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Lecture 29
Brown-Von Neumann-Nash Dynamics

In the previous lecture, we saw fictitious play and some important results. In this session, we will
see another method to solve zero-sum games. In this method, we use differential equations and
this method is called Brown-Von Neumann Nash Dynamics or BNN Dynamics. We start with a
zero-sum game with the corresponding game matrix A. We assume a symmetric game, and hence
A is a skew-symmetric matrix.

Exercise: Let A be a matrix game. Consider another matrix game
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The exercise is to see that the Saddle Point Equilibria(SPE) of A and the SPE of B are related.
We assume a symmetric game A = —A”. An advantage of the above is that the value v(A) = 0. Let
P2 choose y at time 0. If Player 1’s value corresponding to y is not 0, then y will be perturbed.

There are m pure strategies. Take any (e, y) where ¢; is a pure strategy with i = 1,2,..m and y
is any strategy. Note that,

Then B is a symmetric game.

ui(y) = el Ay  value player 1 gets

y is the minmax strategy if u;(y) < 0 for all i = 1,2,..,m. The minmax strategy for player 2 is the
one which gives

min maxx’ Ay
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We know that because it is a symmetric game, the above is always greater than or equal to 0.
Because the value is 0, the above has to be equal to O for some strategy.
Define

¢i(y) = max{0,u;(y) }
¢(y) = ¢1(y) +¢2(y) + ..+ ou(y)

where ¢;(y) is the return of player 1 if u;(y) > 0 as u;(y) is the payoff that player 1 is receiving.
BNN dynamics are given by the following equations:

d);-it) =@i(y(t)) —o(y(2))yi(t) fort >0andi=1,...,m.
y(0) €A =4,




We extend ¢ to the whole domain by,
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If y =0, then ¢(0) = 0. Moreover, these ¢’s are continuous functions. Also, as u;(y) are linear
in y, ¢;(y) is a Lipschitz continuous function. Also, as ¢(y) is the sum of @;(y)’s, ¢(y) is also
a Lipschitz continuous function. Hence, we can immediately say that by applying the Cauchy-
Picard’s theorem, this system of differential equations has a solution and it is unique.

This however, does not guarantee that y(¢) € A. We will now try to prove that y(¢) indeed lies
in A. Consider the following auxiliary ODE :

dxi(t)_ .
90— oua(e)

x(0) = y(0) € A

Without loss of generality, we can assume that ¢;(x(0)) > 0. Therefore, this auxiliary equation has
unique solution. Also, all the points lie in R\ 0. As x;(¢) is non-decreasing, we have x;(¢) > x;(0)
and we have without loss of generality, x;(0) > 0 and x;(¢) > O for all .

Now consider,

do(t) &
- _izix,(oc(t)) t>0

o(0)=0

x;’s are lipschitz continuous function. This is so because x;’s are solutions of the system of
differential equations given above, and their derivatives are ¢; which are bounded( remember

o(y)=¢ <|§—|>) Therefore, applying the Caucy-Picard theorem again, there exists a unique so-
lution a(t).
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=y(t) €A Yt >0

Claim: y(t) is the solution of BNN Dynamics equations.
We have



Differentiating both sides with respect to ¢, we have
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Applying a bit of algebra here gives us

+yl Z‘P}

This implies that y(¢) is the solution of BNN.
With an abuse of notation, we use ¢;(t) = ¢;(y(¢)). Define

v =Y (60)
Suppose ¢;(¢) > 0. Then,

dei(r) _ dy(r)
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= Y aijb;(1) = (1) Yaijy; (1)

‘We therefore have,
2
dgir) _ d(9i(r))
dt dt
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2¢)i(l‘).

If ¢;(¢) = 0, this equality is true. Summing over all i, we have

¢i(2)
Z ( dr ) = 22611]‘])1 q)]
As A= —AT, a;j = —aj;. Hence, the second term is
Y 0i(0) Y aijy;(t) =
i,j

as defined earlier. Hence, we proved the following lemma:

Lemma. y/(¢) satisfies
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From ideas in differential equations, we can prove that

V() <o) < /my(r)
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This comes from the above differential equation on y(z) using integration by parts(left for the
reader as an exercise).
Hence, y/(t) is decreasing. Moreover, ¢(7) > 0 as long as y(7) > 0. Now, we have
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where the latter comes from the Gronwall’s Lemma. Now, if y(¢) = 0, the above is also true.
Hence, we can prove that

y(r) <

t
V(0 = w(0).exp{-2 | 0(s)ds}
From here we can see that

y(t) —0ast — oo
=¢;(y(t)) > 0ast — oo

This implies that y(¢) converges to a minmax strategy as t — co. Thus, this proves the following
theorem:

Theorem. BNN dynamics are asymptotically stable and any limit of the trajectory is a Saddle
Point Equilibrium.



