we are going to assume that my theta star is 

going to lie in that confidence set with high probability. 

So, we will later see how to define this confidence sets. A specific or a generic example 

is we are going to choose this Ct. So, Ct depends on all these things, but now right I am 

going to write just as C t; which is going to be usually the subset of some epsilon t which 

is going to look like this. 

So, right now beta t is some parameter, I have not, we will specify this how it looks like. 

But what we are going to assume is, it is set of all theta which are going to lie around 

theta t hat within a radius of beta t. You understand what is the, how the set looks like. 

So, suppose you have. So, this is like in your let us, let us visualize this in your 3D 

dimension, ok. Let us say this is some. So, this is where your theta t hat lies. So, what 

you are going to look is, you are going to look for all theta which are going to lie around 

this theta star within a radius of beta t. But you see that it is not a simple Euclidean 



distance here; it has it is a Euclidean distance with respect to this matrix Vt. What is Vt? 

This Vt is exactly this quantity; Ct is a confidence set in which with high probability I 

like my theta start to lie in. 

Student: (Refer Time: 17:44). 

Yes. 

Student: (Refer Time: 17:48). 

It is with respect to theta t minus 1. 

Student: (Refer Time: 17:56). 

So, based on this, I am going to find a theta in round t theta and that from that I am going 

to decide, what is the decision I should be playing next, in the next round d t using a 

value from this. So, it will become more apparent later; but right now we are just saying 

that, whatever information we have till round t minus 1, I use this to build a confidence 

set in which my theta star lies with high probability, ok. So, later we will see that is the is 

it a possibility at all, can I come up with some beta t, such that such a set contains my 

theta star with high probability, ok. So, next. 

Student: (Refer Time: 18:58). 

Ok. So, if I just to take this the normal, what is this? This is nothing but x transpose x. If 

I am going to take this  

Student: (Refer Time: 19:25).  

x transpose, it is going to be x transpose A x. 

Student: Sir. 

Student: K has to be positive. 

K has to be positive definite; k for positive a definite matrix, we are going to define this. 

So, there is a name for this right; is it called Mahalanobis matric or is it a Mahalanobis 

matric, fine. So, it is with respect to this matric A, we are going to define the value of x 

like this. So, when we this corresponds to. So, is this a special case of this, for what A. 



Student: Identity. 

Identity; when A is identity, we will just get this. Yeah 

Student: (Refer Time: 20:20) we have positive (Refer Time: 20:22) minus 1. 

It is theta hat t minus 1. 

Student: How is that? 

Because that is what till time t minus 1, I would have estimated that. That is the estimate 

I have about theta star. Now, I know that my theta, theta t hat is a random quantity, right. 

Now, I want to ensure that, around I know my theta star lies something around that theta 

t hat, theta star. I just want to ensure that, what is that region around theta t hat, theta t 

hat t minus 1 in which my star lies with high probability? I said this is now we are just 

trying to define it at every time t, right. 

So, every time t before I am going to decide, what is the dt I am going to play; based on 

my previous information whatever I have, I just first construct this set Ct in round t. I am 

going to use this set later to come up with what is the dt I should be playing in the current 

round t. 

So, we will see exactly how to do this. So, now, I mean this is as of now bit abstract; the 

way you can just think about this is, this is a ball in which the principal axes are the 

Eigen vectors of this Vt matrix, ok. 

So, you understand, what is the principal axis? So, in this case like I have x, y, z right; 

but if you just look at the set in this, you can think of the directions given by the Eigen 

vectors of this matrix to be my basis directions for that space, ok. 

And further, the length of those directions are going to be inversely proportional to the 

length of this eigenvalues. It is just like, so suppose you can think of this is somewhere 

like some ball, which is encompassing this like, which is that ball which has been 

described by these axes and whose length is inversely proportional to the eigenvalues of 

this Vt matrix. And further, I am saying this axes length is inversely proportional to the 

eigenvalues. 

Student: (Refer Time: 23:21). 



Then it is a smaller. 

Student: Sir small (Refer Time: 23:25) small (Refer Time: 23:26). 

Yes. 

Student: Sir ball will be like (Refer Time: 23:29) one direction (Refer Time: 23:30). 

Exactly. So, each direction have different length corresponding to the Eigen vector. So, 

now let us come back to this Vt matrix. As you see here, this Vt matrix keeps on 

accumulating this ds values, right. So, if you go from t round to t plus 1th round; what is 

changing? You are going to add the new vector you played, right. 

