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So, after talking about this concentration inequality, we returned back to the stochastic 

bandit setting. We define what is the regret would be interested in the stochastic bandit 

setting and then defined the pseudo regret which we want to take it as a performance 

measure and we want to give performance guarantee on that. And we concluded by 

giving the in the last class regret decomposition result right.  

Now, we will move on and try to see what is the best bound or what kind of bounds we 

can give on the pseudo regret ok. 

(Refer Slide Time: 01:06) 

 

So, we know that we let us say we have a bandit instance, where we have this set of K 

distributions one distribution assigned to each of the arms. And we said that the sample 

when you are going to play an arm a, the samples are drawn. The random variable X that 

corresponds to the sample, that are drawn from arm a that will be distributed according 

to distribution a right. And we said that expected value of X in this case let us say we 

denote it as μa ok, where this guy X is drawn according to this distribution μa. 



  

Now, our goal is to basically our goal boils down. If you want to minimize the regret our 

goals boils down to what? Identify an arm which has the largest value of this mean value 

right. And what would we say in the last time? Through our discussion on concentration 

inequality we said that if we have many samples from a particular arm, how to estimate 

this parameter μa  and we said that if you are going to use sample mean as my estimator, 

how far the estimated we mean will be from that true mean after a certain number of 

rounds. We gave a bound on that right. We specifically focused on the cases at the case 

where this mu as are all sub Gaussian distributed and for that we gave this concentration 

bounds ok.  

Now, let us start thinking about how to estimate this means, but our goal is to not just 

estimate this, but to quickly estimate this so, that I do not incur regret after some time. 

Now, what could be our strategy? Now, we are interested in to come up with the policies 

for this right. So, what are the policies? Policies are algorithm. What so, any thoughts on 

how we will go about this? Let us say you have been asked to we have been given n 

rounds and you have been your goal is to come up with a policy π such that you want to 

was this which in the last class we discussed that this can be given also as until the there 

are K arms. 

So, this is nothing but expected value of right, where we defined as delta i equals to and 

also we said the last time suppose some particular arm is optimal. So, throughout we will 

assume without loss of generality that my arm 1 is optimal that is the mean which has the 

highest value is the one with arm 1 ok. So, we know this, but we the algorithm does not 

know this ok. So, this is just for our analysis point of view. 

So, because of this if arm 1 is the optimal one delta 1 is going to be 0 and delta 2 will be 

positive and delta 3 will be positive. And also we will assume for time being that the 

optimal arm is the unique right. 
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So, if μ1 is the highest mean all the other means μ2 and all mu to all others are going to be 

strictly smaller than the mean of arm that is why the arm 1 is the optimal arm. 

So, we know that this delta 1 is going to be 0, but this delta 2 and all are going to be 

positive. So, if I want to minimize my regret, I need to ensure that the expected number 

of plays of my arm 2 and others should be as small as possible or I want to keep them 

low ok. 

So, now I am going to use the terminology that arm 1 since it has the highest mean I am 

going to call it as optimal arm and all other arms are suboptimal arms ok. Any thought 

on how to do this? Just like some random ideas ok. So, first we will start with something 

called this explore and commit algorithm. So, one obvious is you sample each of these 

arms for a certain number of rounds and then find the means of sample means of each of 

these arms and then maybe after that you just play the one which has the highest mean 

ok. 

But here the question is how much time I should sample each one of them so, that I get 

the good estimates all of them if I can. If I get once I am sufficiently confident these 

estimates are good maybe then I do not need to explore any more further then just play 

the one which has the highest mean after that wards right. 



  

So, let us that one natural policy let us we call explore and commit; explore call ETC. 

Now, all the algorithm looks in this case. So, for this algorithm we need to tell how many 

rounds it need to explore. So, explore let us say we have to tell the algorithm, sample 

each of these arms these many times that has to go as an input to this algorithm right. 

So, let us say input is that number m and of course, and k; k is the number of arms. And 

then what this algorithm does? The algorithm is going to play arm 1 m times arm 2 again 

m times arm 3 m times. So, there are k arms. In the first k m number of rounds it will 

sample each of the arms m number of rounds. After that it finds the estimates of all of 

them and commits to the one with the highest mean. I am just going to write that.  

So, all of you understand. What is this? This is t mod k and till the first m k number of 

rounds what it is going to do? It is going to do t mod k. So, suppose let us say t equals to 

1, it is going to be what? 1 mod k 1. So, what it is going to play? It is going to play 1 

mod k right. Let us say k some greater than 1, it is going to be this term why it is going 

to be 1? 

Student: (Refer Time: 11:37). 

