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Lecture – 24 

FoReL with Strongly Convex Regulariser (Cond.) 

 

Yeah. So, let us just recap what we did in the last class. So, we introduced this notion of 

strongly convex function in the last class and then we derived some of its properties 

right. And, then we started talking about how to use different strongly convex functions. 

So, two candidates we discussed last time was the Euclidean regulariser and the entropic 

regulariser. Euclidean regulariser was strongly convex in which norm? It was in L-t 

norm and the entropy one was strongly convex in? 

Student: (Refer Time: 01:05) L 1 norm. 

L-1 norm. So, we will see how to use these two regularisers and we have also discussed 

that that the gradient being bounded, the norm of gradient being bounded is in a way in a 

sense equivalent to the Lipschitzness property of the convex functions, right. Now, 

continuing from our last class at the end we had shown that if I am going to use a 

strongly convex regulariser how my difference in the functions look like. 

So, we are always interested in the regret bounds will be after form ft (wt) – ft (wt+1) right 

something out that is all and we are interested in bounding that. 



(Refer Slide Time: 02:14) 

 

So, let us rewrite that and try to complete the proof we discussed last time. So, we 

wanted to argue that ft (wt) – ft (wt+1) is upper bounded by Lt square by sigma. So, what 

is Lt here? 

Student: (Refer Time: 02:45). 

Yeah this is the Lipschitz constant for function ft and what was sigma? It is the. 

Student: (Refer Time: 02:57). 

Regulariser, parameter it is sigma strongly convex that is sigma parameter. So, we say 

we are saying that now if I am going to use my follow the regularized leader, the 

regularizing being my sigma strongly convex function. And, each of my functions ft is 

Lipschitz constant is Lipschitz with constant Lt; then if this wt ’s are can computed based 

on my follow the regularize reader then we are saying that this bound holds good ok. 

So now, let us see why this is so ok. So, I made a formal statement of this in the last 

class, but I am just; I am just stating what is that we wanted to show in that claim. So, 

now its why this is true? Ok. So, for all t let us define Ft (ω) to be summation of. So, this 

is the function that follow the regularized leader trying to minimize in each round right. I 

am just calling that function to be Ft. 



All these functions fi ’s are they are assumed to be a convex and also Lipschitz and this 

R(w) is assumed to be what strongly convex; strongly convex with parameter sigma. So, 

anyway R(w) is anyway convex and this is all the convex. So, this Ft is our convex 

function, but further we are saying that this R is sigma strongly convex. 

Will this make this whole function also sigma strongly convex? So, you can verify this 

that is indeed true like if I add two convex functions it is going to remain convex 

function. But, if I add a strongly convex function to another convex function the sum 

becomes a strongly convex function and it continues to. So, this entire thing is going to 

be sigma strongly convex ok. Now, let us with this definition of Ft let us workout what 

happens. 

So, by our rule a follow the regularized leader what is Ft is going to be complete data 

device like argmin of Ft (ω), right. This is how my follow the regularized leader is going 

to work. Now, since this guy Ft is a sigma strongly convex function, I can write it as Ft 

(wt+1) is upper bounded by Ft (wt) sigma by 2 norm of w+1 whole square. So, now why 

this result is true? So, why this result is true? So, what I am doing here basically? 

Student: (Refer Time: 07:24). 

Yeah. So, F (wt) here is what? wt is the minimizer of Ft (w) that is by definition right and 

now I am applying I know that since Ft is a this convex function I have F sigma strongly 

convex function. It need to have this lower bound, but we had also something some 

linear term here right. What was that? That was the gradient of Ft (wt) and something like 

wt+1 or maybe it was of t to plus 1 wt ok. But, now that wt is the minimizer of Ft (wt) it 

was getting nullified right. 

So, we have the given this as one of the properties of my sigma strongly convex 

function. So, once this is hold; so, here I am fixing wt and now this is another wt+1 ok, 

this is a minimizer. 



