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Proof Idea of Lower Bounds – I 

 

So, far we have looked into both this adversarial and stochastic sorting right. In both the 

cases, we; our focus so far has been only just coming up with the algorithm and bound its 

regret. So, now the question is whether whatever the bounds we were getting is that the 

best we could get or like whatever the performance we got this some algorithms; they 

were not optimal or they have been very suboptimal? So, we to need to characterize that, 

we need to also understand what is the best we can get in this set ups right? 

So, what is the lower bound on this regret? Is that regret upper bounds we got for this 

different algorithm, how close they are to the best bounds we can get or are they 

matching the lower bounds? If they are matching the lower bounds, then our algorithms 

are already optimal.  

Let us say, if matching up to a constant and matching we only look at in the terms that 

involve the number of rounds and the number of arms. So, for that we are now going to 

start looking into the lower bounds that one can get in this different settings and then we 

will discuss with our; what all the things we got they were optimal or not. 

So, today we are only going to basically just briefly discuss the ideas and introduced 

some relevant results that need to prove the lower bound. And lower bound actual one 

we will prove to in the next class, but this class we will just discuss the broad idea, how 

we are going to derive this lower bounds.  
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So, we how defined for a; the expected regret of an algorithm pi for a given environment 

v; we have already defined, this is to be the expected regret of algorithm pi on my 

problem instance v. Now, nu is chosen by? The environment against whom you are 

learning, pi is the learner who is applying the policy; the policy we are denoting it as pi. 

So, there is an interaction going between learner and the environment.  

So, now what we are interested is; what is the best we could do against the environment? 

So, environment can choose any probability distribution it likes right ok. So, now I am 

looking at; so the regret for a given policy pi, what is the worst regret I could get among 

all possible environment? So, I am assuming that this epsilon denotes the class of 

distributions that my environment choose, pick and assign the rewards to arms. 

So, for example, this capital epsilon could be all possible distribution with bounded 

support. It can choose the environment from this set and assign rewards to arm, I am now 

looking at what is the worst regret I am going to get, but now what is your goal? Your 

goal is to minimize this and come up with a policy that is best. So, what you want to do? 

You want to minimize this, let us say pi is; capital pi is collections all policies that you 

can apply. 

Now you want to; so this is the worst regret, if you are going to use a policy pi; since 

environment can choose any nu that would like from this set epsilon. You are; if I am 



going to apply policy pi, you are going to see what is the worst I am going to incur and 

now your goal is to come up with a pi which is going to minimize this.  

So, that is why we are going to call this as minimax criteria and then we are going to 

denote it as; so notice that this depends on what environment you are looking at and also 

the time horizon over which you are looking at.  

Now, a policy; so a policy pi, we are going to call it as minimax optimal; for this 

environment epsilon if the regret of that policy. So, is going to be whatever the optimal I 

can get. So, here it is not a nu, but this is function of the environment itself ok. So, we do 

not know such a policy exists or not right now because the right now do not know what 

is this quantity. 

Student: (Refer Time: 06:23). 

So, of course, we know already many policies for example, in the adversarial case we 

have already looked into EXP 3, EXP.IX, EXP3.P and all these are all different policies.  

We do not know right now those policies are optimal because we do not know what is 

this value and in the stochastic case we know that you have already know the policy like 

UCB, KLUCB and Thompson sampling and another is MOSS policy; we have already 

discussed. We know there; what is the regret bound they are going to give but we do not 

know what is this. So, now, our goal is to see whether how to characterize this quantity R 

T pi star. 

So, first I am going to just a state a result, give a bound on this minimax regret and after 

that we are just going to today; mostly we are going to talk heuristically, what line of 

proof we are going to follow to prove this theorem ok.  

So, just first let me write this theorem; so this is square root KT; T is capital T. So, let us 

say epsilon K be a K armed stochastic bandit with finite support. Finite support like; let 

us say we will assume in this case it is between 0, 1 interval or we can also take it to be 

some sigma sub Gaussian for some known sigma value. 

What we were then saying is; then there exists an universal constant C; when I say 

universal constant C, that is independent of my K and T such that for every K greater 



than 1, that is number of arms is greater than 1 and number of rounds greater than k, that 

is I have; I am round such that, it is larger; it allows me to pull each arm at least once.  

Then it holds that this minimax regret here is going to the lower bounded by C times 

square root of T K; that is it T is to be at least of order square root K T; that is if you are 

going to, it is; so you see that it is square root in K and also square root in T and this 

other parts is just a constant; it does not depend on any of this constant K and T.  

So, as of now the way we have written this lower bound; we have taken; the way we 

have written this minimax regret, we have written it; we have taken over all possible 

problem instances right. So, this is we are kind of already made it independent of which 

problem is chosen from the set of problems we have. So, this is in a way we are looking 

for problem independent bound right.  

So, it does not depend on which instance we have and now we are saying that if that; in 

that case the best you could expect for any policy to do is; is to get a have a bound that is 

of order square root T K ok; it cannot be smaller than this because we are already saying 

that it; this result is already saying that it has to be at least square root T K. Now, for our 

algorithms at least like for the UCB and MOSS algorithm, we have stated this bounds 

right which problem independent bounds. 