Yeah, plus 1 there is right. It is going to be 2 in that case. So, like that when t equals to 2 

it is going to play arm 3. When t equals to 4 sorry, t equals to 3 it is going to arm play 

and when t becomes k, it becomes 0 and it is going to play arm 1 and it continues right. 

So, it is going to play the arms in a Round Robin fashion. It starts with actually 2, 3, 4, 5 

up to k and then with comes with 1, 2, 3, 4, 5, like that until that is it is going to do m k 

number of rounds.. 

And for t greater than m k, so, what is mu hat k here? So, we are going to define μi  hat at 

time t; that means, the notation here is the estimates of arm i I have at round t and this is 

going to be; so, this is the number of samples averaged till time t right. 

So, what is a numerator doing? It is; so, first focus on the denominator. It is counting on 

the number of plays of arm i till round t. And what is numerator doing? Numerator is 

taking the sum of all the samples that comes from arm i till round t right. So, this 

notation is saying that whenever i’s in the S round if S equals to i then only this term is 

retained. So, it is returning only those samples that you have collected from arm i till 

round t. 



  

Student: (Refer Time: 14:41). 

Which one? This has to be i’s yes ok. 

So, once you hit m k number of rounds ok, what you will do? You will at that round you 

will see which arm has the highest mean and after that that is it, you keep on playing the 

same arm which has the highest mean. You are not going to change the estimates after 

that. Now the, so, that is why we are saying that we have explored till the first mk rounds 

and after mk rounds we are just committing ourselves to the one which have which has 

the highest empirical mean in that till that round ok. 

Now, if I am doing going to do like this, what is the performance I am going to get ok? 
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So, now, let us try to bound this ok. Now, let us count Ti (n). So, how many rounds? I 

have played arm i till n rounds, right. You know that for the first m rounds you have 

played arm i that has been guaranteed by this first part right ok. And then for S equals to 

m k onwards you do not know whether which arm is played that depends on which one 

has the highest mean.  

So, let us right and now from this round m k plus 1 and n whether you have played arm i 

or not depending on in the mk-th after the mk-th round whether the arm ith term 

happened to be the best one or not right. 



  

So, let us try to do this. So, what is this is going to be then? This is going to be  so, this 

depends whether I am going to play or not. Only depends whether on the m kth round I 

happen to be the best or not. So, that is going to be n minus m k times indicator. So, I am 

saying that so, now, after this m k plus 1 to n rounds I will be playing arm i only if μi  hat 

of k this guy happens to be larger than the other arms right; all computed at m kth round. 

So, at the end of this m kth round I have computed the empirical means of all of them 

and I know that after t is going to be greater than mk I am going to play arm i only if its 

empirical mean happens to be larger than others right, fine, ok. 

Now, so, this is a constant that has been given to me as an input to the algorithm. So, n is 

also let us assume that is given to me the number of rounds for a given number of 

rounds. So, what will be the expected number of plays of Ti (n)? So, this is going to be m 

plus n minus m k and now if I take the expected value of this indicator it is going to be 

probability of right. 

So, now the problem boils down to if how can I bound this probability? What is the 

probability that at the end of m k rounds, now i arm happens to be the one with the 

highest mean highest empirical mean ok? So, now, let us try to focus on this term. So, 

now, for time being let us assume that this I am interested in this arm i which is other 

than the optimal arm that is i is not equals to 1 ok. 

Now, I am interested in a bad event right. Like, I am I want to basically see that I 

assumed my arm 1 is optimal, but what is the probability that I will end up some arm i to 

be empirically best right. So, if that happens if the arm i which is not 1 happens to have a 

highest empirical mean compared to the arm 1 then that is a bad thing for me right that is 

going to cause regret for me. 

So, let us consider that event and see how if we can capture that. So, what we want is in 

this I want the when this happens to be larger than μ1 hat of k that is the mean empirical 

mean of the i-th arm happen to be greater than or equals to the empirical arm of the arm 

1 that is the best one right. 

So, here I was looking at max over all the arms. Here I am just trying to replace it by the 

one with arm 1. So, what can I say the relation between this and this? So, this is basically 

saying μ1 hat is greater than maximum of several terms and μ1 is one of the terms here in 

the max ok. So, if I am just going to return one of the terms here, so, what is the relation 



  

between this probability and this probability? So, which is going to be larger; this one is 

going to be larger or this is going to be larger? 

Student: (Refer Time: 23:31). 

First one is going to be larger right and anyway left hand side is the same. 

So, now I am saying that μ1 being greater than equals to some larger quantity, now I am 

asking μ1 to be greater than somewhat smaller quantity. Which event implies which 

event? 

