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Now, in the last class, we started discussing about adversarial multi armed bandit right. 
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So, there was a slight confusion in the last class about the way we are going to define regret. 

So, let us revisit that part. Well, I say MAB; it is stands for multi armed bandits ok. So, we said 

that given n rounds and a policy 𝜋, and if I also tell you the sequence with which you do not 

know, but this is the sequence that you will be faced with.  

We define this regret to be what? So, this is the regret where It is random, because the learner 

can randomize his choice of It ok. So, now, this is the regret you are going to face you are going 

to incur when you have played against a particular sequence that is generated by adversary, of 

course, you do not know the sequence a priori. But now we also said that instead of this, since 

we are allowing the learner to randomize this selection, I am also going to look at expected 

regret which is going to be this.  

But when I wrote this expectation this expectation is with respect to the randomness of the 

learner, but why I will necessary that I am going to worry about one particular sequence that I 



will be faced with. The adversary may himself be generating this sequence in a random fashion 

in which case I want to account for both the randomness in which the sequence is generated as 

well as the randomness with which learner is playing his actions right. 

In that case I said ok, now I will not worry about a particular sequence that I am faced with I 

am going to the adversary can generate the sequence in arbitrary fashion. So, in that case, I will 

be interested in the expected regrets which is defined now in this fashion. So, notice that now 

I have allowed the adversary to randomize the sequence as well. 

Now, what is this expectation with respect to, now what on the things I am averaging about 

on? Whereas, when I did this expectation it was with the randomness of the players strategy, 

but now I when I write this expectation, it involves two random quantities there. What are 

those? One is over randomness of adversary, and another over random strategy of learner. So, 

this expectation here involves expectation over these two quantities ok. 

Now, looking into this further, we said as this quantity here, here this benchmark here against 

which I am competing, here we are asking for whatever the so I could always decide that xit, 

and this is over this quantity here, and so here. So, if I am going to look into the minimum 

quantity in each round, this is going to be a too demanding task, because in every round I am 

looking what is the smallest round. 

So, instead of that we said that I will be looking at this quantity, but here we said that this 

quantity is going to be what; this is a lower and upper bound, we said that this is going to be 

smaller than this quantity right. And here again what when I look into this reference here that 

is my competitor, now I am again looking at the single best action over my expected total loss 

I am going to incur. So, now this one we called it as pseudo regret, and I am going to denote it 

as with the bar here. Now, henceforth we are going to give bounds on this pseudo regret not 

the actual regret that I am looking at here ok. 

Today, what we are going to now look at is it possible to bound this quantity. What is a good 

algorithm for me? When I am in an adversarial multi armed bandit setting where we are saying 

that in each play I am only going to observe the loss from the arm that has chosen and not for 

the other arms. In the last class, we briefly discussed about this notion of importance sampling 

right. What does it did? Yes, in this bandit setting, you are only going to observe reward of loss 

of the action you played, but not of the others, but we could estimate the loss of others in each 

round. 



And we come up with an estimation strategy which is called as important sampling and we said 

that that estimation strategy was unbiased. So, in each round, I am going to estimate the losses 

of all, and I am going to pretend these estimates are the true loss that I have observed from all 

arms. So, then I am going to use that to update my weights ok. 
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Based on that, let us write down this algorithm called it is called. And why is this called exp 3, 

because there are three, exp terms here, that is why this algorithm is abbreviated as its name is 

abbreviated as the exp 3. So, I am going to use which as even if I am going to use minimum 

of. So, just like this part right when I just applied expectation over here simply on both side 

instead of this like actually this is the expectation term I am going to incur right. And just take 

expectation on both side this is going to the and replace this xi by the random quantity this is 

the expectation. 

And now even if you interchange this expectation of minimization, you still get this lower 

bound. So, and we can consider either of these benchmarks, but these are difficult to handle 

that is why we are going to consider this lower bound as a benchmark ok. Now how does this 

algorithm is going to look like? Let me first write down this. So, as you see I am switching bit 

notations here, because I am also switching books, but let us try to be consistent with our 

notations. 

So, here I am now using P1 here like if you recall when I was using the weighted majority 

algorithm, for weights I was using W’s there. Now, instead of those weights with the weights 



which we I finally, converted to probability, here I am also using probability, but instead of w 

I am going to use the notation P now. So, this is a probability vector now. And one more 

notation change I am going to make henceforth this, this x earlier I said this is a loss right, for 

loss again I now going to switch to small l ok. 
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So, here, so against every just the notation just to say that I am in a loss set up here like I want 

to minimize the total cumulated loss I am incurring ok; then observe loss ltIt. ok. So, this is the 

whole algorithm. So, this algorithm has basically three steps. First step is you are going to play 

an arm according to your current distribution pt. And then once you plan arm, then you are 

going to update estimates the loss of all the arms. After you update the loss of all the arms, then 

your third step is to update your strategy itself. 

