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Lecture - 20 

Follow the Regularized Leader 

 

So, we have been discussing what in the last class, we started talking about follow the 

online convex optimization problem; and in that we talked about we follow the leader 

algorithm.  

(Refer Slide Time: 00:39) 

 

So, in the last class, we notice that when my convex functions are of the form like my 

convex functions in particular if I take it to be a quadratic loss function, we saw that my 

FTL algorithms give me, what bound we got? 

Student: (Refer Time: 01:00). 

So, my regrets of my FTL was 2 L whole square times you got it to be log n, I think 

some constant we got it of this order ok. So, we just wrote it as log n, but I think we will 

also allocate this one term here ok. So, what did we assumed? We assumed this zt square 

we assumed this to be upper bounded by L or we assumed this to be upper bounded by 

L? We assumed the Ls this squared ok. If this is the case, then we will not get a square 

term here ok. 



 

 

So, let see we said this log n term came from what summation 1 by t t equals to 1 to n 

right. So, this we said as log n, but I think the right upper bound is this, so that is why we 

will write it as log n plus 1 here it is just this is a problem fine. 

So, good, if you have this quadratic function, so, what was this we are defined it as this. 

And based on this what was the algorithm gave us, every time it gave us w of t is simply 

one zi i= 1 to t-1. So, it basically said take the average of all the previous losses that we 

have observed.  

Why then let us take this kind of loss function, so that is my linear loss functions right. 

And we said that this linear loss function is nothing but we can interpret as this is the 

expected loss right once the learner randomizes this strategy ok. How about applying this 

algorithm FTL algorithm on this setup? So, we will now argue that if you are going to 

use this setup, if you blindly apply your FTL algorithm on this, you may end up with a 

very bad performance ok. Let see why is that. 

So, for example, take your S the convex set to be -1 and 1. And I am only going to 

interested in the scalar values now; I do not take them to be linear I will just take I am 

interested in a scalar case. So, the dimension is all 1 here. Now, in this case I am going to 

treat like if their dimensions are 1, I could simply write them to be <w, zt >, both w and z 

are scalar. So, it is like this instead of some d dimension I am setting d to be 1 ok.  

Now, suppose this zt is that are chosen by the environment are such that, so zt is this 

chosen by environment right, it is up to him in whatever way you want he can choose 

them. So, let us consider some specific case let say he chooses is to be 0.5 for the first 

round, and for the subsequent rounds he is going to choose it as 1 if t is even. And he is 

going to choose it as -1 if t is odd, odd and greater than 1 ok. So, now let see what 

happens if I am going to apply my FTL algorithm on this ok.  



 

 

(Refer Slide Time: 05:15) 

 

So, let us keep on computing. What is my W1 is going to be? So, what is my FTL 

algorithm will do FTL algorithm will do arg min over w sum_{i=1}^{t-1} fi  (w) this is 

what my FTL algorithm will do right in round t. So, for W1 this is empty. So, you play 

something, I do not care anything, I am not worried about it.  

Now, let us take W2 . What is going to be W2? So, W2 is going to be minimum of f1  (w) 

but f1 (w) is nothing but f1 function is going to be -0.5w right because z1 is defined to be  

-0.5 in this ok. Now, keep on doing this what is going to be W3 . So, W3 is going to be 

0.5w + w yes. 

Student: There can be a W2 .  

So, W2 means I am looking at f1 right. So, what is f1 (w)? f1 (w) is w in z1, z1 is that 

quantity. And what is this quantity is going to be, it is simply going to be w right. So, this 

quantity is like f1 function, this is f1 , and this is f2 , and f2 we have this one here. And 

now if you are going to like if you continue to do this, let us do this one more time. What 

I am going to get 0.5w + w what I will get? 

Student: -w. 

Is going to be -w. So, if you can continue to do this, you see any pattern in this right. So, 

this guy here is going to be what -0.5w. 



 

 

Student: (Refer Time: 07:45). 

Plus 0.5w, and whereas, this guy is minus? 

Student: (Refer Time: 07:52). 