So, in that sense this Vt matrix is going to have more and more component. Do you think 

Eigen value of Vt is going to increase or decrease? So, let us say I construct, I just added 

one more term here dt+1 and dt+1. So, and that will becomes, it will becomes Vt+1, right. 

So, compared to Vt, what do you think about the eigenvalues of Vt+1? Larger,  

Student: (Refer Time: 24:43). 

looks like. 

Student: Sir (Refer Time: 24:47) degree technically (Refer Time: 24:49). 

So, Eigen value larger, ok. So, he did a reverse engineering, any forward direction. 

Determinant increases, yeah determinant is nothing, but the product of eigenvalues, right. 

So, determinant has increased means, Eigen value should have also increased. So, does it 

any say anything about; if I add more term, its determinant has increased? Ok. 

So, that is not obvious, right. You can think about it offline. So, if you are just going to 

add more terms like this. So, notice that d s, d s prime itself is a matrix; ds is a column 

vector, ds’ is a row vector. Every term here is a; this is basically nothing, but some of 

matrices, right. So, this is one matrices, this is one matrix. What is this matrix? This is 

the matrix of identity, identity matrix; but the diagonals not one, but lambda. For each s, 

this is another matrix. Is it true that, each matrix in this sum is a PSD. 

Student: They are all rank (Refer Time: 26:15). 



There are rank one matrices, right. So, if you keep on adding many PSD’s; what is going 

to happen to its rank? And what is going to happen to its eigenvalues? So, anyway I will 

just leave it to you. So, just think about, what happens if you are keeping adding more 

and more positive semi definite matrices to a another positive semi definite matrices? Is 

it either eigenvalue is going to increase or not? We just see; so naturally I am now just 

saying that they are going to increase, verify that. 

If it is going to increase what you are going to see is; as more and more data points 

come, I am going to get a confidence interval which is shrinking in all the directions, 

right. So, I should be more confident, I should be able to come up with a smaller balls in 

which my theta star is contained, ok. 

So, let us at this point compare the difficulty in what we had in multi armed bandits and 

what we have here in having the confidence intervals. So, when we did a confidence 

interval in the multi armed bandits; how we did? We used Hoeffding’s inequality, right. 

But in deriving Hoeffding’s inequality, what we had? We had all iid samples, how did 

we, so just go back and now recall. 

What we let us say we have pulled an arm in the standard multi armed bandits n times; 

we have got n samples which are iid, right. We just took their average, that will give 

gave me a sample mean and then try to see how that sample mean deviates from my true 

mean by applying Hoeffding’s inequality. 

So, the things were easy there, because it is easy to handle i i d samples. But now, do I 

have that luxury here? 



(Refer Slide Time: 28:48) 

 

Theta t are, assume they are all independent; but you see that theta star is there in every rt 

right. All my rewards samples are all correlated, because this theta star is there. 

And further even my choice of dt in every round are going to be correlated; because this 

dt has to be somehow dependent on, in every round depends on the past observations 

right, those observations themselves are correlated. So, even my choice of arm dt here 

they themselves are correlated. 

So, because of that, coming up with such a confidence ball against my estimation is in 

general hard here; because of that heavy correlation across different rounds. You see this, 

because even though yes good, like I have assumed that this is simple nice structure; but 

this structure has made all my observations correlated. So, I cannot go and simply 

leverage the results which I have for the iid observations. 

I have to somehow take into account, the correlation across them; that is why this is all 

popping in, this Vt matrix, Vt has all the observations till round t minus 1, Vt is contains 

all the observations you have. So, far and they are going to determine how your 

confidence ball look, going to look like around your estimates, ok. 

So, that is why when you move to this stochastic linear bandits, the estimation of theta 

star and building; estimation is easy we just saw, it is nothing but least square, 

regularized least square estimation, but confidence ball estimation is involved, ok. 



So, I said that, the eigenvectors of this matrix Vt, they are going to define the principal 

axis of this ball I am looking at. And I also said that, the length of the principal axis is 

going to be inversely proportional to the value of the Eigen, eigenvalue corresponding to 

that eigenvector. So, each eigenvalue I have a corresponding eigenvectors, right. 

So, let us take this particular eigenvector direction, the length of this Eigen in the, of the 

axes in this direction; this is going to be inversely proportional to the eigenvalue in that 

direction or the corresponding eigenvalue of that eigenvector. And we are just saying 

that, eigenvalues are increasing; it is not necessary that all the eigenvalues are increasing, 

some may stay constant. 

