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Online Gradient Descent 

 

Fine. So, now, let us see the update rule turn out to be simple gradient updates, gradient 

descent based update.  

(Refer Slide Time: 00:22) 

 

So, if we have this what is the regret bound we are going to get, that is of our interest, 

right.  



(Refer Slide Time: 00:32) 

 

So, what is the regret bound? So, first thing when we gave a regret bound for the follow 

the leader, how did we do? We showed that sum_{t=1}^{n} (ft (wt) – ft(ω)) <=  

sum_{t=1}^{n} (ft (wt) – ft(wt+1)).  

Now, with this adding regularization function can we have an equivalent version of this?. 

So, and then what will be that. So, that our first lemma says that, so once we had a 

regularization the only difference the extra term we get is this term on the spot. So, this 

bound here get changed by this bound.  

(Refer Slide Time: 02:17) 

 



So, do you anybody see what how can I get this or why this makes sense? When I did my 

follow the regularized leader, right what is my algorithm?. I was doing arg min_{ω} 

{sum_{i=1}^{t} fi(ω) + R(ω)}. This is R(ω) which is I decide, right, this is now 

generated by the adversary. This is totally under my control.  

I am going to treat this function as some f0(ω)  that is a function which is generated in the 

0th round, ok. So, if I do this, now I am basically saying that instead of starting my 

algorithm from round 1, I am going to start my algorithm from round 0, ok. 

(Refer Slide Time: 03:11) 

 

And then this same step should hold for that also, right. If this hold; and what is this? 

And in this f0(ω) is nothing, but R(ω). Earlier I starting this algorithm, but now I am 

treating that is to be R(ω) to be another function which is generated in the 0th round. So, 

this whole thing should hold if I start from 0 everything, right. 

Now, once you have this now do you see that this actually implies this, you see it. So, 

now, instead of now what I am going to treat is my sequence of function I have seen I am 

going to treat it as f0, f1,.. all the way up to fn, where f0 is my R function. So, just simply 

expand this, right. 
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So, you take it to be separate out t equals to 0th term here, then this is going to be f0 (ω) 

– f0 (u). What was this term here? This was some u, right whatever I am interested in. 

My u and other terms I just keep like that t equals to 1 to n, ft (ω) minus if this going to n, 

ft (u). This whole thing is upper bounded by again I separate out the first term here that is 

going to be what? f0(w0) - f0(w1), right plus the remaining terms.  

So, just try to manipulate these two terms. So, this term gets locked off with this. Now, 

you just bring it here, so then that is all we needed or maybe take this on the other side. 

So, if you do that you get whatever we have here. So, you should just do this. But now 

what is f0 ? f0 is basically R function, right. So, this you replace it by R, R(u) – R(ω1) 

plus this terms.  

So, if I have a regularizing function I will just get this. Yes, we will assume that this is 

also it is f0, right like this. So, then only the whole of my function is convex. If each 

function is convex their sum is convex, so I will also make it convex by assuming this R 

is also convex, ok.  

So, now, with this once we have like this earlier we have shown that my, ok. Now, with 

this what is the regret bound I am going to get?. So, let us try to work out this regret 

bound for a given u. So, this is my regret interested and now I need to compute this 

value, right, ok. Let us compute this upper bound for my case that; what is my case? I 



want to now take this to be R equals to norm of this and my ft (ω) to be <ω, zt>, ok. Now, 

let us compute what happens to this portion.  

So, if I am going to take this; so, my regrets of my FoReL for a given u this is going to 

be upper bounded by this quantity, right; R of u minus R of u 1 plus t equals to 1 to t of 

omega minus. So, now, let us substitute this value. What are this value? This is 1 upon 2 

eta and w. And what is this? Sorry, this should be u here, ok. 

What is w n is going to be? So, when I have to do w 1, so this is for t, right. If I am going 

to compute this at t equals to 1, in that case it is still t minus 1, right, my regularized 

leader version. So, there is no term here when t equals to 1. What I will be interested is 

only on this. And this term is this quantity. What is the minimization of this quantity?  

So, one more thing I have forgot to tell is let us assume that my S is R d here, the entire 

R d space, ok, the Euclidean space. So, because of this can be S which I am thinking to 

be R d. So, for t equals to 1 what is this quantity is going to be? So, this is simply saying 

arg min of norm of over w, right. What are these quantity? What is that minimizes this 

quantity? 0. So, then this w1 is 0. So, this term is going to be 0, I do not care about it, ok. 

