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So, now we are going to move to further higher dimension. So, we started with single random 

variable, then we talked about vector random variables, then we are going to talk about three 

dimensional already covered, like vector means.  

Student: M dimensional cover (())(0:39). 

Professor: Up to m dimension is covered, now we will talk about infinite dimension. It is like 

I have collection of unaccountably many random variables. And so you will see that in most 

of the application that is what it is going to matter to you. Because you want to understand 

like, how the suppose, for example, you want to understand how the stock market is 

evolving? You will be not interested in one day, you will be interested in how it performed in 

the last five years, and how it is going to evolve in the near future?  

So, you have the collection of random variables, which may not be some finite number there, 

it could be unaccountably many and if you are trying to like a find a trajectory of a particle or 

whatever, at every point, every point of time, you want to understand how that is behaving? 

And there are so many point such times. So, suppose let us say something is taking a 

trajectory, and at every time you want to, every time its behavior you are trying to control, 

but its behavior could be random at that point, depending on so many others.  

Now, you want to understand at every time instance you want to model it as a random 

variable. So, we will try to make this more precise. So that will lead us to something called 

random processes. 
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So, here earlier we had, earlier also when we talked about random vectors we had collection 

of let say finite number of random variables, but here that need not be the case. Here the 

index in set T could be uncountable, countable, but it could be infinity. So, and if in this case, 

if this T happens to be, let say integers, when I say integers, let say it is going to be like 0, 1, 

2, 3, 4, all the way like that. Then we are going to say that then this random variable x is 

called discrete random variables. And if this T is going to be, let say, a real line or some 

continuous interval, then x is called continuous, sorry, discrete random process.  

Student: Sir, Correction of random variable x 1, x 2, x 3. 

Professor: Right. 

Student: Then how they can be real between integers only x 1, x 2? 

Professor: So it could be just like time in the interval 0, 1 you take any point in the interval 0, 

1 there is associated random variable. So, for example, as I said, if in the stock example case 

you said, we took x 3 could be the value of the, what is that our stock, BSE stock index 

whatever let say on every day. So, on every day you can count day 1, day 2 like this and its 

value x t is going to be random, we cannot predict a priori what is that value? So, that will be 

denoted by this x t, if you give a day, x t will tell, x t is the random variable associated with 

that day. 

Student: That is discrete random process. 



Professor: That is discrete random process. But suppose you want to understand, let us say 

for example, let us say you are moving in a vehicle and you are trying to accelerate your 

vehicle, but you are you are you are in a very uncertain environment. At every point the 

velocity that your vehicle is attained, could be random variable. So, in that case at every 

possible time, in the time of interest, we want to understand what is the velocity at that time. 
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So, for example, let us say I have interested in one hour of time, this could be all possible 

seconds from 0 to, all possible minutes from 0 to 60 minutes. And you can think of anything 

like either vehicle moving or I am hitting some object. And I want to understand the 

temperature profile in that, at every moment you want to understand like, what is the velocity 

or the temperature profile of that? So, in this case you can more that T here could be all 

possible values between 0 to 60. Every instance we are talking about. So, then in that case, 

we are going to look at as a continuous random process.  

So most of the thing terms will be dealing with discrete random process, but you will also 

encounter many examples in real life, where one has to worry about a continuous random 

process also. Now, we can interpret my random process in different possible way. Suppose, a 

random process, I have like this. Now, one possible way to interpret is as we already said, we 

can say that for all T in t, x t is a function from omega to R, this is just a random variable. So, 

these are collection of random variable.  

So, for every t this is like a random variable which is giving value to each of my elements in 

my sample space. Alternatively, we can think it as, this entire x itself is a function of, so 



where it is going to give the value, for all t and omega in t comma y, x t of omega is the value 

of sample omega at time t, at index t. So, you can think of this x to be now a like this is 

random variable. So, now it has, you can think of it has two dimension to this, one is the 

index and another is given that index, what is the value it is going to take on a given sample? 

So, for x that is why we are saying it is index as well as whatever value it is going to take on 

a sample. So, if you tell, x is collection of my is the random process corresponding to let us 

say, behavior of my stock exchange or what is the index on a particular day. If I say on day 

tenth about this particular sample, what is the outcome then this x is going to give this, if you 

have to look at the on the on that particular day on the particular sample, what is the value it 

took? And this is how we can interpret this random processes. 