What is that we have for UCB, the problem independent bound? Was it like a square 

order square root K T log T? So with there we had an extra factor of log square root log 

T; right ok?  
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Let us have this, we will just or going to just discuss proof idea; many of the points we 

are going to have is pretty much hand waved, may not be that rigorous, but let us try to 

understand what is; what are the broad steps we are going to take and we will make them 

later formal.  

So, first thing; so now, let us focus on the case of Gaussian bandits; when I say Gaussian 

bandits, let us assume the; all the arms have rewards that are Gaussian, but maybe with 

the different different means and variance. Or let us say, let us fix a variance and let us 

say that all are Gaussian distributed with a fixed variance, but they have different 

different means.  

So, let be an IID with let us say mean mu and let us say variance is 1. Let us say I have I 

am just taking let us say one arm; let us say it has mean mu and variance 1. 

Now, suppose assume that mu takes value 0 or delta; only two values.  

Now you have been told that like see, I have a given you a Gaussian; I have given you 

arm which has this Gaussian rewards generated according to Gaussian distributed. It has 

mean which could be either 0 or delta and it has a fixed variance 1, now how you are 

going to decide whether it has a mean 0 or mean delta? 

Student: (Refer Time: 13:27). 



So, let us say you have n samples; we are going to estimate the samples from this 

samples. So, this is your natural estimator here, now you are going to say its mean how 

you are going to conclude is; mean is 0 or delta? 

Student: (Refer Time: 13:53) difference from 0 or delta. 

Ok. So you have this, if it is closer to 0; then you are going to call the mean is 0, if it is 

closer to delta; we are going to call it delta. So, maybe you are; your decision boundary 

is delta by 2, if this mean happens to be less than delta by 2; you are going to call it as 0, 

if it is above delta by 2; you are going to call it as delta ok. 

Student: Some error (Refer Time: 14:21). 

There could be some error yes, so that is what you then you can potentially make a 

mistake with this finitely many samples let us see, what is that probability of making an 

error. So, this we have been told and then your decision was that; let us assume that now 

mu is 0, the true value happens to be 0. I mean you have been told either it is mu or delta; 

you have given that information, but the true value happens to be 0. Now, you have to 

figure out you have to figure out whether it is 0; from the information that it is 0 or delta.  

If it is a delta, if it is delta; you can do similarly, argument follows by symmetry. Now, 

you have fixed mu to be 0; your estimator mu hat, what is the expected value of your 

estimator? It is going to be 0 right because the underlying; so its expected value is and 

what is its variance? Variance is going to be simply 1 by n right because these are all 

independent samples; variance of.  

Now, your decision criteria is mu hat greater than delta by 2; you are going to always 

have this question whether mu hat is going to be delta by 2? If it is true, then you are 

going to say mean is delta otherwise you are going to say mean is 0. Now, probability 

that this indeed holds because your mu hat is a random variable, this may hold and what 

is the probability that this will hold? 

So, we can compute upper bound is in a way; we did earlier by looking at the tail 

probabilities of the Gaussian distributions. So, mu hat here with this estimator; mu hat 

happens to be another Gaussian random variable with mean 0 and variance 1 by n.  



So, for that Gaussian random variable, we are asking; what is the probability that it takes 

value larger than delta by 2? And based on the tail distribution of a Gaussian random 

variable, we can compute it as and this we did in our class when we and also we can 

actually lower bound it by a very similar quantity.  

So, the lower bound; we did not discuss, but assume that this is indeed true, assume that 

like there is an upper bound and the corresponding lower bound on this probability; 

again you can show this. So, notice that upper bound and lower bound are essentially 

same, the only difference is happening at this constant; here it is 4 and here it is 8 by pi; 

everywhere it is almost same. 

Now, you see that both terms have an exponential term and their decaying exponentially 

in the number of samples if we have. If n is large enough, this probability is very small 

that you are making such a mistake. So, I have basically this is nothing, but mu hat 

minus 0 here, that is your; your estimate deviates from the true value, but since I am 

assumed; I am just ignoring, I have just ignored that 0 there.  

So, if n is large; upper bound and lower bound are going to be very small, but now the 

case where you see that all the places, this n is appearing with delta square; n delta 

square, n delta square, n delta square here. 

If instead; if n is large, it is not the only thing here that determines this probability, but 

what is determining is; whether this n delta square is large or small. It may happen that 

delta is very small, even my n is very large; in that case n delta square is small and this 

probability may be random with not so small ok.  

So, if this let us say for in our case, we have fixed delta right let us say fix a delta and if 

your n is not large enough such that, this n delta square is still significantly big than this 

probabilities may be not so small and then there is a significant probability that you make 

a made an error right. 

So, for fix a delta and if your n is not large enough; let us say this n delta square is 

relatively big or relatively small sorry; in that case this probability could be still not so 

small and there is a good amount of possibilities are your decisions would have been 

wrong. So, you see that in such cases; if your number of samples are not too many, you 

could potentially make mistakes with very good amount of probability.  