Now, let us work out the remaining terms. So, what is this term? This is going to be w z t 

and this term is going to be <w, zt+1>. Now, what I did? Sorry. So, this is going to be w t 

computed at w, this is wt+1 computed at zt. Is this correct? So, ft of this is ft (wt), right and 

this is ft (wt+1). So, I have just substituted this value.  

Now, if you are going to simplify this further. So, I am just writing this as a compact 

form for these two things. Can I do that? So, because zt  is common it is simply wt – wt+1. 

But what I know about this? So, wt+1 , I got it through wt right, through gradient descent. 

What was the relation between wt  and wt+1 ? So, how did we get wt+1 to be wt - eta.  

Student: (Refer Time: 12:17). 

And, that is zt, right. So, can I substitute here? So, if I substitute here, this quantity is 

simply zi t sorry, eta zt. So, after substituting this I can write it as norm of zt whole 

square. Lineup product between them. Is this correct? So, finally, what I got is the regret 

bound of on a particular n is upper bounded by 2 eta norm of u square plus this quantity.  



Now, let us again use the same condition we used earlier, right. So, let us assume that 

this parameter zt  in every rounds are such that let us say this norm of zt are less than L 

for all t. So, the gradients here zt denotes the gradient in round t, right let us say they are 

all up like this. So, now, what is the bound I am going to get? 2 eta. So, this guy is also 

going to be L, right because this is also u is coming from the same space as that.  

Now, like; so, what is this u? So, this zitas are the gradients, ok. What now I am 

assuming is these are the gradients and I am going to assume that they are upper bounded 

by some quantity L, ok.  

And what is this u? u is one of my reference point, ok. So, let us assume that this 

reference points they are coming from a set u, right, I am also going to define this u to be 

such that u where all of this u’s they are also bounded, they are also coming from some 

bounded interval, ok. So, only thing I am doing is instead of let us say instead of 

considering all the points like this I will consider some ball, ok. 

So, one possibility to do this is let us all; what is this points x such that norm of x is. So, 

what does this set denotes if I write it like this? So, assume dimension is two circle, right 

of radius B in this case, ok. So, I am just going to assume like even in this dimension I 

am going to consider some ball of radius B here. 

Now, because of that this guy is going to be some B plus I will have this eta term, is 

equal to eta and this guys I have been assumed to be upper bounded by L, so this is going 

to be L. So, finally, what I end up with this is B by 2 eta plus L n eta, n is coming 

because I am adding L for n terms.  

Now, we are seeing this kind of bound earlier also, right. What are we are going to do 

now? What we will do? So, eta is a parameter of power S, right. This is a regularizing, 

this is a parameter which we used in the regularizing function. So, how; now it is up to 

us how you want to choose it. Can I choose it in some specific fashion here?.  

Now, treat this upper bounded is the function of eta, right. Is this a convex function in 

eta?. This part is linear in eta. This part is 1 by eta is what?. So, it is a convex function, 

just you just do the second derivation two differentiation, right. 



1 by eta square sorry. It is going to be what? If you differentiate just 1 by eta to twice, 

you will see that it is having a positive slope. You have positive second derivative if eta 

is positive. So, if you now just differentiate it, and try to find a point eta and plug it back 

and tell me what is the bound you are going to get, so basically optimize this with respect 

to eta. What is the bound you are going to get? So, if you are going to choose eta to be B 

L times square root 2 n, it is in the denominator. But, what is that? This L should be in 

the numerator or denominator? 

Student: (Refer Time: 17:55). 

2. 

Student: (Refer Time: 17:57). 

Just differentiate this and tell me what is that optimal value of eta here? 

Student: (Refer Time: 18:05). 

Under root.  

Student: B by (Refer Time: 18:09). 

B by? 

Student: (Refer Time: 18:14). 

Now, if you plug back in this what is the bound you are going to get? So, can you tell me 

what is the final bound we are going to get? Suppose, if I choose my eta specifically like 

this it is going to be what? Square root of, ok; just do this (Refer Time: 18:37) square 

root B, square root of the z square root B will be here then becomes B L n will be there 

and I will have 1 by square root 2, 2 by 2. 