So, what is strategy here? Strategy here is to decide with what probability I am going to play 

each of these arms fine. So, I am saying to for this algorithm to make work, we have to tell 

how many arms you are dealing with, and also you have to pass on a sequence (𝜂𝑡)𝑡∈𝑁   , this 

is defined for everything t, you have to pass you have to tell for t =1, what is this 𝜂1; for t = 2, 

what is 𝜂2 like that. So, this 𝜂𝑡 is defined for every t. So, recall that when we are doing weighted 

majority algorithm for the expert predictions right, there also we had a parameter 𝜂 ok. So, in 

the weighted majority, we had an 𝜂 we set it in a specific fashion. How did we set that? 

Student: 𝜂 =  √{
2 log 𝑑

𝑛
} 



Divided by n. What was n? 

Number of rounds there. But you will see that in the assignment that we are going to see that it 

is not necessary that that eta has to be fixed like this. One can take an arbitrary sequence I mean 

some specific sequence and try to get a better bound then what we got in the weighted majority 

algorithm. So, 𝜂  we said it is fixed, but eta has to be can be come up with a better in a better 

way, and that can change in every round right. 

So, with that we can come up with the better, so that we are directly bringing in this concept 

here like a priori we are not going to fix 𝜂 to be 1 value. We are just telling we will you pass 

to this algorithm what is the sequence of 𝜂𝑡 . And, again recall what was that eta was doing the 

eta in the weighted majority was telling how much importance you are going to give to the 

exploration exploitation in some sense. Because, it was basically controlling how much weight 

you are going to give to the past observation, but in a way it was also controlling exploration 

exploitation. 

So, this sequence will do this here. Now, this algorithm we are going to start with P1 which is 

basically uniform distribution initially we do not know anything. So, we are going to put equal 

likelihood on each of these arms. And then the algorithm in each round keeps on updating this 

Pt distribution initially for t equals to 1, this is uniform distribution. 

It picks an arm and going to observe whatever it take the loss for that arm, but it is going to 

keep estimates for all the arms for all i in k, it is going to do this estimation. We discussed this 

last time right. This is basically compact way of saying if whatever the arm you are going to 

play for that your estimate is 
𝑙𝑖𝑡

𝑃𝑖𝑡
 for the arms which you did not play, this 𝑙𝑖𝑡̃ is going to be 0. 

And after that you also keep updating your cumulative loss. So, maybe instead of tilde, I keep 

I will write hence fore and this thing to indicate their estimates. Now, you are going to again 

for all i, you are going to update the total loss for that arm. And using this total loss we have 

observed so far you are going to update the probability in this fashion, and this is where your 

eta t is coming into picture ok. 

So, what it is basically saying that it is going to take this quantity; and this is just dividing the 

same quantity, but after adding them over all arms ok. So, it is just this is the exponential, 

exponentiated cumulate this sum of arm k, here you are adding all arms. And then for each 

arm, you are just taking one component of this and dividing it by the sum, you know now it is 



easy for you to see this forms a distribution right, because if you just add it over all as it adds 

up to 1, and each sum is a positive number here ok. 

So, we are saying that yes I observe loss for only the arm I played. If you have picked It for 

some arm and this It equals to i happens that arms gets not simply lit it gets a scaled value 
𝑙𝑖𝑡

𝑃𝑖𝑡
. 

If I am going to observe loss for some arm, I am going to divide it by Pit and then going to take 

that as my estimate. But for the arms which I did not observe they will be assigned zero values 

ok. Even though we are being assigned zero values, we discussed last time that if you look it 

in expectation, it is going to be the true loss for that action ok. 

Now, fine we have an algorithm like this fine we can have an algorithm anything you want 

now, but what is the guarantee that this algorithm has ok, so that is what we will now see. Of 

course, this is one particular strategy in which one algorithm is where you have specified the 

way you are going to come up with your distribution. To come up with the distribution, you 

have used a particular estimator. 

Tomorrow you can go and come up with an another distribution here, and maybe that will have 

a different performance. But now let us say once we are going to update in this fashion, what 

is the performance we are going to get. Also I said this is an input to this right. So, depending 

on how I am going to choose the sequence, the performance can differ ok. Let us see what is 

the performance I am going to get; I will get rid of this part.  
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I am going to give, if this is first part the second part, if 𝜂𝑡 is. So, suppose instead of this nt I 

only pass on the number of arms and the number of rounds n. One can set this 𝜂𝑡 =  √{
2 log 𝑘 

𝑛𝑘
}  

for every t. So, this becomes constant in this case where it does not depend on what is the t 

here. So, if we are going to choose this may be let me just call it as constant here.  