(Refer Slide Time: 08:48) 

 

So, if this is the case I can also write it as, now I will do the same thing at Ft+1, now wt+1  

is the minimizer of Ft+1 ok. And, then this has to this will be plus sigma by 2 norm of wt 

minus wt+1 norm whole square fine. 

I have this two equations now. So, let us add these two together. So, if you add them; so, 

while adding I am also trying to do some simplifications wt+1 and this is greater than or 

equals to sigma times norm of wt plus wt plus whole square. This correct let if I. 

So, right hand side by adding this and this they are the same I get this term and the other 

thing have simply how simply. So, Ft+1 this corresponds to this and Ft (wt+1) corresponds 

to this and this and this term I have just simply taken on the left hand side. So now, go 

back to this definition of Ft function here Ft function, Ft+1 involves sum till t whereas, Ft 

involves sum till t minus 1 right and both of them computed at the same point wt. What 

is this difference is going to be? 

Student: (Refer Time: 10:54). 

It is going to be ft (wt) ok. What about this difference? This is now computed at the point 

wt+1 for Ft+1 and Ft and this is going to be what? Minus ft. 

Student: f (Refer Time: 11:27). 



Wt+1 and this is still sigma norm of wt minus wt+1 whole square right. So, this so far I 

have only used the property of this function F and the sigma strong convexity of this. 

Now, I also want to bring in the Lipschitzness properties of my ft functions ok. Now, by 

the Lipschitz property of my ft function, how can I bound this? 

This is upper bounded as Lt times norm of wt minus wt+1 whole square, is this correct? 

This is just I am applying my definition of Lipschitzness of a ft function. 

(Refer Slide Time: 12:35) 

 

So, note that all I am doing first I am right now I have not specified any norm here, it 

could be L1, L2 whatever ok. So, if I am saying that my R(w) is strongly convex with 

respect to nor[m] some norm, this Lt that is a Lipschitzness is also with respect to the 

same norm. Now, with this I am going to know I have a lower bound on this through this 

and I have an upper sorry I have an upper bound through this and I have an lower bound 

on this. 

So, if I am going to compare these two things. So, does this Lipschitzness says there is a 

square here? Just check I think there is no square here for Lipschitzness, it is just a norm 

ok. So, if I do this now what I am going to get from this? If I now this is a lower bound, 

this is an upper bound. 



(Refer Slide Time: 13:48) 

 

So, I now going to compare these two things through this I am going to get wt – wt+1 is 

upper bounded by my Lt times norm of wt+1 right. So, using this lower bound and upper 

bound I have this relation. But, now I just plugging this relation back here and that is 

what you wanted to show that is ft(ωt) minus ft(ωt+1) that difference I have, I am just use 

it. So, this will using this I have whatever I want yeah. So, if modulus is there, but if 

remove modulus also the bound should hold right. 

What is the Lipschitzness says? Absolute value of this should be upper bonded by this, 

yeah I found the left side if you remove the absolute value, this can be only smaller right. 

So, the upper bound still holds fine. So, with this lemma what we are finally, able to 

show is let me write it as a theorem now ok; is this clear why this is true? What we did? 

So, earlier we have already a result which says that regret is upper bounded by R(u) 

minus R(w1) plus summation f(wt) minus f(wt+1). 

We had this results right earlier, this is how we bounded the regret; now we are saying 

that. So, then this is simply follow the this is the bound for the follow the regularized 

leader with my regularizing function R. And what is w1 here? What was w1? w1 is 

basically the what whatever your algorithm found in round 1 right, that was obtained by 

minimizing this R function. So, that is why this R(w1) I am simply writing as 

minimization over R(ω). 



In the first round you do not have, this summation is empty; we are only minimizing the 

regularizing function ok. So, that is why instead of R(w1) I am writing. Now, for this part 

we have just demonstrated it to be this ok. So, every term here; so, this is for each term 

right ok. So, I have to make one more thing here. So, here what we are basically saying 

is this is like Lt square by sigma. So, what is now L here? 