Other way you can think of about is? So, this is like fixing t you fix a pip and then look at on 

that particular day, how this value is going to change for each of the sample what are the 

possible values for each of the samples? Or you can fix omega as sample and then look at on 

this sample how it the value possible values on each of the days. So, for example, let us say, 

let us say you are interested in some, some 10 shares in a market, whatever that companies 

are?  

And you have a random variable which assigns for each of the shares, whether it made a 

positive gain or a negative gain. Now, you can think of on a given day, what is the outcome 

for each of my shares? So, shares is a collection of this sample space, what is the value we 

took? Alternatively you can what you do? You can focus on a particular share and then look 

at on different days what it took, what is the value it took?  
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Now, you can think of x of t as a function in t and to call x t omega as sample part 

corresponding to omega. For example, let us say I have this, this is my time index. And I am 

interested in knowing my x of omega after particular sample. So this sample may take value 

like this, I do not know it is not, it may fall, it may rise, it may fall like this. And this is going 

to be, I am going to be, yeah this I am going to just interpret x of omega. So as for different 

value of t, it is going to give me what is the value taken on that sample omega here.  

And this is we are going to call it as sample path. So is this different interpretation clear? So, 

let us now rework them, if I am going to fix an omega and then I am going to see like as a 

function of t how it behaves? So this is like I have done it for a continuous case, if it is 

discrete, I will have only certain points here, because this t only takes some values. Now, you 

are going to look into like as this aspect.  

What you do in this case? If you want to draw this you are going to fix pipe and these are 

your omega’s, this could be let us say omega one, omega two, all the way up to like you had 

some n points. And what is the value taken? Let us say this is some value, here is some value 

and this is some time. So, this is like a single random variable that at a given time t and here 

it is given sample, how it behaves at different points of time or a different index and here as 

either you can now look it into in the joint space, this and this given an omega. 

So, for each omega I can vary this t and get this graph. So, if you give me a t and an omega 

then I will come up with a particular point. So, suppose you give me some omega let us say 



you give me omega 2 and you also give me at t equals to 10. I look at this graph for t equals 

to ten and then I get the value, so, and that second interpretation will just give you.  
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So, then, we have just an example. Suppose, I have this w 1, w 2 are independent random 

variables such that let x n equals to summation K equals to starting from K equals to 1, 2 let 

say n.  

Student: That means P of omega is equal to 1. 

Professor: Omega K so it is for all K. So, I am saying, I am giving you a collection of this 

random variable, index random variable, index at one, two all the way up to infinity, is this 

discrete or continuous random variable here? It is going to be discrete because now I have 

index which are discrete points. And now I am saying each of these other variables are 

independent and further each one of them is such that it is only going to take two values, one 

and minus one. And probability it takes one is half and now further I am going to define 

another random variable x n, way for all again, let us say 1, 2, infinity. 

So, this is now sum of this random variables, is this x n, now I have these two random 

variables, one is this w collection of this w case. And another is this x which is collection of 

this x n. Are both of them are discrete random variables? Yes, because anyway w is only 

defined at one, two, three index like that. And the x n is also this is x n collection, sum of n 

w's. And that is also defined for each of n integer valued. So this both are discrete random 

variables. Now let us see how this looked like? 



Student: W is random process. 

Professor: Yeah, it is a random process, because each random variable I have defined like 

this. And it is a collection of so many of such random variables. So, now let us understand 

how this w K of omega looks? For some omega, let us fix an omega and now let us look it as 

a function of K that is in time here. So, K is the index, what I am doing is? I am fixing as 

sample point and for this sample point, it may happen that for the first one, it could be taking 

one, it could be then taking minus one, then maybe taking minus one, and then going plus 

one, and maybe plus one again, and like this plus one. It could be this is one sample path. 

So, whenever I have defined a sample path here, for this particular random variable, I am 

now trying to try a sample path. Maybe I do not need K here. So, this is like one, two, three, 

four, five, six and I can I can go on. Each for the each of this K, my random variable is such 

that it is going to take either one or minus one. So, let us say when I perform my experience, 

in the first round it took value one, in the second round it took minus one. And it again took 

minus one and it took three consecutive one after that, and something happened subsequently. 

I do not know what is that?  

So, this is going to give me a sample path of this process for a given omega. Now, let us try 

to draw my sample path for x. Now, x is a random process, which is a function of w. So, if I 

know this process, should I be also able to draw the sample for this, maybe, so let us say, 

what will the value of x of omega at n equals to one? 

