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Online Convex Optimisation 

 

So, till the last class we were discussing about is adversarial settings where we went 

from the prediction with expert advice where we had full information to the Bandit 

setting. And now we in the bandit setting we came across different different algorithms 

right. What was those? Like Exp 3 and Exp 3 p and Exp 3 IX. 

(Refer Slide Time: 00:53) 

 

So, all of these algorithms if you run it over n rounds. So, pi here is the policy. What is 

the regret you got? If you just ignore the constants there the expected regret I am talking 

about maybe like I should write a bar here this I am talking about a pseudo regret here. 

We got it to be O(√(n K log K)) right. So, there are some constant like sometimes for 

Exp 3 we got a constant of 2 here right and then for Exp3 IX we got an another constant 

there. 

So, I am just ignoring this constant other than that in terms of the parameters, number of 

rounds, the number of actions this is how it look like. So, of course this regret is sub 

linear, but then the question is whether this regret bounds are kind, are they good or how 

far they are from optimal? Ok. So, for that we need to know what is the best we can do 



with any algorithm. Ok. So, there is a one can show that or one can come up with a lower 

bound on this setup saying that this pseudo regret when I say pi. So, here pi is first 

specific it was like either Exp 3 or Exp 3 P or Exp 3 IX. 

Now, one can show that for any policy pi adversary can choose a distribution and come 

up with a sequence such that irrespective of what policy you are going to use we can 

make sure that you incur a regret of Ω(√(nK)). That is no matter what algorithm you use 

adversary and or the environment can come up with a scheme in which are basically our 

kind of distribution which will make you incur this regret. So, how much is the gap 

between O(√(n K log K)) and Ω(√(nK))?  

Student: (Refer Time: 03:48). 

√(log K) right. But, if you ignore that √(log K) factor, K is fixed right K is the number of 

arms. What we were interested in mostly is how it varies with the number of rounds. 

Because if you run more rounds we want to see that how quickly we start doing good 

compared to the other hindsight strategy. So, if you just ignore for this bounds are like 

for most identical right maybe up to constants.  

So, because of that these 3 strategy we already saw they are like optimal, if you just 

ignore this log K factor. So, we are now not going to show this lower bound proof we 

will revisit it at a bit later point where I want to now show this bound once I complete the 

stochastic bandit also. Right now we are only talking about adversarial setting right. 

So, after some time I will also complete stochastic bandits, then we will going to revisit 

this lower bound. Because the lower pool proves uses some stochastic argument. Ok, 

now in a sense all these 3 algorithms they are optimal ok. So, now what we will do is we 

will stop our study of this special this adversarial bandit setting and today we move on to 

something called online convex optimization. And we will show that the convex the 

algorithm we are going to generate or discuss for online convex optimization they 

already captured what we have already studied for this adversarial bandit settings ok. 

Also notice that when we started with initially the full information setting right that is 

prediction with expert advice. For that case, what is the regret bound we had? For the 

expert advice case when we use weighted majority algorithm. 



Student: (Refer time: 06:15) √(2nlog d) right.  

So, d is like K there. That is their number of experts or number of actions. So, the 

difference when we had a full information setting we already discussed this we would 

have gotten through weighted majority square root. So, O(√(n log K)). Even for that 

case, one can show that that is even your full information case that is the best one can 

get. The lower bound one can also show that you can that lower bound will be also order 

O(√n) and also there will be some logarithmic term there. 

So, that also for the full information setting I did not discuss the lower bound proof. We 

will not do that. We will only eventually do this part, but the algorithm we studied 

already weighted majority for the full information case and this Exp 3 based algorithm 

for the bandit case they are optimal ok. Now, today we will move to something called 

Online Convex Optimization. Ok, before I move on to this topic any questions about this 

adversarial setting we studied so far. Yes? 

Student: (Refer time: 07:57). 

Yeah. 

Student: (Refer time: 08:01) are if the (Refer time: 8:04). 

Right. We already discussed that if you look into the estimators we have right. How are 

the estimates? There were some indicator divided by Pit and how was that Pit  was divide 

in terms of the exponential weights right that was defined to be distribution. And we also 

argued that the variance is of the O(1/Pit) that we already discussed right. 

So, if this Pit is very small, then this variance can be very high. But, once you add this Pit 

by adding that γ now we are variance is inversely proportional to 1/ (Pit + γ). So, the 

variance would not be bad right even if Pit is very small. It will be restricted by this γ fact 

γ term there. Exp 3 P, but the same logic also holds for Exp3 IX right. 

Student: (Refer time: 09:13). 