So, this is let us say they are all ft is they are all L-Lipschitz, they have a same Lipschitz 

constant. In this case what this will turn out to be? This is going to turn out to be simply 

n L square by sigma and that is what we have written here. But what we really would; so, 

suppose this Lt ’s are not the same and they are going to be different in each round. Let 

us say this is Lt square by sigma, I could I have just multiply n and n here. 

So, here either I can assume that my Lipschitz constant L is same in for all the functions, 

in which case Lt will be replaced by L and this is simply n L square by sigma. Other 

possibility I can think is this is t equals to 1 to n, instead of assuming that all the 

functions are the same Lipschitz constant what I can assume is the average value of the 

Lipschitz constants. This is the average value of the Lipschitz constant right, square 

average value of the squared value of Lipschitz constant; I can say that that will be some 

L square. 

And, in this case again I will get the same n L square sigma bound ok. So, what we are 

saying is as long as all your functions are convex with the same Lipschitz constant L 

then this bound holds. If you are going to use some regulariser, some sigma strongly 

convex regulariser with sigma here then this holds. Or, let them be all ft in this ft 

functions be convex and each ft is Lt Lipschitz constant and the same bound holds 

provided I interpret this L square as the average value of all the Lt squares fine, fine. 

So, now we have this nice simplified version on the regret bound provided my I use 

follow the regularized leader with a strongly convex function, sigma in this case sigma 

strongly convex function. So, now, let us go back and work out; if I use different 

different regularizers which we discussed like our Euclidean distance and entropy 

distance what is the bound we are going to get here you ok. 



(Refer Slide Time: 20:52) 

 

Let us go back, 1) regulariser is I am going to take to be R(u) is 1 by 2 eta is and 2) R(u) 

is we said summation uilog ui ; let say you are in some d dimensional space right. So, this 

guy is, is it a strongly convex function? We discussed this last term right, this is a 

strongly convex function with what sigma value? 

Student: (Refer Time: 21:57). 

1. No, I have written sigma also here, eta also here without eta it was ah. 

Student: (Refer Time: 22:13). 

If I have this is one strongly convex right. So, again what was the definite what was the 

property that we use to check strong convexity? The Hessian based condition we had 

right, it was del square R(ω) X into X if this is going to be greater than point of square. 

So, with respect to this norm done this guy this function R is a sigma strongly convex 

function. Now, can you check me, now I am already norm has been defined for you to be 

L-2 norm. 

So, what is this? So, if you take this function and try to compute this condition for what 

sigma it holds? 1 by eta. So, let us say this is then 1 by eta strongly convex. And with 

respect to what norm? It is true with L-2 norm and what about this? So, for this we made 

some more assumptions right this ui ’s are; so, each of these ui we also defined. So, this 



is true for any u, this Euclidean distance or this Euclidean regulariser was defined for all 

u. 

But, then we define when we defined this entropy regulariser we said that this is coming 

from a set S, where all my w, all my components are positive and also. So, this is what 

we call probability, since simplex which you did not like and we call it as probability 

space right; we all this u as that is coming from this space. Now, this function is it again; 

so, strongly convex. 

And, now see when we said this thing right this was nothing, but L-1 norm. So, I do not 

we computed this last term or not you can verify that this one, if I am going to take this 

quantity to be 1 this is going to be 1 strongly convex with respect to L-1 norm yeah ok. 

This is the function right with respect to the L-1 norm and one can also show that if 

instead of this you should take it to be some B number; this can be shown to be like 1 by 

B strongly convex. 

Or, like not exactly you can take it to be less than or equals to B (Refer Time: 26:12) ok; 

sorry like earlier it was equals to 1, it is anything less than or equals to 1 or less than or 

equals to B ok. So now, what is going to be this bound look like if I am going to apply 

this regularisers? Ok. So, can you now compute, if I take my Euclidean regulariser can 

you come to work out what is this going to be? 