Student: 1. 

Professor: It is going to be this and what will be a 2? 

Student: 0. 

Professor:  It is going to be 0 then? 

Student: Minus 1. 

Professor: 1, then? 

Student: 0. 

Professor: Then? 

Student: 1. 



Professor: Then? 

Student: 2. 

Professor: Going to be like this. So, this is how we are going to get some picture of what is 

going to happen like on a given path. If you look at some fix a sample point and then we can 

visualize how on this point my graph is evolving as it takes different different values. So, as I 

said for example, if you are going to focus on a particular share value, you can now look at 

on each of the days whether it made a positive gains or negative gains and plot it like this. 

And this could be like the cumulative effect. 

So, the cumulative effect is till date, it made affectively positive gain or negative gain. So, for 

example, this curve here could be like on each of the days it is making positive gains or 

negative gains. And here it could be till this point, the cumulative gain is positive or negative. 
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Then for such random process we are now going to define mu of x of t is going to put off t is 

T. So, now I have so many random variables, one define for each of the possible index. Now, 

I am going to define mean for each possible random variable I have. So, that I have one 

random variable for each of the index. So, for each of the index the mean value is simply 

going to be the mean value of that random variable.  

And this correlation we have, now it depend on which two random variables we are talking 

about right. Now, suppose if you are talking about random variable at time at index s and t, 

then you are going to denote that is now you have to specify which time, which index you are 



talking about to calculate this correlation. So, if you tell me s and t are those indices that the 

correlation between that random variable is this.  

And similarly, covariance of a random variables at indices s and t will be given by covariance 

of x s and x t. And then the CDF of this random variables and you are going to be defined as, 

now, we have to when I am talking about this random process, I have to tell which random 

variable I am going to talk about and that is going to be specified by its index. So, suppose if 

I am looking at distribution of n random variables, then I have to specify at what is the time, 

what is the index, you are looking at them.  

So you are going to specify those indices and then if in that case, the Cdf this involving n 

random variables is going to be defined as the random variable at index x of t one taking 

value less than or equals to x one. And a random variable at time x two taking value less than 

or x two like this all. Now, to give a complete characterization of this random process, you 

need to define this for all n, n is what? Integer and for all x one, x two, x n belonging to R n 

because we have now a collection of random variables.  

To give a complete characterization of this random process you need to tell me if I am going 

to look at these set of random variables what is the distribution? And I should be able to tell 

this distribution for any possible set of random variable you are going to ask me. That is why 

you tell me how many set of random variables you want to look at? And you tell me, which 

are the indices? What is the set of random variable? To decide that you need to tell me the 

indices. And then, you have to also tell this, so then for all this and also t one, t two all the 

way to t n that is coming from your, your t to the power n because these are this many 

indices.  

So, you have to tell me which are those indices you are looking at and what is the value you 

want to and I should be able to tell what, is the probability that at that random variable taking 

value less than this particular number. So, I need to specify all of this to completely 

characterize my random process. And this kind of things if you can define your this CDF for 

all possible value of n and for all possible indices, and for it taking all possible vector like 

this, if you this is called finite dimensional distribution. 

So, see like random process is a complicated thing, there are so many random variables there. 

And this could be potentially uncountable, but to define it completely, you need to specify 

how any possible subset of these random variables in this random process are going to be 



behave. If you are going to like if you cannot specify the way behinds at some indices, then 

you are not completely specifying me your random process.  

That is why to explicitly completely characterize your random process, you need to define 

your CDF for all possible subsets, for all value possible values it is going to take and also for 

all possible indices you have. And that is, so this FDD is what going to completely 

characterize your random process. 
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And now know this is the mean function here, I am going to call mu of x t as a mean function 

for my random process x, why this is function? 

Student: It is a different. 

Professor: So it is now takes input t, it is going to change as your indices… 

Student: Changes. 

Professor: Indices changes and this is so this is we are going to call a correlation functional 

now. Earlier, when we had a two, any two random variables, we know how to find the 

correlation. If you give me x and y, expectation of x, y is the correlation. But now I had, I 

have so many of them, not just x, y, I have x one, x two, all the way to infinity.  

So you just tell me which two random variables you want to look at the correlation and I am 

going to come. So, this is going to be a correlation function now. And what is this? It is now 



a covariance function. So, sometimes you may be interested in, you may want to set s equals 

to t itself that is looking for a covariance of a random variable with itself.  