If you take this eta to be constant like this, then one can show, that the regret of this algorithm 

is upper bounded by √{2𝑛𝑘𝑙𝑜𝑔 𝑘} here ok. Now, if you do not know, so you can do this if you 

know n, how many rounds you are going to run it a priori. But if you do not know how many 

rounds you are going to run it a priori. But, you can stop it at some time and if you stop it 

sometime, and at that point you are going to ask the regret right. 

Now, what then you do not know a priori n. So, in this case, we are you are you set in every 

round 𝜂𝑡 to be like this. In round t, you know what is value of t accordingly you set that. And 

if you do that the regret you are going to get is √{2𝑛𝑘𝑙𝑜𝑔 𝑘}. So, how much this regret is worse 

by than this regret √2 times ok. Now, let us; so, I said thus this regret is guaranteed to you if 

you a priori tell me what is the number of rounds. 

And, this regret is guaranteed I am when I said is it should happen to stop at nth round you did 

not know a priori your nth round is the number of rounds you are going to run. If you stop at n 

round, this is the regret you are going to get. So, this set up here when I do this you kind of 

knew already the horizon how many rounds you are going to give. But when you did this, you 

did not know to know what is the horizon. When you do not need to know the horizon and you 

can give you regret bound at any time, then this is this kind of bounds are called any time. 

So, sorry in this case if you are going to set 𝜂𝑡 like this without knowing k, then we are going 

to call this set algorithm as any time algorithm. So, anytime algorithm basically is telling that 

I do not know a priori how many rounds I am going to stop, so I am I do not have the luxury 

to set 𝜂 in this fashion. So, I am going to set I have to do without knowing n, I have to set and 

if that is the case then you are going to call in that setup anytime algorithm right. 

So, this algorithm right now it do not need to know what is n right if you do not know n you 

can go and set up like this, in this case it becomes an anytime algorithm ok. So, now let us 

compare this algorithm with this bound what we got for the exp 3 with the bound we got for 

weighted majority. What is the bound we got for weighted majority √2𝑛{𝑙𝑜𝑔 𝑑}.? 



Yeah. So, here d is there what number of experts right, I could treat them as number of arms. 

So, if I take this d to be k, what was the weighted majority bound it was like. 

√2𝑛{𝑙𝑜𝑔 𝑘}. So, compared to this how much this guy is bad by what factor? 

Student: (Refer Time: 30:07). 

By square √𝑘 factor right. This guy is larger than this quantity by  √𝑘 factor ok. Now, let us 

compare this with the amount of information that the weighted majority algorithm had and my 

exp 3 algorithm had. So, in the weighted majority, in every round, I get to observe the loss of 

all the k arms; whereas, this algorithm is working with the restricted information where it is 

going to use only loss of one arm in that round. 

So, in terms of the information available to this algorithm, it is 1/k factor of what weighted 

majority has right. Is that clear? But whereas, in terms of the regret bound, it is only was by 

factor of √𝑘. So now, let us see for the weighted majority, I used to I got √2𝑛{𝑙𝑜𝑔 𝑘}, so where 

I got k amount of information in every, every rounds. 

But suppose let say in this weighted majority, let us pretend that to get k number of that 

information I have to wait like k rounds ok. So, in that case, what is basically I am to do the 

same amount of information in a weighted majority instead of running it n rounds, I have to 

run it for n*k number of rounds right. So, that is what happening here like if you replace it by 

n*k. 

So, that that is like if you are getting only information of one arm instead of k arms in each 

round, it is like you are elongating your time by n*k number, and that is why that n is getting 

replaced by n k here. And this regret bound is worse by a factor of square √𝑘 factor here ok. 

Now, to prove this algorithm, what we are going to do we will show that this bound   𝑅𝑛
̅̅̅̅ ≤

𝐾

2
∑ 𝜂𝑡  𝑛

{𝑡=1} +
log 𝐾

𝜂𝑛
. We will show this ok. 

Now, if you go back and plug in this bound, n 𝜂 equals to this bound, you will get this. If one 

holds you just plug in the value of 𝜂𝑡 like this, you are going to get whatever this bound is ok. 

And when you are going to set 𝜂𝑡 like this, and let say you are stopping at time at some n at 

which you want to measure regret, at the last time then you are going to take that last t to be n. 



