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Welcome back to NPTEL course on game theory. In the previous session, we have seen some

ways of computing the saddle point equilibrium for matrix games. Now, in fact, one of the

interesting property that we have used there is that if Player 1 is let us say playing his optimal

strategy x star, then we are checking essentially against the pure strategies of the Player 2.

Now, the whole another interesting thing is that do we really need to check against all the

pure strategies.

(Refer Slide Time: 00:58)

So here, we will make an interesting statement here and whose proof we will see is, let us say

consider a game whose we take m by n size and let us assume the value of the game is v. Let

x star, x star 1, x star 2, x star m be any optimal strategy for Player 1 and y star to be y1 star,

y2 star, yn star be any optimal strategy for Player 2. Then, the following happens. Summation

of aij y star j, j runs from 1 to n is nothing but v for all i such that xi star is greater than 0.

Similarly, summation aij x star i, i runs from 1 to m is equals to be for all j such that y star j is

greater than 0.

That means, when you take this, what is this? aij star yj star and you are summing over all j,

so therefore,  this  is  nothing but the payoff that  player,  okay, let  me write  it  here,  this  is



nothing but the pi of y star and ei. A player i is playing ith row and Player 2 is playing y star

the pi eiy star is nothing but v for each i whenever xi star is greater than 0. Similarly, here it

says is that pi x star ej, pi x star ej is equals to v for all j such that y star j is strictly greater

than 0. So, in fact, this is not a difficult statement to prove because this in fact follows from

the pi v is nothing but pi x star y star.
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So, if you really look at proof, pi x star, y star is nothing but v, that is the value and what is pi

x star, y star, this is nothing but summation pi x star, ej where j runs from 1 to n and if ej is 0,

of course there should also be a y star j here, okay? If y star j is equal to 0 for some j, then

that particular term can be removed here and what you are going to get here, this is nothing

but summation y star j pi x star ej where j such that y star j is strictly greater than 0, this is

equal to v. Now, this is a convex combination of pi x star ej’s, a convex combination of pi x

star ej is equals to v.

If they are all not same, of course if they are not same, look if something is bigger, then that

will be bigger than v. That is not true because all of the v is going to be there. x star is

optimal, the y star is optimal. So, this immediately tells me that using convexity properties,

the bilinearity of pi and this is a convex combination, what you have is that pi x star ej is

going to be same as pi x star el for all j, l such that y star j, y star l greater than 0.

Whenever the probability with which those columns are chosen is strictly greater than 0, then

the corresponding this is going to be same, that is exactly what we wanted to prove it. So, this

is known as, such strategies are called equalizer strategies, sometimes this is quite useful in



solving this problem, that what I mean is that computing an equilibrium. Suppose, you can

always try to find some y star satisfying such properties, some y star, x star and v, then you

can actually verify that the converse kind of result holds true.

In fact, this idea we have used in the early lectures where we showed that in the matching

pennies game, the choosing with probability half, half, that is an equilibrium, we have used

that fact. So, you can go back to that video and see that and try to relate to this theorem, in

that way also, this theorem is also quite useful in solving zero-sum games.
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The next, we will look at another very interesting idea of these games, what is known as

symmetric games. The symmetric games are a nice set of games where the players have a

kind of a symmetric behaviour. So what exactly I mean is so whatever Player 1 is trying to

do, the Player 2 is also trying to do the same thing. So, let us say Player 1 is maximizing

certain utility and the same utility the Player 2 also has and therefore you wanted a zero-sum

game.

That means, whatever you are trying to maximize, I am also trying to minimize in several this

things, in particular in this setup what we have is that this A, the matrix A should be same as

minus A transpose, that means this A is a skew symmetric. If the payoff matrix A happens to

be a skew symmetry. So, let us look at an example. The best example is rock, paper, scissor’s

game. We will understand the symmetry better in this thing. So there are 3 strategies 0, -1, 1;

1, 0, -1; -1, 1, 0, so rock, paper, scissors.



So whatever Player 1 is doing, the same thing Player 2 is also trying here. So whatever Player

1 gets, the same amount he is also getting under the similar setup. So, both the players are

trying to maximize the same pay off matrix. So let us look at it. The Player 1 is trying to

maximize these entries into this thing. He chooses this one and Player 2 is minimizing this

columns. If he is minimizing this column, let us say the column 1, Player 2 is minimizing this

column that means 0, 1, -1, that means he is maximizing 0, -1, 1.

Minimization is nothing but minus of maximizing the minus of that, so minimizing 0, 1, -1 is

nothing but  0,  -1,  1  and Player  2 is  choosing this  column R,  he  is  basically  looking at

minimizing this entry 0, 1, -1. Same thing if you look at Player 1, then Player 1 is choosing

row 1, he is actually maximizing this entries 0, -1, 1 and 0, 1, -1 here, minimizing 0, -1,

maximizing  both  are  the  same.  So the  symmetric  game  is  exactly  that.  So,  what  is  the

condition for this one?