Student: Variance of… 

Professor: It is going to be a variance, but in this parlance you can if you are looking at the 

same you can add auto covariance. So, at all when I am going to look at the same time 

indices, the time indices are not two different things, same things.  

Student: When s is equals to t then we will call it auto covariance. 
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Professor: Yes, then we have this definition. So if my random process is such that each of the 

components in this process has a finite second moment, then I am going to call it as a second 

order random process, so just our definition. So, just one point I want to add here. So, this is I 

how this is a CDF, which I have defined for all possible subset. If I know that my process is, 

my random variables are all discrete. That may be then I may be interested in only probability 

mass function equivalent of this.  
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For example, if I have all my random variables are discrete then instead of looking for the 

CDF, I maybe just interested in x one t one, all the way up to x n t n to be just equals to 

probability that x of t one equals t x one, x of t two equals to x two, all the way up to x of t n 

equals to x n. So, this is just like a probability mass function version if my random variables 

are all discrete. So, I am talking about two discrete things here, my random variable itself 

taking discrete values, and then the indices being discrete. So my process is discrete random 

process if my time index is? 

Student: Discrete. 

Professor: Discrete, further if my each of my random variable is such that it only takes value 

from a discrete values, Then I am I will be interested in only further this probability mass 

function in that case, because this gives all the information. I do not need to go for this 

complicated CDF in that case.  

And similarly, we are also going to say that my set of any n set like this are going to be 

continuous here jointly continuous if they have a corresponding PDF, the way we did earlier 

for a single kind of variable, if I can find, if I am able to express this in terms of some 

function f of small f of x n in in terms of integration where we did earlier, then I am going to 

say this set of random variables are continuous. So, we will just the nth order of PDF that is 

just like completeness. 

Now, I want to just let me complete this one more time then we will move to the next class. 

So, further we studied some more properties of this in the next class, let us stationarity and 

wide sense stationarity. So, before that I want to just tell you what I mean by a Gaussian 

random process, I have talked about what is a Gaussian random vector. But now I defined the 

question process, then you may want to specify what we mean by a Gaussian process random 

process.  
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I have talked about what is a Gaussian random vector but now I have defined you Gaussian 

process then you may want to specify what we mean by Gaussian process. A random process, 

so now, we are simply extended the definition of Gaussian, Gaussianity from random vector 

to random process by saying that we have a, in the random process we have so many index 

random variable.    

But from this index random variable if any linear combination, if the random variables this 

comprise of x are jointly Gaussian that means, if you take any linear combination of this 

random variable if they happens to be Gaussian, then we are going to call this process as 

simply Gaussian random process. And so, we already know that for this in the random vector 

case, we denoted that Gaussian random vector as mu mu K and its PDF there dependent only 

on mu and covariance K.  

So to define this Gaussian random vector, I just needed to know the mean vector and the 

covariance vector. Now, what do you think I should know to define this Gaussian process? 

So again, maybe I just need to know what is the means for each t? And maybe the covariance 

for each possible time in this pair. So for this, so the good thing about the Gaussian vector 

was? It was parameterized but that parameters were just like the mean value and the 

covariance value.  

Now, to define a Gaussian random process completely, so that I do not need to really look for 

all this finite dimensional distribution. So, maybe the parameters are just sufficient. So, what 

are those parameters I should be interested in to completely define a Gaussian random 



process? So, maybe one thing is you going to do this mu of x t for all t, and then so maybe 

like we can say that if you are going to take like take any subset t one of this time indices.  

To define this joint distributions, what all the things you need to know? You just need to 

know their mean vectors and their covariance matrix, which is but as I said to completely 

define a random process, I need to define my final dimensional distributions. So for the 

Gaussian process what is this finite dimensional distributions? I know that if I take any n that 

will be jointly Gaussian or a Gaussian random process.  

To define that joint random process, all I need is the mean vector and the corresponding 

covariance function and that covariance function can be expressed simply in terms of my 

correlation function and the mean value. So, as long as you give me the mean vectors, as long 

as the correlation function, I can I have the complete information about the finite dimensional 

distribution of my Gaussian random process. Because I know how to construct my 

probability density function for each of these n and I can do it for any possible n. 

So, is this fine, so if you have a Gaussian random process, its characterize should be much 

simpler. All I need to know is, its mean vectors and its correlation function. But if it is not a 

Gaussian vector, maybe things are bit more complicated. I have to define finite dimensional 

distribution for all possible n, so let us stop here then. 