Student: (Refer Time: 23:50). 

So, if this happens this automatically happens right. So, which one should have a large 

larger probability, if this A implies B? 

Student: (Refer Time: 24:09). 

First one will have larger probability? 

Student: (Refer Time: 24:15). 

So, A implies B? 

Student: (Refer Time: 24:26). 

So, A is this event if whenever A happens, we are saying that B happens right. Which 

should be correct? 

Student: (Refer Time: 24:43). 

Yes of course, this is larger. 

Student: (Refer Time: 24:49). 

Student: (Refer Time: 24:51). 

Yeah, this one is going to be more stringent right. 

Student: (Refer Time: 24:57). 



  

And this is happening this is automatically implied. 

Student: (Refer Time: 25:01). 

So, no power is more stringent. So, because of that you can check that if this is more 

stringent this probability should be smaller than the other one right. Or like maybe like 

we are basically saying that if this means basically you are saying otherwise this were 

saying that is contained in. 

Student: (Refer Time: 25:30). 

So, this is just like this guy is asking it to be larger than some quantity and now you want 

it to be smaller than in this quantity to be larger than somewhat smaller quantity, so, this 

is all automatically implied but, the otherwise not true right. Like, suppose μ1 hat is 

greater than let us say μ1 hat that does not mean that μ1 hat is going to be greater than or 

equal to max over all of this or is that automatically implied. Actually, so, we should 

think it like this. 

Suppose let us say, μ1 hat is going to be greater than or equals to μ1 hat and now I am 

looking at max. In this max μ1 hat is already content, ok. So, now, this quantity is going 

to be larger than this quantity right. So, you are basically asking this to be more stringent. 

You want more than what is already guaranteed in this. So, that also implies that, this 

quantity has to be less than or equals to this quantity ok. 

Now, we have this. Let us manipulate this. What I will do is, I want to ok; just I will just 

take both sides. μi is its μi minus; I am taking this quantity on the other side and now I 

have added minus μi here and plus μi. This is going to be what? Sorry, μ1 here. Is going 

to be what? μ1 minus μi; is this correct? I have just done a manipulation here. I have just 

taken this on the other side and there is minus I minus plus μ1 here and I have added the 

same thing over here. 
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So, now continuing this line of inequality, μ1 hat mk μ greater than or equals to μ1. So, 

this is max over j not equal to i μj hat. So, now, this is going to be greater than or equals 

to probability that; and by definition what is this μ1 minus μi  for us? Delta i, that we have 

defined as delta i ok, sorry. So, this is what we have ok.  

Now, recall, what was these quantities. This μi hat is nothing but average of m samples 

that are obtained from i curve right. So, that is how you have computed it. It is when it 

did it, we are compute taking t equals to m k. It is looking at all the samples that are 

drawn from arm i till m kth round till m kth round we have exactly m samples right and 

this is going to be m; because m the arm i has been played m number of rounds. 

So, this is nothing, but this quantity is nothing, but average of m samples that has been 

drawn from arm i. And we know that arm i these samples are iid further the mean of arm 

i is μi right. Now, we argued last time if all my arms distributions are sub Gaussian what 

this quantity is going to be? Sub Gaussian. Sub Gaussian with what parameter? Suppose, 

assume that all my distributions are one sub Gaussian ok. 

Student: (Refer Time: 30:59). 

1 by m; why is that? So, there are so, if you simplify this. 

Student: (Refer Time: 31:10). 



  

It is 0 sub Gaussian? 

Student: Under root of sigma (Refer Time: 31:16). 

Under root of sigma? 

Student: (Refer Time: 31:20). 

1 square minus 1 square. 

Student: (Refer Time: 31:25). 

 Right. 

Student: (Refer Time: 31:33). 

Yes. 

So, what happens? So, in our case we said sigma 1 is 1 and sigma 2 is 2; also 1. It is, but 

there is also like now let us rewrite it. So, I know that for mk, the denominator becomes 

what? It becomes m right. So, this is m and what is this numerator is like? This is 

basically summation of?  

Student: (Refer Time: 32:08). 

This is going to be the summation of i samples which has drawn from arm i only that is 

what it is saying right. This is Xi, i’s the sample you are going to observe in the s-th 

round, but I am interested in only those samples where i’s equals to i right. 

So, because of if you just ignore all the places where my i’s is not equals to i, if you only 

return those where is equals to i; I have exactly m samples in the numerator right. So, if I 

just took that it is basically going to be what? Xi and so, this is basically going to be just i 

right, where i is s 1 to m. So, these are all the samples of the I even do not need to write 

this yes. This all these samples are coming from i-th arm and all these samples are one 

sub Gaussian. 