0.5w. So, because of that what will be the arg min of plus 0.5 w. Where w is coming 

from? So, this w is coming from plus and we are taken s to be minus 1 right. So, what is 

this quantity? 

Student: -1 (Refer Time: 08:19). 

It is going to be -1 right. And what is this going to be? 

Student: Plus.  

If you do like this, what is that you are going to get for W5? 

Student: - 1. 

You are going to get -1 like this, and like that it keeps on. So, you see that what is 

happening your wi ’s are alternating from one round to another ok. So, now, let us 

compute what is the loss incurred by we are interested in this quantity right ft (wt) minus 

ft (u) ok.  

And now what is my ft (wt) over n rounds ok, what is the first one is going to be? In the 

first round, it is going to be what? It is going to be +1 ok. So, let us ignore the first term, 

f1 something I will get it as f1 (w1) . So, what is going to be f2(w2) ? f2 (w2) is wtzt right? 

What is that going to be?  

Student: wt  (Refer Time: 09:40). 

When it is zt , when t is even I have 1; but whereas, when t is even here what I am going 

to get? 

Student: 1. 

1. So, wt  into zt is going to be 1 when t is even. When it is odd? 

Student: -1 into -1. 



 

 

-1 into -1, we get again 1. So, all the other terms here is going to be 1 1 1 1 right, so this 

is going to be let say n -1. And for time being assume that my this is also like my first 

loss is also one whatever you incurred I mean I can do anything, but I have simply 

putting to be 1 here. 

Now, what is this quantity? So, this quantity is nothing but zt into u, where t equals to 1 

to n. So, the total loss incurred is almost 1, almost n like I incurred loss in every round. 

And what is this quantity is, this quantity is nothing but u times t equals to 1 to n of zt  

right. And what is this is going to look like plus minus minus whatever it is going to look 

like.  

But I am interested in the smallest value of this right, because I will also be interested 

this is for a given v. But if I am going to look over the minimum value of this, I can take 

this u to be between 0, -1 to 1, but how can I make this is the smallest value like upon let 

say n is an odd number, what will be this sum? 

Whatever it is. Let say for time being let us take an n in which this quantity happens to 

be like after cancelling everything only one term remains that happens to be a positive 

number. Now, to minimize this, all I need to do is said this u to be 0. So, I can I make 

this quantity to be 0, by choosing u to be 0 irrespective of what are these quantity is. Had 

it been a negative quantity, I would have chosen something, but let us assume this turned 

out to be my n is such that this is a positive term. 

Now, because of this if you look this over if you now minimize over u, this quantity is 

nothing but n. Is this clear? So, what I am saying is the losses incurred by your total n, 

but the smallest you could have incurred is 0 by choosing your u to be 0. So, maybe like 

instead of this, let me just make it like min over u ok, just let us look into this. Let us 

write down what happen. Let say t odd number, what is the sum of Zt  say odd number 

and greater than 1. So, let us take 3, 5, 7 like that. If it is 3, what is this number? 

Student: -0.5. 

And if it is 5, it is always -0.5. And if it is if this ok, and if the t is even. 

Student: +0.5. 



 

 

It is going to be + 0.5. So, this whole quantity here depending on my n is odd or even, it 

is going to be  -0.5 or +0.5. So, when it is +0.5? How can I make this the smallest value? 

By choosing u to be 0. 

Student: (Refer Time: 14:02). 

Yeah. 

Student: (Refer Time: 14:05). 

When u is what is that we said when it is let say in this case it is in this case when it is 

0.05, right, I can make it we can make it just -1, in that case it will be -0.05 ok. Let us do 

that, -0.05, and that minus with this minus, it become some 0.5. And if it is the other 

case, when I have minus of this I am going to choose my u to be +1, it is still going to be. 

Student: (Refer Time: 14:50). 

It is going to still this right. But still you if you you see that this is still like order n right, 

this is still order n. So, because of this, if you are going to use this follow the leader on a 

linear function here, you will end up with a very bad regret ok, you are. So, what is the 

issue here? It works so well for this quadratic loss functions (Refer Time: 15:28) 

quadratic functions, but it is doing so badly for the linear functions. 