Student: B L n. 

Will you get this? Square root 2 B L n. And what is this? Now, because B and L n are 

constants which are chosen in this fashion and then this is like order square root n. So, 

you see that now even for the linear function, linear loss function if I use my 

regularization in this fashion I will end up my follow the leader, that is follow the 



regularized leader it is going to give me a regret bound which is order square root n, ok. 

That means, this is going to this will give me a sub linear regret, ok, fine. 

So, fine. We so far looked into two types of convex function, one is linear function and 

another is the quadratic function we are looked at. But, what about the other convex 

functions? Is there we can do something about this?. It so happens that studying other 

convex function is almost same as doing studying this linear functions here because of 

the property of a convex function which allows us to represent this convex function with 

a lower bound which has a linear (Refer Time: 20:25). So, let us discuss that.  
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So, linearization of convex function. So, how many of you know definition of a convex 

function? What is a convex function means? f(λx+(1-λ)y) <= λf(x) + (1-λ)f(y).  

Now, what is lambda? 0 to 1, right. So, we have already seen it in other class, but 

anyway let us try to again do it here. So, suppose let us say my function is like this and I 

have two points here, one is at x and another at y. So, this is my f of x, right, and this is 

my f of y. So, where is lambda x plus 1 minus lambda y is going to lie? So, it is going to 

be somewhere in between, right because lambda is between 0 1, and we are also 

assuming that this function f is defined on a convex set, ok. 

So, if you take a linear combination of any two points of x domain, it is also going to lie 

in the domain. So, this is going to be lambda x plus 1 minus lambda y and this is let us 



say this is its function. And what is this quantity here? Lambda times f of x, 1 minus 

lambda f of y. What is this? So, as you vary lambda I am going to (Refer Time: 22:58); I 

mean scrape through this line, right like from here to from lambda equals to 0, I am 

going to be at here, and lambda equals to 1, I am going to be at here.  

So, what is this saying? It is saying that my function value at this point; that is what is 

this? This is f(λx+(1-λ)y) at this point is always going to be lesser than the line joining 

these two. So, this is the standard thing we know about convex function.  

But another interesting property about this convex function is, you take any point, let us 

take this point. I will can come I can have a tangent at this point on this convex function 

which acts as a lower bound for this entire function, that is maybe I should be drawing 

the slightly better one, ok.  

So, let us say take a point here another point. I can draw a tangent. So, tangent here is the 

point where it touches my function only at this point, ok. And this, so whatever this point 

and I can have a tangent here which is like a lower bound for my entire function. Like if 

I have this if you look at any point the value on this line is going to be always smaller 

than the corresponding value on this function, ok.  

So, in this case then let us say this point is some w. Now, what is the property of a 

convex function is, so let us say let S be a convex set of function if and only if for all 

there exists such that. So, it is saying that if S is a convex set then my function f is 

convex if and only if it so happens that you take any point w at that point, if I can come 

up with a another point z such that this relation holds.  

This is true for all u, that is you tell me a point w, I will be able to come up with a lower 

bound on my function f. So, this is my function f this is true for all u, right; that means, 

this is a lower bound on this function.  

And what is this lower bound? This lower bound is now defined in terms of the value at 

that point w and also another point we are saying z which exists at that point z. And if at 

all that exists then that function must be convex, ok. And now, this z here whatever we 

said exists this z is called sub-gradient of f at w and it is denoted as del of f. So, anybody 

has question about?  



Student: (Refer Time: 28:17). 

That z need not be unique. All we are saying is that there exists in z and that z could in 

fact, depend on the w the point at which you are looking at, and. So, then if that such a z 

is going to be called as sub-gradient of this function f at omega. So, they are not going to 

prove this is like a standard result in convex theory of convex function. And, but what 

we are going to do is we are going to exploit this result to linearize my convex function, 

ok.  

The way I have drawn my convex function here, do you think this is differentiable at 

every point? Right, because it is smoothly changing at every point. So, in such case, this 

if this such this sub-gradients can be unique and if at all it is unique that is you tell me a 

w there exists only one particular z for which this relation hold then, but that particular z 

we are going to call it as a gradient of my function at point w here, ok.  

If at all this property holds with a unique z, then that z defines my gradient of my 

function f at that point. And in that case if z is denote they are going to denote it as del f 

of omega. So, when we say this, when this is uniquely defined the gradient. 