Because see, this matrix has how? If this is invertible, how many eigenvalues it will 

have? If it is invertible that is a why full rank matrix, right. How many eigenvalues it will 

have, non zero eigenvalues?  

Student: d. 

It will have d. So, some of them is may not be increasing, but some may be increasing. 

So, none of them is not decreased, again see like we have to go back and see that; if I 

have adding a positive semi definite matrix like this, whether its eigenvalues are going to 

increase, so we have to go back to this analysis, if you want to make that argument. But 

let us say with this they are going to increase; if not all, some are increasing. So, because 

of that, this principal axis lines are shrinking, right. 

Student: (Refer Time: 33:15). 

Yeah. 

Student: (Refer Time: 33:17). 

So, yes, if the eigenvalues of this matrix have increased; then the size of the ball has 

decreased in the axis, in the principal axis along which the eigenvalue has increased. And 

we are saying that eventually every principal axis along all the directions that eigenvalue 

is increasing. So, because of that it this interval keeps on shrinking. So, let us try as a 

special case, the case where my dt is unit vectors, ok. 



(Refer Slide Time: 34:05) 

 

Let us as a special case. So, I have told you already if Dt is this, it is nothing but 

stochastic D armed bandit, right. So, we already know how my confidence intervals 

looks for this case, right. 

So, let us see, let me denote ds; now instead of ds, I am going to just write it as let us say 

es; es is nothing but let me write it as eIs simply. 

So, this is Is is what. So, ds is the decision I made, instead of let me say. So, dt is the arm 

I pulled in round t from the set Dt. So, now, this is this let me call that whatever that dt is 

simply eIt; that means, I pulled an arm whose only It th component is which is It only It - 

th component is 1. 

So, now let us go back and plug it here. So, what you are going to get. So, what is this?  

ei ‘s is a just a unit vector only in which I s component is nonzero, right. Now what is 

this is going to tell you? What is this going to look like? If I am going to ok; let me write 

it as a matrix now.  

Student: (Refer Time: 36:25). 

So, each element here is a matrix; in that matrix how many components are nonzero? 

Student: Only one. 

Only one component; and what is that component corresponds to? 



Student: (Refer Time: 36:43). 

That, it is index, right ok. So, let me call this as 1, 2, so the corresponding to d. What is 

the first line going to look like? 

Student: 1, t plus 1. 

1. 

Student: (Refer Time: 37:02) one (Refer Time: 37:03) one bracket small t (Refer Time: 

37:07). 

So, is it like. 

Student: Lambda plus lambda (Refer Time: 37:15). 

Lambda times number of times. 

Student: Lambda (Refer Time: 37:16). 

Student: Lambda. 

Yes. 

Student: t and substituents. 

Yeah till time t, how many times arm one has been played or how many times unit vector 

one has been played plus lambda and everything is going to be 0 like this, right. What is 

the second row is going to look like? 

Student: (Refer Time: 37:46) 0 (Refer Time: 37:47) minus. 

And similarly, what is this going to look like? Now, if you are going to look at Vt+1 

inverse; what it is playing the role? It is just like 1 by this quantities right; it is just like a 

diagonal matrix right, it is going to play the role of this. Now if you are going to have 

played and this quantity here; then I am going to look at this Vt inverse right, this is 

nothing but 1 divided by this quantity, 1 divided by this for every component, right. And 

what is this look like? Going to look like; so this is what? This is going to be a row 

vector right; r is a scalar, ds is what? 



Student: Column vector. 

It is a column vector, right. Now, if you are going to look at over t rounds; what this 

going to look like? 

Student: (Refer Time: 39:11). 

So, I am just going to treat summation ds rs, where s is 1 to t; now d s I am replacing it by 

dIt eIt. What it is going to look like? This is going to be a column vector; what is the first 

number is going to look like? 

Student: Sum of the reward. 

Sum of the rewards from. 

Student: (Refer Time: 39:36). 

First arm, right. 

Student: Whenever arm (Refer Time: 39:38). 

Ah. 

Student: Whenever unit vector (Refer Time: 39:40). 

Whenever unit vector one is played; I mean the first unit vector is played. So, that is like 

total reward; how to write this? So, I am just going to write it in words ok; total reward 

from arm 1, similarly second one is a total reward from arm 2 like that, right. 

Now, in this case, in this special case, what is the total reward from arm m? It is nothing 

but the rewards collected from a distribution whose mean value is theta one star right, 

because whenever. So, I removed this right; like rt is nothing but what I said, it is s theta 

star plus noise, right. When this ds is a unit vector only It -th term; so then that is means 

only that component remains plus noise. 