So, what, so what is that like can we say something about this. So, what happened 

basically when we are trying to do this minimization right, this is arg min. If I write 

simplify this, this is going to be simply w times zt  t equals to 1 to n if this function.  

So, depending on summation, the values the arg min here, it was changing in every 

round right, it has becoming plus minus as we argued here, it is changing in every round. 

Whereas, in the quadratic case the change was not so abrupt. Why was that? No, I am 

asking about this loss function. So, in this loss function, what was my wt , we wrote it 

(Refer Time: 16:53) some we already written here. 

So, in this case, the wt  we found by this method where my fi (w) was this function, my 

wt turned out to be average. So, because it is an average, every term here will be 

influenced by what happened in the large samples. So, in a way the change will not be 

that abrupt here right, because the past everything is kind of getting accumulation, 



 

 

because that in the next round the things will not change that drastically. It is kind of a 

running average right running average usually do not change suddenly.  

But whereas, this in this function, the things were changing very rapidly right plus 

minus, plus minus like that. So, in a way the kind of past what has happened, it was kind 

of getting nullified it has no impact on the current ones. So, such abrupt changes were 

making this algorithm kind of unstable, it is rapidly changing.  

Whereas, there is kind of stability here because your average your updates are kind of 

getting averaged based on the past observations. So, in a sense, in a way what this is 

telling is for your FTL algorithm to give good performance, you were weights should not 

be getting changed abruptly, and that was happening in my quadratic loss function, but it 

is not happening with my linear function here.  

So, now the question is it possible to make that even if I am going to observe a sequence 

like this, my wt ’s will not change so abruptly, so that the updates are in some sense are 

stable. Maybe if you can do bring a such kind of stability in this even for my linear 

function, my FTL algorithm may do better ok. And usually the way to do bring that kind 

of stability is through bringing our regularizing functions ok. How many of you heard 

about regularizing functions? So, what kind of regularizes they use there? 

Student: (Refer Time: 19:25). 

LASSO so for what? 

Student: (Refer Time: 19:29). 

But what kind of what was the difference between loss and (Refer Time: 19:36) and the 

L2 regularizer. 

Student: So, (Refer Time: 19:40). 

So, one of them was trying to make your weights kind of sparse. 

Student: Sparse. 



 

 

But doing that did you see any advantage? Right, I am asking whether the fine, if the 

weights are very close very small or 0, those features are no effective, you can better not 

use them. But the question is did this improve a performance? 

Student: Yeah, (Refer Time: 20:02). 

Ok. 

Student: (Refer Time: 20:05) not in the training set, but in the overall they are. 

So, I mean in the test case you said that, but then did we did you realize what was the 

reason? 

Student: (Refer Time: 20:23). 

So, you are saying it kind of avoided over fitting. Anybody else came across this, but 

anything related to stability there? 

Student: What is the average stability, but adding this is better than is saying the (Refer 

Time: 20:44). 

Student: (Refer Time: 20:49) we want to make our models in some sense smaller. 

Student: Smaller model would be (Refer Time: 20:52). 

So, how is that (Refer Time: 20:58) was ensuring by making sure that some all the 

weights are not big enough or not all the features are relevant. So, some of them need not 

be given importance, but why is that squared norm? 

Student: (Refer Time: 21:09). 

Why, why smaller value, why you are saying it is smaller values? 

Student: (Refer Time: 21:13). 

You are adding it and then you are adding it to the loss and trying to minimize it. 

Student: Yes, (Refer Time: 21:18) the weights can only will large if they are actually 

having a good (Refer Time: 21:24). 



 

 

Weights are large? 

Student: So, if we are adding w (Refer Time: 21:28). 

Student: So, w can only be large (Refer Time: 21:32). 

If it is really important. 

Student: Really important and relevant. 

Ok. 

Student: If sometimes they making this loss go down (Refer Time: 21:40). 

Fine, the other way of looking it is you are adding this L2 norm to the loss itself. Instead 

of other way of saying that you are you are trying to make sure that loss that norm of L2  

is not large right, we can think of its like a constraint on a norm of two you are 

constraining it to be within some value, fine it also kind of. 

