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Lecture - 11 

Proof Weighted Majority 

 

Today I just want to cover the Proof of the Weighted Majority algorithm, we discussed last 

time. So we will just do that part. And from the next week onwards, we will start with more a 

setup called adversarial bandits, but let us try to complete the proof of weighted majority 

algorithm today. 

(Refer Slide Time: 00:45) 

 

So, if you recall the weighted majority algorithm we did in the last class, it was in a setting we 

called as prediction with expert advise right where in each round environment assigns a loss 

value to each of the expert. 

And the learner picks one of the expert according to some distribution which he keeps updating 

in every round based on the past observation. And we defined in this case is expected regret to 

be; so this is says loss in round t and this is the total loss incur incurred (Refer Time: 01:50) 

and we compared this with one of the d experts. And we said that this is going to be upper 

bounded (Refer Time: 02:14); √2(𝑙𝑜𝑔𝑑)𝑛   so today let us briefly discuss why this is true.  



So, one of you asked the question; is it necessary that in this case we have to assume that the 

adversary generates the label according to some hypothesis h; that h not necessarily be in my 

hypothesis class, but is it required? So, now we said that whatever the setup we are going to 

study we said that and that could be a mapped to the setup of this prediction with expert advice 

right.  

And now we have said that the loss that you are going to incur that is the loss assigned to expert. 

We had defined it to be in our online classification setting to be if I apply i th hypothesis on 

this, what is this value? And this yt; so here we said that now when we were in this setting, this 

Vt is a vector of losses; we said that in the this is arbitrary generated, I do not know how it is 

being generated by the environment. 

In the binary classification, this was the loss, but I could take this to be my loss, but I can take 

this to be more general version when I looked into expert setting; I took to be any Vt right. So, 

if you said that this Vt is coming from Vt ∈ [0,1]𝑑. 

Now, since this  t are going to be getting translated to my xt and yt were in this fashion in the 

binary hypothesis classification, but now I am allowing myself is Vt to be anything. So, fine if 

you define going to be loss to be like this; but if any other loss is also fine my entire analysis 

go through. 

In that sense, how this yt’s are generated; I really did not worry, is it going to come from some 

specific hypothesis or he is following some arbitrary role which no hypothesis can define; I do 

not care about that right because this Vt could be arbitrary number earlier right. So, because of 

this; even in the binary hypothesis class it makes more sense if you assume that adversary is 

also generating these labels according to some hypothesis, but which need not be my hypothesis 

class, but we could also relax in that condition. 

We can say that maybe adversary generating this labels; according to some rule which I cannot 

even characterize with some specific hypothesis ok. Now let us try to prove this. First thing 

this proof this bound we are going to prove under the condition that my number of rounds is 

larger than 2 log(d)  

Remember, I told you that n and d are input to my weighted majority algorithm right. So, let 

me; so weighted majority I am going to write with inputs n and d; what was d? Number of 

experts and what was small n? Number of rounds; we are saying that its a number of rounds 



happens to be twice the logarithm of d, then this bound holds ok. If it is not; I, I do not know 

and also notice that we have defined a parameter eta how in the weighted majority algorithm. 

𝜂 =  √{
2𝑙𝑜𝑔𝑑

𝑛
} . Now under this condition n is going to be greater or equals to 2log(d); what 

will be this value of 𝜂? 

It is going to be less than 1 right ok? So, we are going to prove this condition holds; under the 

assumption, under this setup where 𝜂 is going to be less than equals to 1. So, the way we are 

going to do proof is we are going to consider this quantity and we are going to find a lower 

bound on this and find an upper bound on this; then manipulated to get what we want; finally, 

we will end up with this relation here ok.  

So, this Zt +1; what is, how did we define Zt + 1? So, Zt is nothing, but the weights of  Wi tilde 

right? You remember that Wi tilde where if you are updating every; every round and then we 

took their summation to get this. 

So, usually we call this Zt here as the potential in round t plus 1; that is the sum of all the 

weights we have in that round; those weights. So, we had two set of weights one is Wi tildes 

and another is Wi. From this to this we went when we went from this to this; this became a 

probability distribution right, this was not a probability distribution. But Zt plus 1 in roundth t 

plus 1 is nothing, but the sum of all these things. So, there was an index t right here; how did 

we write the index t? Superscript or subscript? 

Student: Superscript.  

So now, let us substitute the value of only Zt plus 1 ok; what is this Zt plus 1? That we know 

as Wt plus 1 tilde; t by Zt and now further. So, let (Refer Time: 09:18); this is i here and I am 

summing it over i. 

Now, let us substitute the value of Wi; sorry this should be t plus 1 here right because I am 

looking at t plus 1 index here. How did I; now let us write Wit tilde plus 1, in terms of Wit. 