Alternatively, if your delta is very very small; there is even if with you have large 

number of sample, it is potentially possible that you would have made and mistake in 

your judgment with good possibility ok. Now, so the general idea in coming up with this 

proof is to establish a scenario that you have two instance of bandits on which your 

algorithm cannot distinguish them, even though these two instances have different 

optimal actions.  

So, let us say if we can construct such a scenario; then whatever algorithm you have it 

will be full right. So, what I am saying? Suppose, I can come up with two environments; 

both the environments are different may be slightly different but and both of them look 

very similar. They are different in the sense they have different optimal actions, but they 

look very similar in which case your algorithm may end up confusing one environment 

with the other and end up playing the optimal arm.  

So, if you can construct such an environment; then you will be able to show that your 

algorithm is going to make mistakes on this case and then based on that, you will be able 

to have certain lower bound ok. 
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So, let us say I want to basically select two bandit instance such that. So, what we are 

saying? Suppose, let us say I can construct two instances of bandits; that means, I had to 

come up with two environments v and let us say v prime such that the two instances have 



two different optimal actions and also these two instances should be close enough, such 

that your policy cannot statistically differentiate between them. 

So, then here it is a possibility that my algorithm will confuse one instance with the other 

and if it confuses one instance to the other, then the optimal actions; it thinks is actually 

not the optimal action right. So, right now I am not worried about the actual regret ok, 

yes if the gap between small; regret is going to be small.  

What I am worried about is whether my algorithm is eventually identifying the current 

optimal action or not or like is it possible that with a finite T; it may happen that I can 

fool I give one instance for algorithm my algorithm, but my algorithm thinks it is the 

other instance and with the optimal action is the different one and it ends up playing up 

not the optimal action for that instance.  

So, this is of two things two instance; so this all kind of what I am asking the two 

conditions I am asking they are somewhat conflicting right? I want dumb to be 

statistically close enough or not able to be differentiated; that means, they are kind of 

very identical right like very closely, if they are close maybe their optimal actions also 

need to be same. 

Now, what I am asking is; if at all you can construct two instances which are statistically; 

we will try to make it more formal what we mean by looking statistically similar, why 

the optimal actions in them are different? If at all this can happen, now your it is likely 

that your algorithm is going to confuse between the two.  

And if and in this cases if it happens to make a and it will be making bad choices and in 

that case it may be will show that in that case the regret is going to be of this sort. And 

notice that if I had to make them; even though it made a bad choice, like if I am able to 

successfully fool it and it got confused and for that particular instance; it picked an 

optimal arm it picked an arm which is not optimal for that action, but it in that case, we 

expect the regret to be linear right, if it is not able to pick the correct arm; that means, it 

is picking something else because of that regret, but we will see that. 

To fool this algorithm, we have to set this delta very small and that is where what he was 

saying comes into picture; if delta is very small. Then it is not actually because the delta 



is again going to be a function of T itself, it is going to be not like growing like linearly 

in T, but it will be growing like square root T. Let us try to make this fine.  

Student: Sir. 

Ok. 

Student: (Refer Time: 29:27) expectations and that is not happen. 

Yes, it is the one with expectation. 

Student: The expectation is will be on. 

Expectation is on the randomness of the. 

Student: Choice. 

Rewards and also the choice of your arms. 

Student: Sir, expectation on the rewards; then the it does not. 

But my regret here actually depends on this instance itself rather it instance is what? It is 

nothing, but the mean values. The whatever the probability distributions finally, what 

effects my regret is that our corresponding mean values right. So, what it is; let me write 

this, what would we say this? This is nothing but X of; whatever the algorithms pulled 

over a time T. So, this is what your total reward; what you would have got. 

Student: Right. 

And this is what? 

Student: (Refer Time: 30:30). 

That is fine. So, in that case; let me write it as bit more new.  

Student: Capital X; T, small x t also. 

So, this is nothing, but t equals to; so expectation summation mu I t; t equals to 1 to T. 

Now expectation is there because this I t itself is random quantity; the arm you are going 



to pull, in round t that base is based on; the sample you have observed so far and that is 

the random samples; that is what I am going to worry. 

See finally, what see like right now; I am only interested in the expected regret here 

right. So, in the expected regret as I have written here, what comes into picture is only 

the mean values. So, I am only interested in those parameters. So, for me this 

environment nu is nothing, but nu is or like; if I am going to define this epsilon to be 

some, let us say set of distributions that take value in bounded support ok; then I could 

just think of this nu to be.  

Student: (Refer Time: 31:54). 

[0, 1]k, it is like you take any k vector where each component lies in 0, 1 that is going to 

define a environment for me. And this is what my (Refer Time: 32:11) is and actually 

this quantity here there exists is called minimax optimal, if there exists a policy pi. And 

actually this quantity here is this entire thing, this is for a particular nu and when I say it 

or a policy over this environment; this is the entire suit thing here ok. 

So, now the question is can we construct up two problem instances which will satisfy 

these two conditions simultaneously? So, now let us say you are going to do this. So, let 

us take one problem instance where each Pi is Gaussian; mu i and variance, 1 and another 

problem instance. So, this is another mu with mu 1 right.  


