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So, now, we are going to show that we show that there exist mu and mu prime; Suffices 

to show that. So, if I can show that there exist parameters mu and mu prime; such that, 

max. So, if I can show that on this instance either mu or mu prime. 
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So, when I say nu; this is collection of this Gaussian distribution and nu prime is 

collection of these distribution. If I can be able to choose this Gaussian distribution with 

this parameter certain parameters, so that the max of this regrets happens to be larger 

than C square root K T, then it kind of implies my regret lower bound right. 

So, now, let us start looking into what are these parameters. So, for mu, I am going to set 

such that this mu i is going to be delta for i equals to 1 and it is going to be 0 otherwise. 

Yeah. So, this example we are running through Gaussian case. 

Student: (Refer Time: 02:09). 

Yeah, but we also said in the statement that it is sigma, sigma Gaussian it should be fine. 

Student: Ok fine. 

Ok  

Student: Yeah. 

Yeah, if it is it is fine for sigma sub Gaussian, it all automatically implied for bounded 

one right. 

So, I am looking for one bandit instance now, where the first arm has mean delta. 



Student: (Refer Time: 02:35). 

And other are all have 0 mean ok. So, how I have chosen this delta? We have not yet 

specified which is. For time being I just assume that the delta is something which is 

positive, strictly positive and other arms has 0 mean. 

Now, for this bandit instance clearly arm one is the optimal arm ok. Now, what is the 

regret is going to be? Its regret is going to be. So, number of rounds in that you just pull 

whatever the number of times you have played the optimal arms. 

So, this is the regret you are going to get for this instance. Is that correct? So, let us say 

whatever is, N1(T) denotes what? Number of place of the arm one. 

So, these are the one which are these many in expectations these many rounds, do not 

give any regret. Other than this place, all the place T minus these many rounds. They are 

going to you are you are going to incur regret. And each one of them is going to add a 

regret of delta. So, this is the total regret if you have this problem instance. 

Now, we have total in number of rounds to be capital T let us say. Then the claim is there 

should be at least one arm which would have been played less than T by K number of 

rounds. Is that correct?  

Student: Yeah. 

Yeah no, by what principle?  

Student: Pigeonholes. 

Pigeonholes principle. So, we are just going to apply that. So, one of the arms which are 

like not the optimal arm, there should be one arm which is going to be at least played less 

than T by K number of rounds, there exists i such that expected number of. So, if this is 

not true the total number of place is going to be greater than T. 

Now, based on this arm. So, whichever is that i not equals to 1 we are going to. Now.  

Student: (Refer Time: 05:42). 

What? 



Student: (Refer Time: 05:45). 

Yeah ok. So, let us say that is right. I have excluded i equals to 1. If i I have included 

everything, this is fine ok. 

So, if I say; this should be correct right. So, just forget the optimal arm. So, this is the 

remaining number of place you have. And from that you are going to play and there are 

from the remaining K minus 1 arms. 

So, I am just going to be upper bound it further and just take it K minus 1. Earlier one 

was correct, but it was loose fine ok. 
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Now, we are going to now construct the second bandit instance as following. We are 

going to say now, construct mu prime as. So, what I am going to do is mu j prime. 

So, the new set of parameters I am going to define like, mu j for j not equals to i, and 

then I am going to define 2delta for j equals to i. So, what (Refer Time: 08:00) by just 

saying is, so there should be at least 1 arm i not equals to 1 for which this upper bound 

expected number of pulls has to be T K minus 1. 

Let us say for that arm, I am going to make now the mean reward to be 2 delta, others I 

am keeping the same. Now, what has changed? Earlier the mu, my mu look like delta 0 0 

0 0 0 right. And now, my mu prime looks like this delta 0 0. Let us say this i th one is the 



this one whatever I got. Let me call it as 2 delta like this. So, what is the optimal arm in 

the first bandit instance 

Student: (Refer Time: 09:00). 

 and what is that in the second bandit instance?  

Student: i th arm. 

i th arm right. It has. 