So, there your kind of restricting your weights, there the goal was to make sure that you 

do not over fit to a training data, but here in this online version our goal is to make sure 

that the updates are not becoming too erratic in the sense the updates are not changing 

too much from one (Refer Time: 22:25) to another.  

So, we want them to be kind of stable like we do not if it is abruptly changing too much 

in a way that means, that we are started kind of ignoring the past. So, if we stable means 

we are completely not ignoring the past like we are taking it and slowly allowing it to 

vary, fine. So, then what is my the regularized version of my follow the leader algorithm 

ok.  



 

 

(Refer Slide Time: 22:58) 

 

Now, we are going to study something called follow the regularized. So, what we will do 

in this case is instead of simply maxim simply finding the sum of the minimum value of 

the sum of the losses we have observed so far we will try to do this minimization after 

adding a another regularizing term to this. So, the what this algorithm we are going to we 

denote it as FoReL. So, Re here stands for regularized leader.  

So, this algorithm is going to do for all t wt  equals to arg min over and this term we are 

going to call it as regularizer. So, we are going to see different regularizers as we go on 

in the class, and we see that how they are going to affect our performance. So, let us take 

a specific example of L2 regularizer, where I am going to define this R(w) to be this 

quantity. So, I am adding this quantity to directly to the loss right. So, I want this to be 

kind of small and this is the normed version of this. 

So, if I am doing this, I do not allow my the minimizer to be kind of too big right, 

because of that I will in a some way I am controlling its variations ok. Now, with this 

suppose if I take this, and let us take my f (w) to be simply my linear function where ft 

(w) is defined by <w, zt> is the parameter in round t. So, if I plug in this, can you tell me 

what is the wt  I am going to get? 

So, just plug in you have put it here and put R norm of w here, and then differentiate and 

find out what is the wt you are going to get. Can you differentiate and tell me? But I am 



 

 

going to also defend this to be some parameter here. This is going to be, now tell me 

what happens?  

So, if I am going to differentiate this with respect to w, so this is going to be. So, do we 

get this? The minimizer wt* to be minus eta times summation of zt  ok. So, there should 

be. So, can I write it as? So, this is a summation from i equals to 1 to t -1 right. I can split 

this make the summation i running from 1 to t-2, and separate out -eta.zt-1. But the first 

part is nothing but w star of till t-1 right ok. 

So, what I have basically done is I have iteratively written this updates. If my previous 

update I have gotten in round t-1 was wt-1*, and I got this zt-1 my new value is expressed 

as like this ok, ok. Now, if you look into this function my linear function, what is zt  

here? So, my this is my ft  (w), my variable is w, then what how can I interpret this zt to 

be here?  

Can I take this to be the slop of this function zt ? So, what I am doing here in this in this 

update to get my wt* from this wt-1*, what I am doing is basically subtracting the 

gradient or slope of my this function, and with this coefficient of, but scaled by this 

coefficient eta, where is the eta is a term which is coming in my regularization function. 

So, what I am doing to get the new update I am subtracting this gradient of my function 

at t-1 from my previous update. So, you see that my weights are not drastically not will 

not change here right, because they depend on the previous update, and they are going to 

change as per the change in the gradient of my function. 

So, because of this, so what I am doing, my weights are going to change. In fact, they are 

going to decrease based on they are going to change based on this slope gradients. So, 

because of this nature, if we are going to use this regularization like this and I am going 

to use a slope like this, what I will get my update rule to be a rule which is which we call 

it as gradient descent right. Because this is my gradient and I am reducing my weights by 

that. So, we are updating as per this gradient descent method. 

So, relatively just to this what you have being basically doing we are saying that this is 

nothing but wt-1* minus eta times gradient of my ft-1. So, zt-1 is the gradient of this 

function right.  



 

 

So, I am just going to write it as ft-1 as a gradient of my ft-1 ok. So, because of this, we are 

going to call it as. So, any question about this? So, we have (Refer Time: 31:52) with a 

simple update rule right which is going to decrease, they have going to decrease the 

weights according to the gradients. 