So, that last t will be same as this value because there t you are going to replace by n; but for 

the other t’s, it is going to change like this ok. 

Now, suppose, ok, so again to put it in a different way. Suppose, let say you are running this 

algorithm and you stop at nth round whatever that nth is, now what is the regret bound on that? 

So, in each time, you are going to be using 𝜂 to be in this fashion. So, just plug in those values 

here ok. Now, if one holds, now let say if two holds what is this bound, this bound is going to 

be what? You are going to use this bond this is going to be  𝑅𝑛
̅̅̅̅ ≤

𝐾

2
 ∑ 𝜂𝑡

𝑛
{𝑡=1} +

log 𝐾

𝜂𝑛
 

This is when you stopped at nth round right that is 𝜂𝑛 this is the last round that quantity is 

nothing but √{2𝑛𝑘𝑙𝑜𝑔 𝑘} that you can compute. But what I am just going to see is only this 

factor now, the first part ok. Let me just write. Now, here if you look into this, I have √{
2𝑙𝑜𝑔 𝑘

𝑡𝑘
}; 

in this only t is varying which is in the denominator. You can show that may be I will just write 

it here, whatever that bound. What is that? 
𝐾

2
√{

2𝑙𝑜𝑔 𝑘

𝑡𝑘
} +

log 𝐾

𝜂𝑛
. 

Now, we are going to use this inequality. So what, can anybody know what is a up how can I 

upper bound this quantity? So, I if I am going to integrate this, this is always an upper bound 

right; instead of summing I am just integrating for everybody possible value. And what is this 

integration? And I could as well take 0 also in this or may be in (Refer Time: 36:59) zeros is 

going to be the, what will be the upper bound for this, 2√𝑛 right. Maybe, maybe let us take a 

9. So, this is going to be upper bounded by 2√𝑛. So, this will dt 2√𝑛. 

Now, let us use that bound here. If you are going to use this, this is going to be k/2, everything 

I am going to just 2 log k by k into, I have this summation of square root of 1 by t which I will 

going to replace it by 2 square root n and this quantity. Now, if you are going to now everything 

is in the form we want, we have basically got rid of that if you just do this what you are going 

to get, there is a k here and there is a square root k here, you are going to get √2𝑛𝑘{𝑙𝑜𝑔 𝑘} 

here. 

And there is also one more term, you can see that that will, but I want it 2 into square root. Just 

check that if you are going to simplify. What is this 𝜂𝑛? 𝜂𝑛 is going to be log k/ 𝜂𝑛. So, it is 

going to be let us write that factor that is going to be plus. I am just taking with I am going to 

log k by this quantity, I will have square √𝑛𝑘2{𝑙𝑜𝑔 𝑘}. So, with this will I get this right term. 



So, there is something missing here right, some two factor is missing. Just let me write it there 

I did not take, ok, sorry, I missed up this is we are going to take it 𝜂𝑡 = √{
log 𝑘 

𝑡𝑘
 } . We are going 

to set it in this fashion. 
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If we are going to set it in this fashion, I will not have this 2 here, I will also not have 2 here, I 

will not also have 2 here now, but this is exactly. So, I will end up with √𝑛𝑘{𝑙𝑜𝑔 𝑘} plus 

another √𝑛𝑘{𝑙𝑜𝑔 𝑘} and it is exactly 2 √𝑛𝑘{𝑙𝑜𝑔 𝑘} ok.  

With that is that fine, finally, the bound I am going to get. So, fine if now we have shown that 

if at all I can show that the regret pseudo regret can be bounded like this now these are all true 

ok. Now, next let us try to say why this is true. So, this is going to be bit involved in whatever 

the remains in time, we will just going to write down whatever the proof steps possible. 
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So far any doubts in this algorithm? So, understand what is the difference between any time 

algorithm ok and the difference between the full information setting and the bandit setting, and 

how much one kind of what factor we can expect in the regret bound when we go from full 

information to bandit information right. So, all of these literature in bandits, they kind of study 

this. 

It is not necessary that in every round, you are going to get only the action of the arm you are 

going to play, we may get something more than that. And also it is not necessary that you are 

going to get information about all the arms in each round, these are like two extremes right. 

One getting information about only the arm I play and getting information of all the actions. 

Even though I played one, but I am saying I am getting information, so these are two extreme.  

There could be something in between also depending on how these actions are related with 

each other. So, people study lot of varieties of this, but right now we will be focussing on these 

two extreme cases – full information and the bandit. In fact, for the subsequent course we are 

only focussing on the bandit case, and at some point we will touch up on something in between 

these two.  

 