What was the relation between Wit at t plus 1 and at t? We have defined it as Wit; e to the 

power minus nu(𝑒−𝜂𝑉𝑖𝑡) Vit right; is this correct, this relation?  



Then you have to; this is already defined in the weighted, this is how exactly the weighted 

majority (Refer Time: 00:00) algorithm was working. And so and it is tilde here right and now 

write it Zt; now, if I look into this ratio by definition what is this quantity for us? 

Wit, right; without tilde; so let us I mean we are going to do a series of manipulation on this 

set up now before we come to this. I mean by the way like when you haunt to prove this bound 

by looking at the algorithm its apriori, not clear what is the right intuition to go through what 

steps ok.  

But somehow once you write down these steps; it is clear that you will get this bound, but 

looking at the algorithm what is the; the right steps to go through this, it is not clear. So, the 

proof here is though quite simple in apriori; it is not clear how to get this ok.  

But, so these are some of the classical proofs which we are going to use many many times; so 

just try to follow all the steps we are doing here ok. Now, let us try to apply some inequalities 

to get a bound on this. The first bound I am going to use is; if I have e-a; this quantity is bounded 

by 1 -a+a2/2 for a ∈ (0, 1) and also this quantity will be bounded by 1 minus a; is this true ok? 

Let us see.  

So, this is my; if you have my a; this is going to be my e to power minus a. So, now if you are 

going to look your a equals to 1; what is this quantity is going to be?  

Student: (Refer Time: 12:21). 

1/ e right; now is this clear this this quantity is going to be bonded by 1-a? So, how this the 

graph of 1-a look like? So, 1-a is going to start from this is going to be 1 here and it will reach 

0 here right and it will be falling linearly. So, it is going to be like this and this is going to be a 

lower bound on this quantity in the interval (0, 1); now what about this ok? So, can we see will 

this quantity will be decreasing or increasing till point a=1? 

So, fine can you just check whether it is a convex or concave in a? How do you check concave, 

convex? 

After differentiating what is the quantity here? 

Student: It is positive here. 

It is positive. So, if it is positive, what it is? 



It is convex right. So, convex means it has a minima at one point; what is, where is the minima 

happening? 

Student: (Refer Time: 13:33) 1. 

At 1 after that it is increasing, right? So, it is like something like something like this quantity. 

So, you can see that we have a tight and they will be in this range 0, 1; they are pretty tight in 

this. So, we are going to use this bounds to proceed bounding this ok.  

Now, let us take this; I am now going to treat this whole quantity as e-a ok; a =  𝜂𝑣𝑖𝑡. I will note 

is that 𝜂 by my assumption; it is less than 1 and Vit also be less than 1 right because they are 

coming from (0, 1) interval. So, this quantity 𝜂𝑣𝑖𝑡 is already quantity less than 1 and also it is 

positive quantity. So, I can apply; I am going to apply this upper bound on this.  

So, if I apply this upper bound; what I get ok? Now, further now Wit; this is these are probability 

values right. If you now; if I take it inside with this one and sum it over all i’s; this is going to 

be 1. Now, I have this quantity, but with a minus sign here. 

So, this should be minus here right; now minus; I have taken inside and put everything in the 

bracket. So, now let us define this quantity to be new a for us and now let us try to see. So, my 

argument is now even this quantity here is entire quantity a is again between 0 to 1 ok. Let us 

argue why is that.  

So, 𝜂 is less than 1, Vit is less than 1; so this whole quantity squared by 2 is going to be less 

than 1 and this quantity is 𝜂 Vit is again less than 1. And now this is I am going to take these 

are probabilities right; if I am going to take expectation; that means, basically weighing with 

the probability that is going to be less than 1. Fine, less than 1 being cleared; is it greater than 

0? We also want a to the between is it greater than 0 is this quantity non negative, why? 

Because this is this quantity, this quantity is going to be smaller than this quantity right because 

this is less than 1; if you square it, it is going to be further smaller and you are further dividing 

it by 2. So, now can I apply this other direction bound? A lower bound on this; if I apply 

because of this negative sign, I will still get an upper bound on this quantity.  

So, I am going to treat this as like 1 - a; if I do this what I am going to get? Log of e to the 

power, this entire quantity here; what is that quantity? And because of this log and this 

exponential we cancel; we will just end up with this quantity here.  



Fine, now I am going to just simplify this. So, this first quantity here is I can write it as −𝜂 <

𝑊𝑡 , 𝑉𝑡 > +
∑𝑊𝑖

𝑡𝜂2𝑉𝑖𝑡
2

2
 ; now I will do a one more simplification. So, I will just pull out 𝜂 square 

from this; 𝜂 square by 2 and whatever the remaining, Wit 𝑉𝑖𝑡  ; that quantity is still going to be 

something less than 1 right. So, I will just ignore that; then I will still get an upper bound. 