Now, the question is, the two instances differ only in the i th arm. The two optimal arms 

in the two scenarios are different. Now, the question is, can I set my delta in such a way 

that even if my bandit instance is happens to be 2, but my algorithm thinks it is still 

bandit instance 1 and ends up selecting my arm 1 most of the time. If I can do this then I 

have made my algorithm make err right. I will make it err most number of the times. So, 

now, let us see what will be a good choice of delta here. So, here I have little bit too 

much hand waving. Now, this is just like we will make the thing bit more formal. 

So, right now, assume that uh. So, just you notice that in the upper and lower bounds 

they have a factor N delta square right, N into delta square. Suppose I set my delta N, so 

I had this delta such that. So, before I write this let me. 

So, when I wrote this expectation here? So, this expectation is induced by the interaction 

between my policy and the environment ok. That is going to induce the environment here 

is defined by nu. 

So, the interaction between nu and my policy resulted in that induced this expectation 

here. Now, for this bandit instance. 
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What is the expected regret? Expected regret suppose, if I continue to apply the same 

policy on this also. First arm is no more optimal, but that is going to cost me a regret of 

delta factor right, because it is off by delta. 

The optimal is 2 delta arm 1 is delta. So, the regret by the place of arm 1 is going to be 

this much. And then, there is no regret from the i th arm in this bandit instance, because 

that is the optimal. And other than arm 1 and arm j, everybody is going to cost me a 

regret. 

And what is that amount? j not equals to 1 and i expected value of Nj(T) and 2 delta. And 

this quantity has to be at least delta times expectation of N1(T). So, I have just written the 

expression for regret, that I am going to incur on the bandit instant. 

Now, suppose, if I set this delta to be let us say, 1 upon expected number of Ni(T), what 

is this expected number of place? So, and here what is E here this is I am going to put E 

prime here, because this expectation is induced by interaction my policy pi with 

environment nu prime. Whereas this expectation was induced by interaction of my policy 

pi with environment nu. 

Now, suppose whatever be the expected number of pulls I had with respect to my 

original or initial bandit instance right. Let us say, this was the number of expected 

number of pulls. I know that this quantity has to be upper bounded by T upon K minus 1. 



So, this quantity let us say. So, what I have basically made is suppose, if you ignore the 

expectation here, just do some hand waving and just take this to be simply the number of 

pulls of i th arm. Then, what I am basically doing is delta square times number of pulls 

of i th arm. I am just setting it to be 1, that is I am making the factor N delta square big 

enough that is close to 1 ok. 

Now, if I can do this by choosing it in such a fashion. Now, you can again go and see 

that on even this instance, I can come up with a similar upper and lower bounds. I had 

earlier on the sample mean of a Gaussian random variable. And you can see that my 

algorithm will fail to identify this as the optimal arm with this. And it may still end up 

choosing on this instance this as. And it will confuse this instance as this instance and 

think this is the arm one is the optimal arm most of the times. 

So, that again will bit make it more formal, but that is the idea like if we can formally 

argue that. By the choice of this delta even on this instance, it is likely that my algorithm 

will still continue to think that it is this instance and place arm 1 most of the times. That 

means it is making a wrong choice right in terms of the optimal arm. And even if that is 

the case. 

In that case by this choice, let us say then we expect, because my algorithm got confuse 

between these two instance. The number of times it is it would have pulled is going to be 

close as expect number of times that would have pulled under bandit with the second 

instance. So, in this case it is clear that, let us assume that the algorithm is making 

eventually I figuring out arm 1 as the best arm. Now, with the appropriate choice of this 

delta there is will a possibility, that even in this instance this still continue to make a bad 

yeah. 

Student: (Refer Time: 17:45) it mean the (Refer Time: 17:47). 

No no no.  

Student: Again. 

Again it is like I just restarted and gave you a new bandit instance. 



Once I start algorithm I am not going to change the bandit instance ok. In this case, 

because even in this instance my algorithm got confused thinking it as this instance then, 

it is going to spend most of the time on the first arm. 

We are going to expect the expected number of pulls on bandit. The expected number of 

pulls that I am going to see with the second instance is almost going to be same as that I 

am going to have it in the first bandit instance. 
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Now, I think we are more or less done ok. Now, first we are going to consider now 

consider a case. Expected number of pulls is going to be N by 2 T by 2 if this is the case. 