(Refer Slide Time: 09:20) 

 

Same thing let me revisit that. In Exp 3 P, how did you define Pit to be 1 minus some 

gamma, then there was this exponential factors right divided by the summation and there 

was γ/K. And when we defined the estimators, the estimators were. How did we define? 

For my Exp 3 P, this was my estimator. 

Now, if you look into this estimator, this estimator is already this probability is here there 

will be at least γ/K. Because of that it is variance would not blow up if this quantity is 

small because it is always making it at least this much. This Pit will be at least γ/K. Now, 

in the Exp 3 IX, Pit was just this there was no this term, but what we did? We just added 

γ here. 

So, the effect in both the cases what to make sure that if you look into the various this 

term do not become arbitrarily small. There will be capped by this gamma term here. 

But, so then why it is called implicit exploration here. Like earlier you are forcing 

exploration, right. By adding gamma by K here, you are forcing some uniform 

distribution there, but now it is not there. You can just bit if you look into bit carefully 

that kind of exploration is already being done through this gamma, but not actually 

forcing that kind of uniform exploration. So, that is why it is called implicit exploration 

here. 

So, adding γ here or here both are kind of doing kind of same job of reducing your 

variance. Anything else about at anything about the setup we discussed, the algorithm or 



the analysis part, Ok. Now, how when we started with our method first we started 

assuming that my labels are generated by a hypothesis in my hypothesis class right. We 

called it as a realisability case. For the realisability case, we showed that we can get a 

regret bound of what. If you have a finite hypothesis class to learn from and it is a 

realizable place, what is the bound what is the algorithm and what is the best bound we 

showed? 

Student: (Refer time: 12:54). 

Yeah, what was that bound? So, further at least one thing we did is we had discussed 

halving algorithm and if we showed that its bound, it gives me what bound? 

Student: (Refer time: 13:11). 

Lock to cardinality of h, right. So, we show we are able to argue that if realizable case is 

there I can give guarantee that much. But, then if I remove that realizable case then we 

argued that adversary can make you incur linear regret by arguing the covers 

impossibility result right. But then we said if you. So, this is too bad then we restricted 

adversaries power by what? By allowing the learner to. 

Student: (Refer time: 13:52). 

Randomize his predictions and when the learner did this randomization then we are able 

to show that one can still come up with a sub linear regret; that means, we can do on an 

average as good as an I recall asymptotically. So, basically these 2 things realisability 

and the randomization helped us to come up with good algorithms.  

So, as we go along now we will show that these both case of realisability and 

randomization, allowing the learner to randomize this is basically coming from we are 

doing the convexification of the problems. So, this is nothing, but we are looking at some 

convex loss functions. 

So, we will come to that, but before that I am going to just define what is the convex, 

online convex problem we are going to set up and then we will see that how all of those 

things will fit into this set up ok. So, input. So, this is the setup we are going to consider. 

So, in the online convex optimization setup we will assume that adversary is choosing 

convex function in each round ok. I do not know that function before hand, but in round 



adversary is going to choose a convex function. My goal is to choose a vector in each 

round and I want to choose my vector such that, that function at the point that I have 

chosen is the smallest value ok fine. 

So, we will see what is my objective, but this is the how the interaction happens. In every 

round, learner predicts a vector w t from a set S this set is assumed to be a convex set and 

after that the environment of the adversary generates a convex function. So, it is not a 

one value, it is the function it is from it is defined on the entire convex set. So, and then 

whatever the vector you predicted you are going to incur loss of loss computed at that wt 

on this function f of t ok. This is what we are going to incur. Now, regret for the setting 

is defined as. 

(Refer Slide Time: 18:03) 

 

So, depending on how you are going to choose your wt, how you are going to predict 

these algorithms are going to be different ok. So, let us say pi is your thing. Now, the 

total loss you incurred is f t w t. Remember, w t is what you are predicting in each round, 

ft was generated by the environment, ft(wt) is what you incur in t-th round and this is the 

total loss you incurred. 

Now, you want to compare it against the smallest loss would have gotten by playing one 

point. So, what is that? Suppose, so, we this is the loss we incurred right I am going to 

compare it with the hindsight strategy. Suppose, you knew all the fts’ from t to n rounds, 



and now let us take this U to be for time being to be S only. So, we will discuss like this 

could be different, but let us say take for time being this because it is ft is from S to R ok. 

You want to play an U in this S, so that in hindsight that would have given you the 

smallest value. We are going to call this as regret and your goal is to come up with an 

algorithm that name as just this value ok. So, what environment actually? Environment is 

choosing this fts’, you are choosing wts’ in each round, this is the total loss you incurred 

and this is the best you could have done if you know all the ft sequence over t rounds ok. 