So, the minus of this row should be this row, that is exactly this condition. So if A = –A

transpose,  we  say  that  the  game  is  symmetric,  okay?  The  symmetric  games  have  an

interesting fact. So immediate thing is whatever in a symmetric game intuitively if you look

at it, whatever I am maximizing, you are, the same thing, you are exactly the same position,

you are also going to maximize the same thing, that means whatever I am getting you should

also get the same.

So that essentially means that because it is a zero-sum game, whatever I am getting should be

same as what you are getting and the sum of both is 0, therefore, the payoff that we get under

an optimal play is 0. So, that is the interesting situation here.
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So in fact, we can write this as a theorem. Symmetric game has value 0, the symmetric game

will have a value 0. Not only that, whatever is optimal for Player 1 is also optimal for Player

2. So, let us try to prove this fact. So, what we have, pi x, y, is nothing but summation i is

equals to 1 to m, summation j is equals to 1 to n, which is xi aij yj. This is same as summation

i is equals to 1 to m, summation j is equals to 1 to n, xi minus aji by the symmetric property

of the game. If the game is symmetric, the payoff matrix is going to be a skew symmetric

matrix yj.

So if you rewrite this one, this is going to be pi y, x of course minus. Now here are few

things. I have used m here, n here, remember because by the definition of symmetric game,

that is the matrix A is same as minus A transpose, that means A the number of rows and

number of columns are same, m and n are same. So that we have used explicitly here when I

put y here and x here, we are using this one. So therefore, pi x, y is same as minus pi y, x

okay? So that is basically the important fact here.
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Pi x, y is going to be same as minus pi y, x, okay? So, whatever you are getting x and y let us

say x and y is what Player 1 and Player 2 are playing, then pi x, y is same as minus pi y, x. So

this in fact, gives you the following fact pi x, x is minus pi x, x implies pi x, x is going to be

0. If both the players are playing the same strategies, we are getting 0. So, this immediately

shows that the value of the game is less than or equal to 0.

Why, if this comes easily, what is the value of the game? Is nothing but max x min y pi x, y,

minimum y pi x, y certainly less than or equals to pi x, y for each y, in particular pi x, x, this

particular term is certainly less than or equals to pi x, x and this is 0, the maximum of that has

to be less than or equals to 0 and hence v of A is less than or equals to 0, okay. Now, we have

to use the symmetric argument now. In using a symmetric argument for example look at the

minimum y max x of pi x, y.

Now, look at this, maximum of this, this has to be greater than or equals to pi y, y and this is

0 and this term for each y is greater than or equals to 0, therefore minimum of that is also

greater than or equals to 0. Therefore, this says the lower value is less than or equals to 0, this

says the upper value is greater than or equals to 0 and we know that the game admits the

value, therefore lower and upper values are same and hence, value of the game is 0. So this is

a very interesting argument which gives you that for a symmetric game, the value is always 0.

Now, you can check the rock, paper, scissors game and then see that game has a value 0. In

fact, here is another interesting thing is that because you know that the rock, paper, scissors

game  is  a  symmetric  game,  so  therefore  the  value  is  0,  therefore  you  can  look  for  an



equalizer’s strategy assuming v is equals to 0 because you know value of, so v is 0 you put it

and use the equalizing property of an equilibrium and then we can easily solve the this thing.

So, that is an interesting simple exercise.

(Refer Slide Time: 17:15)

Now what else required? Now, we need to show that if x star is optimal for Player 1, then x

star is also optimal for Player 2. So how do we prove this fact? This fact once again comes

from this thing. Suppose x star, y star is optimal, what I mean is saddle-point equilibrium

here. Then we know that pi x star, y star is 0, now this is also same as pi x star, x star. So,

given x star, if Player 1 fixes x star, y star minimizes and similarly by this equality x star also

minimizes, so therefore, you can use any properties like equalizing or you go back to the

linearity, bilinearity of the payoffs and other things.

We can  now conclude  that  x  star  is  also  optimal.  In  fact,  x  star,  x  star  is  saddle-point

equilibrium. You can prove it without much difficulty. So in fact, this completes the proof,

but the way to visualize this fact is that this is a symmetric game, that means whatever I am

maximizing, the same thing you are also maximizing. Therefore whatever is good for me

should also good for you because it is a symmetric environment and hence, such a result.

So this is quite a useful thing and in fact symmetric games play a very interesting class of

games. In fact, there are ways to symmetrize a non-symmetric game. We will see that more

later on when we go to the non-zero sum games.
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Now we introduce an iterative method to solve the zero-sum games. This method is known as

a fictitious play. The method is introduced by Brown and the convergence proof is given by

Robinson. So, fictitious  play is  an example  of a method which is  known as the learning

methods, what it says is the following thing. So what is this learning particularly? So there is

a game that people are playing it, so let us assume they cannot really compute the equilibria

and other things, so the only thing is that they are playing it.