Because if I just pull it outside here; this quantity here, whatever remains this is going to be 

less than or equals to 1. So, that is why I have only written this and remaining quantity upper 

bound and 1; so I get an upper bound here fine. This is we have done it for this ratio; this is 

true for any t, now what we will do is; we are going to add it over all t starting from 1 to t. 

(Refer Slide Time: 20:20) 

 

So, if I am going to add; what I will get? I am going to get upper bound is this fine? Now look 

at this term, I am adding log terms right. So, if you simplify this what you are going to get? So, 

if you, this is the summation of the logs right. So, I can write it as product of log of products. 

So, if I do log of products; see this ratios how they are. 

They will cancel out and what remains finally? 

If you simplify it, what you will end up with Zn+1/Z1; the left hand side which is nothing, but 

log Zn+1  - log Z1 . Now, look into Z1; what is the definition of Z1? Z1 is summation of Wi tilde 

1’s right. How did we define Wi tilde 1’s?  



We said initialize this quantities right? What was this value? 1 and Z1 is sum of all these 

quantities. So, because of that what is Z1? 

Student: d. 

It is going to be d.  

So, this is going to be d ok. So, from this relation what I have finally get is; 

log 𝑍𝑛+1 ≤ ∑ < 𝑊𝑡 , 𝑉𝑡 >  +
𝜂2

2
. 𝑛 + log 𝑑

{𝑛}
{𝑡=1} . I will just going to simplify this.. Now, what is 

by definition log Zn+1 ?. 

This is summation; Wi tilde at n + 1 which is nothing, but log Wi. So, this is summation over 

i right and if I write it log summation i; what is this by our definition? This 

 log(∑ 𝑊𝑖
𝑛+1 𝑒{−𝜂 𝑉𝑖,𝑛+1})𝑖  . I have just substituted the definition of Wi tilde with this; is this 

correct? 

Now, I am going to keep on defining this; I know that this 𝑊𝑖
𝑛+1is defined in terms of the 

previous quantities right. And if I am going to keep on going back this repeating and going 

backwards repeating; what I will eventually get is, log(∑ 𝑒{−𝜂 ∑ 𝑉𝑖𝑡{𝑡} }
𝑖=1 ) .  

I am just this I have done for; suppose if you just express 𝑊𝑖
𝑛+1, you can write it in; in terms 

of 𝑊𝑖
𝑛; then one term of 𝑒{−𝜂 ∑ 𝑉𝑖𝑡{𝑡} } will come. Now, go back and replace the 𝑊𝑖

𝑛 with𝑊𝑖
𝑛−1; 

that will give you another term of 𝑉𝑖,𝑛−1. So, you can keep on going till backwards; so that is 

why we are getting sum of all this Vit’s here. 

This is just by definition ok. So, because of that; now we will end up with this summation. So, 

now let us try to play with this summation; now I want as you said all want a lower bound on 

this right. So, now see that this is a summation over from i equals to 1 to d; instead of taking 

summation over all of them, if I only take one of the index and retain it and throw everybody 

else; will I get a lower bound or even if I take a maximum one; is this correct? 

I am taking; I was taking instead taking the sum I am taking just the max element in that among 

sums in the sum; so this is going to be true. And this is again if instead I can write it 

log(∑ 𝑒
{− min

𝑖
𝜂 ∑ 𝑉𝑖𝑡{𝑡} }

𝑖=1 ).  



So, I have just taken; take max of this all quantities is same as e to the power max of this 

quantity, but there is a minus sign right. So, if I am taking this minus outside that becomes min 

of this quantity; is this clear this step of the manipulation finally, what I will do is log is there 

right. 

So, this is going to be simply going to be minus of going to just simplify this − 𝜂 min
𝑖

 ∑ 𝑉𝑖𝑡{𝑡} . 

So, now on the same quantity log of Zn+1; I have in this upper bound and I have this lower 

bound, now I will simplify it to get the desired bound ok. Just let me erase this figure part here; 

what we have− 𝜂 min
𝑖

 ∑ 𝑉𝑖𝑡  .{𝑡} And now this is upper bounded by what? This quantity ; I just 

used this equation and this equation. Now, let us readjust this to get the desired quantity we are 

interested in. We are interested in deference of summation of the similar product with the 

minimum quantity right. So, I have; I want to find the difference of these two quantities. So, I 

will take it on the left hand side, I will eventually end up with.  

So, now what I will do? Fine, I got this quantity; now I want to bound, I want to show that this 

quantity here which I have will be eventually I can right this; get a bound like this on this ok. 