When we say this is not uniquely it is satisfy for a unique z, but there are there could be 

possibilities we are, in that case this del of f omega can be a set, right; because. So, what 

we are saying? This z is called sub-gradient, right and we are just denoting it.  

If there are more than one z that satisfies that then all of that will be called sub-gradients 

at omega and that will be denoted by this notation. And whenever it is unique then we 

are just going to write it as with this capital del of f omega. Is that clear?  

So, what I want to say is if f is differentiable then this del f of omega is a singleton and 

we denoted as f of omega, ok, ok. Now, let us see this y. So, can you come think of a 

case where the sub-gradient can be a set that is it can have more than one elements in 

this?. 
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So, anything like whatever I have some let us like a convex function like this. This is 

differentiable at every point? Yes, that, this is smoothly changing. So, at any point I can 

have only one uniquely one unique tangent that is passing through that line, ok. But, now 

take this; is this a complex function? Right. It holds our property, right. If you take 

anything and my function value is going to lie between these two that is the property of 

convex lines.  

But now, suppose is this function differentiable at this point. This function is going to not 

differentiable at this point, right because when I approach it from the right it has a the 

negative slope and when I approach it from the positive side it is having a positive slope. 

So, at this point it is not going to have a it cannot be differentiable. But, is there a z here? 

So, let us take this is the one particular w which I am interested in.  

This relation can be satisfied by a unique z or there could be multiple z that could satisfy 

this relation. So, it so happens that in this case there could be multiple z’s that could be 

satisfying this, one possibility is this, one possibility is this. Maybe you can think of 

many lines which are all kind of touching this point only at one point and they are like a 

tangent here.  

They are also lower bound to this function, and but the there is no unique line there are 

so many lines, right. And each of these lines can corresponds to one z, right. 



So, in this case at this point w my delta f omega can have multiple points. So, here the 

sub-gradient is a set it is not a single term. But if you look into at this point here my 

function is differentiable. So, in that case my sub-gradient will have a singleton which I 

am going to call it as simply the gradient of my function at that point, ok. So, now, what 

basically shown? How can we exploit this? Right. 

If you are going to reorganize this function here what we have is f(ω) – f(u), ok. So, 

earlier, ok; so, let me write it in terms of this we earlier we had this function, right this is 

my regret. Now, take a particular t and look at the difference f(ωt) – ft(ω). If my ft is a 

convex function, I am going to appeal to this function here.  

Then, what I can do? Then, this is going to be what? Is this is true? If my function is 

convex can I upper bound this by like this using this relation? So, what I am doing is in 

this case I am looking at my sub-gradients at wt , my points wt  and this zt is the gradient 

of my function f at the point w t, ok. 

So, if done, I know that this relation has to hold for some zt, ok. And if my function is 

convex and let us say it is differentiable everywhere then this zt, I can as well replaced by 

f of t, right. So, what we have done basically is we have given, here f is any arbitrary 

convex function, right. What we have done is we have replaced, we have upper bounded 

its regret by. So, what is this? This is nothing but, if I reorganize this, this is nothing but 

<wt, zt> - <u,  zt> . 

(Refer Slide Time: 37:00) 
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So, if you write this then this is <wt - u,  zt> . So, what we have basically now see is; so, 

this could be a arbitrary convex function, but if we can linearize it I can upper bounded 

in terms of a linear function, where my zt is the sub-gradient of my function at that point 

wt, ok. So, once I have this, what are all the things I have done here for my linear 

functions I can appeal to this and get a bound here, right.  

So, that will give me a bound here, but this is already upper bound on my regret. So, that 

bound also holds on this regret, ok. So, with this I just want to write this pseudo code, 

then we will leave.  
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Then what we finally, ended up with is what we are going to call it as online gradient 

descent algorithm. And how does it work? It takes a parameter eta and then it initialized 

w1 = 0, because w1 I do not have any control and then the update rule is wt+1=wt – eta*zt.  

And what is zt here? zt is the gradient of my function at wt. So, this is what we are going 

to, we have simplified our follow the regularized leader for the specific case of L2 

regularization to be this online gradient descent algorithm. So, we have already discussed 

why this is gradient descent, right, ok. 

So, let us stop here.  