So that means, this is the total reward collected from arm; that is nothing but the total 

rewards collected from a distribution whose mean value is theta 1 star. And this is the 

total reward collected from a distribution whose mean reward is theta 2 star and like this. 

Now, what is this theta hat in that case is giving you? Now, just combine these two 



information’s. So, this is Vt inverse and now this is the total reward across all this. So, 

now you see that, what is my theta i hat is going to be? 

Student: (Refer Time: 42:01). 

Yeah. So, what is that is going to turn out to be? 

Student: Total reward (Refer Time: 42:05). 

Total reward in the i-th row divided by. 

Student: Lambda n. 

Lambda n, right. So, this is nothing but what we had earlier; this is the exactly estimation 

that we had got an earlier right, except the fact that there is a lambda has come into 

picture here, but that is fine. So, this is nothing, but. 

Student: (Refer Time: 42:34). 

Which mean theta i star divided by whatever I have. So, in a way this will gave me theta 

i star and this decouples; for every component I can find it like this, right. So, for i-th 

component, this is theta. So, overall I can now find out theta i is nothing but this quantity 

right; theta 1 hat, theta 2 hat nothing but theta d hat. Am I correct? So, I am just applying 

this theta hat formula whatever I have here, with Vt hat computed like this and this term 

computed it like this. So, this now just gives a sample mean right for each arm. 

Now, similarly now if you just go back and apply to this; you will see that this is nothing 

but a similar confidence bound what we had in the case of multi armed bandit setting, 

with this upper bound. So, you remember in the earlier case, we have this multi armed 

bandit; what was the confidence term? 

Student: (Refer Time: 44:11). 

It was like some 2 log t divided by. 

Student: (Refer Time: 44:14).  

number of pulls, right. 



(Refer Slide Time: 44:23) 

 

You see that now because, let us just write down this; what is this? Theta minus theta t 

hat right. So, this is nothing by summation of theta i minus, so this is with Vt-1 right. So, 

now, what, ok. So, this is by definition is nothing, but theta t, theta t hat. 

Student: Transpose. 

Transpose. 

Student: Vt-1. 

Vt-1 and theta t minus theta t hat. Now, the structure of Vt is like that it is diagonal, ok. 

So, because of this diagonal nature; what is going to happen to this? 

Student: (Refer Time: 45:08). 

So, every time here, what it is going to happen is? This term remains like this, but it is 

going to be multiplied by the square of the corresponding differences, right. So, this is 

what, like so; now, if I am going to look at like this, it is going to look like what? Theta 1 

minus theta 1 t hat. 

Student: Squared. 

Squared divided by, this is just Vt right; this is going to Nt(1) plus lambda. 



Student: Summation one. 

Why summation? 

Student: (Refer Time: 45:56) scalar (Refer Time: 45:58).  

Ok. So, now what we are saying is that, total sum across all this directions is this; but 

does this not looking like a confidence terms we had in the bandit case, right. 

Student: (Refer Time: 46:22). 

Ok. If I am going to say this is now I want this to be Beta t right; this I want to be less 

than Beta t. So, if this is constant; now on this sum, it must be the case that for those 

which have large of these quantity, this difference is going to be the smaller, ok. 

Student: Do they have to have that poses constrain to hold. 

Yeah this constrain to hold, like this sum is going to be larger than. So, anyway what it is 

saying? 

Student: Play more time (Refer Time: 47:07). 

Student: You play more time when we when the interval (Refer Time: 47:12) 

So, what I am doing? I am looking for all these thetas for such that this holds, right. So, 

what all this thetas will be? If something is already large; I mean the number of pulls is 

large, then this theta component is going to have a smaller. 

Student: Range. 

Range, right. 

Student: (Refer Time: 47:33). 

Beta is fixed, beta t is fixed; we are that is like this is for a given beta t. 

Student: (Refer Time: 47:39). 

Yeah, whatever. 

Student: (Refer Time: 47:41). 



Yeah. So, I just wanted to ensure that we have Vt here, not Vt’s inverse; but at least with 

Vt we will see that, if some component has been explored much, then I have already high 

confidence and I will be, its range is going to be smaller now. Let us discuss, how the 

optimisticity comes in the next class ok. So, with this confidence set, we will see how to 

try to play an arm optimistically in the next class, ok. Let us stop here. 