As they play again and again this game, can they infer, can they learn the equilibrium, what

should be the optimal strategy for them. So this is basically the idea behind this learning

algorithms. This fictitious play is one such algorithm. Let me describe how this method looks

like? So, we have a zero-sum game A and there are 2 players. So, the most important thing

here is that the players do not make mixed strategies, okay? So in other words, let us say in

the first time when Player 1 is playing, he doesn’t know anything about the game, he only

knows what choices he has now. 

So, he will choose some strategy, let us say the pure strategy, let me call x1, this is a pure

strategy, x1 is a pure strategy, okay? So, Player 2 will actually play a best response to x1.

Once again, he will choose only pure, so he will look at y1 which is basically a pure best

response to x1. He is going to choose a pure best response, this is pure best response which is

pi 1. Now, in the next round, Player 1 observes that Player 2 has played y1. So, if he has

played y1, what should he play.



So, he will look at it, x2 which is pure best response to y1. Now, in the next setup, next

iteration, the Player 2 observes that Player 1 has played x1 and x2. Therefore, he thinks that

Player  1 will  play x1 or  x2 with equal  probabilities.  Therefore,  he will  look at  the  best

response to half x1 plus half x2. Again, he will only look at the pure best response, the pure

strategy which is a best response to half x1 plus half x2, that means he choosing x1 with

probability half, x2 with probability half.

Then if the Player 2 thinks that Player 1 one is going to play x1 one with half probability, x2

with half probability. Therefore, he will look at the best response corresponding to that, let

me call that as y2. Then, once Player 2 chooses this y2 in the next round, Player 1 will look at

the Player 2 and he has played y1 and y2 and therefore he thinks Player 2 will play y1 one

with half probability, y2 with half probability. Therefore, he will look at x3 which is basically

a pure best response to half y1 plus half y2 and it goes on like this.

So, every time a player makes a decision, he will look at the empirical behaviour of other

player what he has played, how often he has played a pure strategy, he looks at that, then he

forms an opinion and he plays a best response, a pure best response to that opinion. So, this is

basically known as a fictitious play. So, recall in a fictitious play, players make an opinion

about the other players’ strategies. So, this opinion is formed based on the empirical average.
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Now,  they  choose  the  pure  best  response  to  those  empirical  averages  and  then  the

convergence is that the x1 plus x2 plus xn these are the, this thing, by n. This is basically the

empirical average of Player 1’s choices. This converges to some x star. Similarly, the choices



made by Player 2, look at its empirical average, this converges to y star. The theorem that is

proved by Robinson is that x star, y star is saddle-point equilibrium. This convergence, the

proof is actually a length proof, at this moment, we will not go into the proof, but we will see

an example illustrating this result.
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So, let us consider matching pennies. So, this is a very simple example. There are only 2 pure

strategies to make and if both match, Player 1 gets 1 unit. If they do not match, Player 2 gets

1 unit. This is a zero-sum game of course. So, how does this go in the fictitious play? So

Player 1, Player 2. Let say in the first round, Player 1 has H. If initially if Player 1 plays H,

Player 2 will play T. And in the next round, Player 1 because Player 2 has played T, so he

will play T because he has played T, now Player 2 will see that Player 1 has played H and T.

So therefore, with half probability H, with half probability T, therefore he can play anything

that maximizes that. Let us look at what is the payoff the Player 2 will get? So, Player 2’s

payoff is basically pi half H plus half T, whatever he chooses, y. So, this is nothing but half

probability if he chooses H, this is T, y. So, if y happens to be H, then he will get pi H, H will

be 1 and then half and this is 0, therefore, he will get half, if y is H. If y is T, then also he will

get half, so he is going to get, whatever he chooses H or T, whatever he chooses, he will get

half, so therefore he will pick one of them.

Let us say he has picked T. T and H both are best responses to half H plus half T okay. So

now, once you know that he picks T, now the Player 1 has picked T, so therefore Player 2

will continue to pick T because that is going to be the best response to this because both times



he has picked T, so therefore T, the best response to T is T, now Player 2 will see that Player

1 has played H one time and T two times. Therefore, he will play 1 by 3 H plus 2 by 3 T.

Now, Player 1 has played H once in three times whereas T in two times. 

So that  means,  T he has  played more  often  than  H,  therefore  for  the Player  2,  the  best

response is going to play something not equal to T, that is H, so he will play H. Now, you go

on  like  this  and  in  fact,  it  is  an  interesting  exercise  to  see  that  this  empirical  average

converges to half H plus half T here, here also half H plus half T. So, one can actually do this

iterations for several times and then get some opinion about how much it is. One of the very

important point here is that this convergence rate is actually very slow.

This is not a very fast converging method, but nevertheless, this is a good method to show the

convergence  of  this  saddle-point  equilibrium  and  in  fact,  for  any  zero-sum  games,  this

convergence automatically happens, this is a proof due to Robinson. In the next sessions, we

explore  further  properties  of  this  fictitious  play  and then  study some of  its  convergence

properties. With this, we will stop this session, we will continue in the next session.