So, earlier we had demonstrated that R T of pi nu is what is equals to T plus expected 

number of pulls of. 

Now, in if this is the case then this is nothing, but what?  

Student: 2. 

This is T by 2 and delta. And what is my delta we have set it as? K minus 1 by 2. So, this 

is like some yeah K minus 1 root K T by sorry T times K minus 1 right ok. Now, 

consider the second case where has happened to be (Refer Time: 20:07) 2. 

Then we have also argued that this guy RT time nu prime. We have had a lower bound 

here this lower bound here; we had shown this is nothing but delta expected value of 



N1(T), but then using this approximation here. This is nothing but expected value of 

N1(T). And this will give us and this will give us again the same thing right. Again it is 

going to be half of. So, this quantity this one I am going to replace it by T by 2 and delta 

from that, this is going to be K T times K minus 1. 

So, for both the cases we have this lower bound. And now, we have our. Now, if we are 

going to take max over these two instances. Now, we have that the regret is going to be 

order square root T K minus 1 and there is an half factor here. So, this is just like very 

heuristic top level arguments we have. 

So, what is happening is. We are able to come up with when we are just arguing that if at 

all we have this instance, where my algorithm is going to confuse it with other instance; 

then, it is possible that my regret is going to be order square root T K on these two 

instances ok. 

Now, we have to make this bit more formal ok. So, for this we need some information 

theoretic quantities and some bounds based on them. I am just going to introduce them in 

today’s class and in the next class we will try to go through the steps formally. 

So, how many of you know already entropy? You know or no? Half? You know half ok. 
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Now, we are just going to some definitions. So, suppose let us say if we have a 

probability distribution P on K alphabets. We are going to define entropy of this 

distribution as expected value of Pi log 1 by Pi. 

So, those who know this entropy, can they tell what is the meaning what is the 

operational meaning of entropy? I mean we know that the amount of information 

contained is inversely proportional to its probability right like. 

Suppose, if a event is going to happen with probability one. Is there any information 

contained in that you already know that is going to happen right. If a event is very less 

likely then may be like information contained in its more right. Because if something 

rare happens like that is the big news right. 

So, in that way the amount of information contained is like inversely proportional to this 

probability and also. And that way; I mean you can also give a interpretation that, if 

something is more frequent and if you want to assign, let us say some codes to it. You 

are going to assign larger code or shorter codes the things which are going to appear 

occur very frequently. 

Student Shorter codes. 

You want to assign shorter right, because it is appearing more and more times. The one 

which are going to appear less frequently you are going to. You may have you will be 

forced to assign larger one, because you need to distinguish right. 

If all the small length codes are taken by the quantities which are happening frequently 

then, what will remains is the larger one you are gone. In a way, that if you want to like 

encode something you want to encode something which is more frequently with less 

code lengths and the one which are happening rarely with larger code lengths. 

So, in that way if you are going to think this log 1 P as the length to code a message. Let 

us say then this is going to give you basically the expected length of the code. And 

information tells that this is the minimum average code length you need, if you want to 

record the message correctly ok. 

So, fine this is for a given entropy. Of course, like I am assuming that all these quantities 

P i’s have positive mass, like if some P i is 0, it is 1 by P i is not well defined right. So, I 



am assuming that all the alphabets I have here positive mass. Then, there is a quantity 

called divergence. This also we defined in the last class. 

Let us now, here I am assuming that both P and Q are distribution on the same 

probability space ok. Let us say P and Q are defined on the same probability space, then 

divergence between these two quantities defined as  

Student: (Refer Time: 27:05). 

Yeah.  

Student: Sigma pi Log pi by q i. 

Log pi by qi . Can I write it in terms of entropy? So, in that case it is like if I have to write 

it in terms of entropy, it is like minus  

Student: H P. 

H P then.  

Student: Log H P q i. 

Log. 

Student: (Refer Time: 27:43). 

In a way. 

So, if you are just going to give the same interpretation that we just gave here. So, if you 

are feeling that let us say some messages are generated according to probability 

distribution pi but you misinterpret that and you assume that generated according to 

distribution qi right. The true generation is pi the messages. But you are you somehow 

got confused and think that they are generated according to another distribution qi. So, 

then the length you are going to assign is log 1 by qi and but the true one happens to be pi 

right. 