So, first I will do is I will divide throughout by 𝜂; we know that 𝜂 is a positive quantity right. 

So, I can divide both side by this quantity and the relation we still hold, I have just divided 

(Refer Time: 30:59) alright ok. Now, we have taken this 𝜂 to be some specific value right; what 

is this 𝜂? 𝜂 is taken to be? 

Can you substitute that value and compute what is this quantity is? Just substitute 𝜂 in this 

quantity; did you get the same quantity as this? 

√{2 (log 𝑑) 𝑛}. So, we you might be wondering ok; why did in the algorithm at all we prefer 

to choose this ok. So, now let us say you got this quantity; this is an upper bound that holds 

true. So, n and d are given to you; let us say 𝜂 is your design choice that you want to set. How 

we are going to choose 𝜂 here? You want to bound this; this is your expected regret right. 

You are; you have gotten this upper bound, naturally this upper bound you want to make as 

small as possible because you want to make the regret small right. If you have to make your 

regret small and 𝜂  is your parameter that you have to choose; how you are going to choose this 

𝜂? So, you would like to choose an 𝜂 which minimizes this quantity right. So, now let us take 

this function this to be a function in 𝜂; now can you find an eta that minimizes this quantity; 

how you will do it? 



Find differentiation and see; what is the value of 𝜂 you will get that minimizes this quantity? 

So, you will see that if you try to minimize this with respect to eta; this is exactly the 𝜂 that it 

is going to that will minimize this. So, that is why the 𝜂 has been set to be like this in your 

algorithm.  

So, in a way; 𝜂 is kind of controlling how much you want to give importance to the losses you 

have observed right. Like, when I am going to update this weights right; the way we are 

updating this weights from n plus 1 th round; we are going to take eta times Vin; what are the 

loss I have observed, I am not taking that value, but I am weighing it by 𝜂  factor. 

So, this is the importance since how much I am going to give the importance to the samples I 

have observed; while I am going to update this. And one has to carefully choose that weight; 

if you are not going to careful choose that weight, I mean you may not get a good performance 

right.  

So how to choose this; you see that this bound can change as eta changes there right. Suppose, 

you chose 𝜂  to be very large quantity in that this quantity maybe large, but this quantity maybe 

large small. For the simple case, let us take 𝜂  you took to be; so this is getting multiplied by n 

right.  

So, if you are going to choose eta to be very close to 1. What is happening? You are regret, you 

are saying is upper bounded by n; almost right order n which is of no use to me. And if you are 

going to take eta to very close to 0; you are trying to make this quantity smaller, but what is 

happening is this quantity is blowing up ok.  

So, in a way this 𝜂  is kind of balancing what we call as exploration and exploitation right. In 

the first class, we discussed a little bit which we are going to talk more a bit later this parameter 

saying these are the losses I have been observing from this. 

But it may be like initially I observed few loss small loss on something, but I need not 

necessarily latch onto that. I need not to start assigning high weights to that, I will be cautious 

about that, I will only take its value with this much weight; eta weight ok. So, this is this 

parameter eta that find; gives as a fine balance between how I am going to do explore in exploit 

and that has to be carefully chosen. 



And you see that if my n is going to be large right what I am basically doing I am setting a 

small 𝜂 small setting a small eta means I am giving less significance to the weights I am 

observing; that means, am I forcing exploration here or I am preferring exploitation when 𝜂  is 

small? You are basically forcing exploration right because you are not giving too much 

importance to the samples you have been already observing.  

So, when 𝜂  is; let us say small, how will be the distribution look like? So, when 𝜂  is small 

right; this quantity is like almost like constant like because if this 𝜂  small, this quantity is going 

to be small that is e to the power something small; that is almost close to 1 right.  

You can realize later if you want, but eta is small this Wi’s; all the W i tildes become kind of 

equal; that means, you are giving equal importance to all the experts; that means, you are 

basically forcing more exploration. But if your n is large; that might be right because if we 

have lot of many many rounds to play, you may be to do a little bit more exploration. 

Before you kind a figure out what is that, but if n is large small; you do not have that luxury to 

do lot of exploration initially. So, you want to start right away thinking about taking the 

observation you have made bit more seriously; that is by giving them good weight ok.  

So, that is why one has; this 𝜂  has to be very carefully balanced and that has to then necessarily 

depend on how many numbers, number of rounds I am dealing with ok. If you have lot of 

numbers, you may be more free to explore. So, I do not care initially because I have a lot of 

rounds I will eventually find out, but you have less rounds; you have to be more careful ok. So, 

this algorithm is exactly trying to do this kind of balancing, exploration, exploitation; well by 

choosing this eta appropriately.  

 