So, now we have this and now we have also μi  here right. Let us take this μi here ah. This 

is whole of this quantity divided by μi . We have already discussed this. So, S equals to 1 



  

to m X is times μi this whole divided by again. So, there is some small mistake we made. 

We did not say that the samples are coming from one sub Gaussian. 

We said that these samples when you subtract from μ the mean we said that this is one 

sub Gaussian that is what we said in the last class right. That the distributions are such 

that if you centre it is distribution that is if you subtracts the mean from the samples 

those samples are one sub Gaussian. So, that is the value right simplify this. So, I have to 

also not this I am taking this entire thing here. This is going to be like this and we know 

that this quantity is one sub Gaussian ok. 

Now, if this is one sub Gaussian and if you going to sum this, what is this this is going to 

be? 1 by? 

Student: (Refer Time: 34:45). 

1 by root m; why is that? So, we already said that you said that it is going to be like 

sigma 1 square sigma 2 square like this right, we have m quantities here and first each 

one is like 1 by m square right. So, 1 by m square plus 1 by m square all the way to 1 by 

m square; there are m quantities like that and if you just going to m by m square, it 

becomes under square root. So, it is going to be 1 by m square. So, the entire quantity 

here is 1 by square root m sub Gaussian. 

What about this quantity? This is μ1 here. We are just saying that all the distributions are 

all the know is one sub Gaussian right even though they have different the centering 

value that all the centre distributions are one sub Gaussian. So, even for the optimal arm, 

when you centre it, that is going to be also the sub Gaussian with the same parameter ok. 

So, now what about this? So, I know that this guy is one sub Gaussian 1 by m sub 

Gaussian this entire thing and this another guy is also 1 by square root m sub Gaussian, 

what about this difference ok? Before difference this entire thing is 1 by square root m 

sub Gaussian, what happens with a minus sign with a minus sign is what is this? 

Student: (Refer Time: 37:02). 

Why is that? 

Student: (Refer Time: 37:05). 



  

So, right, we have said that even if you scale it by some constant c whether positive 

negative does not matter it is going to give the same 1 by square root m with that 

constant and that that constant is 1 here ok. 

Now, this is 1 by square root m sub Gaussian, this quantity is also 1 by square root m sub 

Gaussian and think of these are we are adding 2 sub Gaussian random variables and are 

they independent here? They are independent right. When what would we say? When I 

am going to try sample from an arm, it is going to be independent of the past all pulls 

from that arm and also independent from the pulls of other arms ok. 

So, it has to be these two are independent and now what is the what is this then? 

Student: (Refer Time: 38:01). 

Then it is going to be under root 2 by m right because then it is like square root of. So, 

now, this entire thing here is under root 2 by m sub Gaussian. So, if this entire thing is 

under root square root 2 by m sub Gaussian, now I already know a result which we 

showed last time which we written as one of the lemma right. Can I apply that and find a 

bounds for this, what is this probability? 

So, recall that, we said that probability that X is greater than or equals to epsilon, when X 

is a sigma sub Gaussian. What would you say this is upper bounded by exponentially 

exponential minus? 

Student: (Refer Time: 39:05). 

 By 2?  

What are sigma here? The sigma is the sub Gaussianity parameter of this X. Now, this X 

is nothing but this entire quantity right and so, replace this sigma by square root by 2 by 

m. Now, what you are going to get if you do that? And you are epsilon is now delta i. 

Now this X is the centre quantity. So, if you just apply that this probability is going to be 

upper bounded by exponential minus epsilon is delta i square 2 times 2 times this; sigma 

is going to be square root 2 by m. And if you are going to put it we are going to get after 

squaring 2 by m and this is going to be 2 times m right. So, this is nothing but 

exponential times minus delta i square m by 4. 



  

(Refer Slide Time: 40:38) 

 

So, what we finally, actually showed is ok, I will just erase this part I will rewritten there. 

m plus that the I am just m plus n minus mk and this whole quantity we have just argued 

that this is upper bounded by exponential equals to this ok. 

Now, once we have I have bound on this expected pulls of an arm i right, now we can go 

and use our regret decomposition result to get a bound of my regret bound of my regret. 

So, what is that then? My pseudo regret is here it is given by expected value of Ti(n) 

which I substituted this and this quantity is upper bounded by like this. So, this is going 

to be what? First term is going to be m k times sorry, so, if I substitute this I am going to 

get m times plus n minus m k times; i equals to 1 to k delta i must be. This is correct. I 

have just substituted bound on the expected number of pulls in this expression here. 