Now, does this setup map to our earlier setup where in each round? A loss. 

So, you remember we were earlier discussing the online classification problem right 

where in each round a point xt was detected and you decide what is the label to predict. 

After you predict a label the true label would have been revealed and you would have 

incurred a loss right. Now, let us say can that setup be fit into this setup. So, any guess 

how you can do that?  

One thing is let us say what will be the convex set in this case. So, there what we are 

doing? Every time you were coming up with the probability vector on the hypothesis 

right and then we were taking the average of the hypothesis we have, ok. So, can I take 

my S to be all my w’s basically simplest with for all i and my summation wi equals to 1. 

So again now I am going a bit backwards. Now, I am not recovering this for the bandit 

setting, but I am recovering for the full information setting ok. So, recall in the full 

information setting what we did when we applied the weighted majority algorithm? So, 

in the weighted majority algorithm, we were maintaining a weights on all the hypothesis 

and then when the loss vector and when and we played an expert drawn according to this 

probability vector and then we incurred a loss and there we were interested in the 

expected loss ok. 

Now, I am going to set this S to be this ok. So, there what was happening in each round 

adversary used to select a loss vector right in each round and then if wt  was your weight 

vector and Vt was the loss vector what was the expected loss you incurred? wt. 

Student: (Refer time: 23:08). 



The inner product of < wt Xt> right. So, your loss was. So, can I treat this as ft (wt )? So, 

it is now wt is what you chose now this is parameterized by the loss vector chosen that is 

and is this a convex function in wt? Yes, right this is just the in fact linear in this wt. And 

now let us chooseok. Maybe now I am just I also want to write this to be in U. So, I will 

just let us say I will be allowed to select from a reference point which is coming this set 

U which need not be always the same as this convex set S. It could be a subset of my 

convex set ok. 

So, I am saying this U could be some subset or maybe like even if it is U, I could choose 

this U to be some set S where U is set of all unit vectors. What I mean by unit vectors? U 

is like 1 if it is let us say some d dimension. I am going to say that this is the convex set 

which is a subset in Rd. Rd is what? d dimensional Euclidean space. So, this will have 

sum like this (1,0,..,0), (0, 1, 0,…,0) and (0,…, 0, 1). 

I am going to choose this U to be this vector this set ok. Now, if I do this then what is 

this term is going to be? So, ft (u). So, let me. So, this is like e1 vector right this is like e2, 

this is like e3 and this is like ed. These are the unit vector in the d dimensional space. Is 

that clear? Now, I am looking at this quantity over this unit vectors ok.  

So, suppose now I take this some particular let me call it let me take this to be e1. What is 

this quantity is going to be? It is going to retain only the first component in this loss 

right. So, ft (u) is wt into sorry u into Vt and if that u happens to be this vector it is only 

going to retain the first component of this or in general if I am going to take ei it is going 

to keep the first component of this. And now what I am looking at? I am looking at the 

minimum over this quantity right. So, it is basically looking at that component of my Vt 

vector which is smallest. So, this is like basically this portion is basically saying as 

minimum over i={1,..d} sum_{t=1}^{n} Vti. 

And now we already argued that this portion is nothing but <Vt wt>. So, you see that this 

is the same setup as prediction with expert advice right. This is the exactly the regret 

there we defined and try to solve it. Now, what we are trying to do is just like instead of. 

So, this was like a what we are basically is trying to now treat it as a convex function by 

convexifying what we are earlier did is we are did this convexification by allowing my 

learner to randomize over his action and then taking the expected loss is going to incur. 



So, because of that t our expected loss was defined in this case. So, we basically made 

this to be a convex function there even though it was linear. 

Now, what we are now we are saying is let us try to do not necessary linear function like 

this. We can just try to solve a bit more one, a convex function ok. So, as you can see 

here the randomization we allowed on the learner is basically translated our problems, in 

basically convexified our problem ok. Now, we are looking to solve a problem here 

where I am observing a convex function in each round. Earlier it was equivalent to the 

convex function was earlier parameterized by the Vt, the loss vector we used to observe 

in every round and if. So, this Vt defined my ft there and that was what environment 

chose that is I am now calling it as ft function and wt is what you chose as a learner. 

Student: (Refer time: 29:14) everything is that. 

Right. 

Student: (Refer time: 29:27) is not the (Refer time: 29:28). 

Yes, it could be something else. 

Student: (Refer time: 29:31) discuss. 

Yeah. So, I am just saying what we studied earlier happened to this special case of this 

setup by choosing your u to be in this fashion. That is why I am saying, we can it is not 

necessary that u this u has to be the same as S we will be interested. This is like my 

benchmark right. I may be interested to customer benchmark in whichever set I am 

interested in. I may not always go for this entire set S, ok. 

