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Lecture 22
Non-Zero-Sum Games: Lemke-Howson Algorithm - I

In this lecture we start understanding the Lemke-Howson algorithm. This requires some pre-
liminary results. First, we go through the notation.

• (A,B) is the bimatrix game with order m×n.

• S1 = {1,2, ..,m}

• S2 = {m+1,m+2, ..,m+n}

• ∆1 = {x ∈ Rm
≥0, ∑i xi = 1} where xT1= 1.

• ∆2 = {y ∈ Rn
≥0, ∑ j y j = 1} where yT1= 1.

• u1(x,y) = xT Ay =< x,Ay >

• u2(x,y) = xT By =< x,By >

• 1 is the column vector of order n×1 with 1 as each entry.

• For x ∈ ∆1, Supp(x) = {i ∈ {1,2, ..m}|xi > 0}, and for y ∈ ∆2, Supp(y) = { j ∈ {m+1,m+
2, ..m+n}|y j > 0} denote the support of the mixed strategy profile (x,y).

Next, we look at an interesting result known as Best Response Conditions.
Theorem. Let x and y be mixed strategies of players 1 and 2 respectively. Then, x is the best
response to y iff ∀i ∈ S1,

xi > 0⇒
(
Ay

)
i = u = max{

(
Ay
)

k : k ∈ S1}

Proof. x ∈ argmaxx∈S1 < x′,Ay > where x′ = ∑
m
i=1 x′i(Ay)i. Now, ∑i xi(Ay)i is a convex combination

of (Ay)i’s. If x is the best response, that means x is going to put largest probability on the i’s where
this (Ay)i is maximized. Hence, xi has to be positive if and only if (Ay)i is the maximum of (Ay) j’s.
This ends the proof.

Next, we introduce what is called a non-degenerate game. A two player game is called a non-
degenerate game if no mixed strategy of support size k has more than k pure best responses.

Proposition. In any non-degenerate game every Nash equilibrium (x∗,y∗), x∗ and y∗ have sup-
ports of equal size.

Now, if a game is not non-degenerate, we call that as a degenerate game. But, we will mostly
concentrate on non-degenerate games. This above proposition can be used as an algorithm. This
is known as Equilibrium by support enumeration.
Algorithm:
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• Input : non-degenerate game

• Output : Nash Equilibria

• Method : ∀k = {1,2, ..,min{m,n}} and each pair (I,J) of k-sized subsets of S1 and S2 re-
spectively, solve the following equations:

∑
i∈I

xibi j = v for j ∈ J,∑
i

xi = 1

∑
j∈J

ai jy j = u for i ∈ I,∑
j

y j = 1

with x≥ 0 and y≥ 0.

We can easily see the correctness of this algorithm using the Best Response Condition theorem
that we have seen earlier. The detailed proof is left for the reader as an exercise.

Next, we introduce the notation of a polytope. First, let us look at an affine combination.

Given Z1,Z2, ..Zk ∈ Rd , an affine combination is given by

k

∑
i=1

λiZi, λ1 ∈ R,∑
i

λi = 1

When λi ≥ 0, we call this a convex combination. Moreover, a convex set is a set in which all the
convex combinations of the elements are in the set.

Next, we define what is called affinely independent. Z1,Z2, ..,Zk ∈ Rd are affinely independent
if no Zi is an affine combination of others. A convex set has dimension d′ if and only if it has d′+1
affine independent points and no more.

Next, we define a Polyhedron. A Polyhedron P ⊆ Rd is a set {x ∈ Rd|Cz ≤ q} for some ma-
trix C and vector q. We say that it has full dimension if it has dimension d. If this is bounded, then
we call this as polytope.
Next we define the Face of P. The face of P is given by

{z ∈ P|cT z = q0}

for some c ∈ Rd,q0 ∈ R. Note that, cT z = q0 is a hyperplane. A vertex of P is a unique element
of a zero-dimensional face of P. When you take a hyper plane, if the hyperplane intersects this
polyhedron exactly at one point and the polyhedron lies entirely on one side, then that unique point
is known as a vertex. In fact, in convex analysis there is a very important theorem, which is known
as a Krein-Milman theorem which says that any bounded convex set has an extreme point which
is, in a sense, the vertex here, in this case.

An edge is a one-dimensional face of P. A facet is a face of dimension d− 1. These are some
of the notations that we will require further in this section.
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