So, this is still the expected length you are going to code those symbols. And this is 

anyway minus the best you could have done right. This is you are not doing that good 



right. So, this is the best you could have done, but this is not the best you could have 

done. What do you think, this difference has to be positive or negative?  

Student: It has to be positive.  

It has to be positive right, because this quantity is going to be larger than this. 

So, this quantity divergence, we already discussed when we discussed the proof of KL 

UCB that using this for at least Bernoulli case, you can get a very tight upper bounds ok. 

And now, in general this is this divergence is have other names like Kullback - Leibler 

divergence, K L divergence in short. It has some nice properties. 

It kinds of measures the distance between two distributions, even though it is not a true 

metric though. So, it is not a true metric, because it does not satisfy the transitive 

property ok. 

Let us see now, I am now just going to state one result and then we will stop, which is 

going to be come handy to us. 
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When we are going to state our proof formally. By the way like, if P happens to be 

Gaussian normal with Gaussian with mean mu 1 and sigma square and Q happens to be 

another Gaussian with parameter mu 2 sigma square. 

So, notice that the way I have defined here, this is assuming that these are discrete 



Student: Probabilities. 

Probabilities right, like there are these probabilities defined on discrete random variables. 

But this random this distribution could be on a continuous random variable, in which 

case I have to appropriately define this ok. 

So, that definition is has something bit involved it depends on the Radon-Nikodyn 

derivative, but just let me write it here. This is defined as log of d P d Q if 0 otherwise. 

So, it is defined as. This should be d P here sorry. So, this is defined as d P by d Q of 

omega d of P omega here.  

Student: (Refer Time: 31:49).  

This integration. So. 

Student: Q. 

This is right P is absolutely continuous with Q. 

So, that means, I just want to make sure that this is well defined by making sure that this 

guy is in the denominator I do not end up with a 0’s right. And whenever this guy and 

also like these are do not end up with 0 by 0 format in this. Yeah I just recall what do 

you mean by just absolute continuity. 

Student: The lower (Refer Time: 32:29) P has to be wrong. 

Whenever P is non-zero q is going to be non-zero ok. 

Student: Sir (Refer Time: 32:40). 

Yeah, so if it is q is p is 0 1 q is not zero, this is 0 by log 0 right log 0 is. 

Student: Sir we have p i multiplied (Refer Time: 32:50) we will take 0 log 0 to be. 

Yeah 0 log 0 is to be 0 fine. So, we want as long as q i to be positive in non-zero p i to be 

non-zero. 

Student: (Refer Time: 33:05). 



No no, there is a d this is ah what we have this Radon-Nikodyn derivative equal 

derivative this is d P by d Q into omega. Let us not going into that it is. Yeah 

Student: (Refer Time: 33:19) cumulated (Refer Time: 33:21) density. 

Yeah it is a density function density. Density,  

Student: (Refer Time: 33:26) is the density function. 

P and Q are the density functions, but this is something different ok. So, let us let us 

leave it like, this is another quantity we have to slightly interpret in a different way ok. 

So, now if you have P and Q we are going to get it as D of P Q. You can just compute. 

This we only need this, that is why I am writing instead of working out all these. This is 

going to be mu 1 minus mu 2 whole square by 2 sigma square ok. 

Next theorem. Let P and Q be probability measures on the same measurable space ok. 

Let A belongs to a compliment is omega (Refer Time: 35:05) A. So, this is we are going 

to not going to prove this. It says that if you have two measures or two. 

Let us say, probability measures P and Q on the same space omega script f. Then, if you 

look at probably of A and probably of its compliment, but with respect to another 

measure Q, that is going to be lower bounded by exponential of minus divergence 

between these two measures ok. 

So, what it is basically saying is. If you are interested in an event with respect to some 

measure P then that not happening with respect to another measure Q, that shows total 

sum is going to be lower bounded by like this. So, we will just going to use this result 

and later to prove that ok. So, let us stop here. So, we will continue it in the next class. 