So, if in this case if you set this u to be in this fashion then you are already getting back 

your full information bandit setting fine. So, right now what you will do. We will simply 

focus on this set up now and try to see how we are going to solve by considering 

different convex functions. This was one convex function ok, but convex function could 

be more than just linear right we will consider the other aspects. What is the algorithm? 

The setup is clear, the goal is clear, now what is the algorithm? How we are going to 

approach this? Ok. So, if you recall the consistent algorithm we had, what we did in our 

consistent algorithm? Was that a halving algorithm or consistent algorithm? 



Student: Halving. 

That was halving ok. Just before that also like in the consistent algorithm, what we did? 

We pick then hypothesis from a hypothesis class and we checked how many of the 

hypothesis were consistent with the observed label. We retain them everybody else 

withdrew and whichever we picked in that round whatever that predicted we calculated 

our loss based on that. So, what we try to do is every in every round we try to keep the 

hypothesis which you are consistent with our observation and threw everybody else ok. 

So, in a way what I am doing? We are doing is trying to see which are the hypothesis 

that are performing better at that time and we know that by the realizability assumption 

there the good one has to be there ok. So, drawing similarly, there what we did we tried 

to be consistent with our observation every time. Now, what we can do? We can also be 

in when we try to do this we can try to be consistent our base try to find my prediction 

that best splits my past observations ok. So, I am saying in round t after we made a 

prediction ft is revealed, but before round t you have seen ft s’ of all the previous rounds 

right ok. 

(Refer Slide Time: 32:46) 

 

So, let us say consider round in round t we know f1, f2, are till ft-1. This function is 

revealed to be what I do not know is what is that will be selected in the t-th round. Now, 

I have to make a choice of wt  in the t-th round. So, what is the best thing I can do? 



Student: (Refer time: 33:18). 

Yeah. 

Student: (Refer time: 33:20). 

Why you want to do that? 

Student: (Refer time: 33:23). 

Yeah. So, this is so far we know and I kind of want to do this, but I do not have full all 

the n observation, but at least I try to be consistent with what I have already seen so far 

ok. So, then one thing is to do is you select a w t which is going to be I henceforth we 

will just to take this U and S to be same like just to I am what every time writing U and S 

let us take U=S. Then I am going to do is argmin_{w ε S} sum_{i=1}^{t-1}fi (w). 

So, what I am trying to do is in round t I am just trying to see which is that value which 

is consistent like when I say consistent that is basically minimizing my losses that have 

been observed so far and this algorithm is called as Follow the Leader algorithm. So, 

what I am doing? I am just specifying that how I am going to choose this wt and the way 

I am choosing wt is as per this minimization function. Ok, fine. Now, the question is a 

fine you are trying to be consistent with your observation why does this work good? 

Student: (Refer time: 35:38). 

We are not making any assumption. 

Student: (Refer time: 35:41). 

Yeah, but we are just assuming they are all convex in this setup currently ok. They did 

not be any relation between the current like it is the same right like when we said when 

in earlier case when we said wt is the loss vector that has been selected by that 

environment we did not assume anything like how V1, and V2, V3 are related they could 

be arbitrary. So, here that is why we are saying this f1 ft it could be arbitrary. What I am 

interested is I want to minimize the setup ok. 

So, next let us discuss what kind of guarantee I get if I am going to use this kind of 

algorithm Follow the Leader algorithm. So, any questions or doubts about the setup or 



why is there anything else we can do in this setup, why to just Follow the Leader, is this 

intuited one or this is the most natural one. Anyway, so let us see how to get a bound for 

this. Now, why is that? Suppose let us say first in the first round you have to select w 

before you knowing the function let us say you did something. So, w1 you has to select 

without any knowledge right basically. 

Student: w1 (Refer time: 37:14). 

The w1 earlier like if you are starting with a weighted majority right w on like a uniform 

distribution. I did not have any knowledge. So, I am going to put equal mass on all of 

them. I started with that and after that I observed the loss after I did that and then in the 

second round. 

Student: Update. 

I updated my weights. 

(Refer Slide Time: 37:37) 

 

So, you start with some w1 because you do not have any information you play it you are 

going to incur some loss you would not have any control over there. Then you observed 

f1 then w2 how we are going to do? You are going to argmin over w of f1(w). You got 

this and you played it. Now, comes f2. Now, how we are going to do w3 is argmin over w 

of f1(w)+ f2(w). This w3 whatever you are get, why it has to be same as this w2? It could 

be potentially different right. 


